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ABSTRACT 16 

The lag phase is a temporary non-replicative period observed when a microbial population is 17 

introduced to a new nutrient-rich environment. Its duration can have a pronounced effect on 18 

population fitness, and it is often measured in laboratory conditions. However, calculating the lag 19 

phase length may be challenging and method and parameters dependent. Moreover, the details of these 20 

methods and parameters used throughout experimental studies are often under-reported. Here we 21 

discuss the most frequently used methods in experimental and theoretical studies, and we point out 22 

some inconsistencies between them. Using experimental and simulated data we study the performance 23 

of these methods depending on the frequency of population size measurements, and parameters 24 

determining the growth curve shape, such as growth rate. It turns out that the sensitivity to each of 25 

these parameters depends on the lag calculation methods. For example, lag duration calculation by 26 

parameter fitting to a logistic model is very robust to low frequency of measurements, but it may be 27 

highly biased for growth curves with low growth rate. On the contrary, the method based on finding 28 

the point where growth acceleration is the highest, is robust to low growth rate, but highly sensitive to 29 

low frequency of measurements and the level of noise in the data. Based on our results, we propose a 30 

decision tree to choose a method most suited to one's data. Finally, we developed a web tool where the 31 

lag duration can be calculated based on the user-specified growth curve data, and for various explicitly 32 

specified methods, parameters, and data pre-processing techniques.  33 

 34 
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INTRODUCTION 36 

Microbial planktonic populations grown in a batch culture follow a predictable pattern in terms of how 37 

the population size changes in time. Such growth kinetics can be represented by a growth curve which 38 

is typically divided into the following phases: (1) lag phase, when cells adjust to a new environment 39 

before they start dividing, (2) exponentially growing phase (or logarithmical growth), when cells 40 

divide with a maximum rate and population’s density doubles regularly, (3) stationary phase, when 41 

cells cease divisions due to nutrients depletion, and, if the measurements are conducted long enough, 42 

(4) the decline/death phase when population’s density drops due to the cell death. Such pattern of 43 

growth is typical for planktonic prokaryotic and eukaryotic microorganisms. 44 

The lag phase was first described in 1895 by Müller as a temporary non-replicative period after 45 

bacteria are introduced to new media [1]. Indeed, adjustment to a new environment after growth-arrest 46 

requires broad cellular reorganizations, which are universal for prokaryotes and eukaryotes. The cells 47 

need to adjust their transcriptome, and proteome (e.g. in S.cerevisiae [2–4]) and rearrange cellular 48 

components that are necessary for nutrient uptake and biomass accumulation. These processes are 49 

activated shortly after environment change - for example, it was reported that gene expression in 50 

Salmonella enterica bacteria was affected as soon as 4 minutes after transfer into a fresh media, and 51 

within 20 minutes, almost a thousand genes were upregulated [5]. Proliferation restart requires 52 

induction of a broad range of processes, which include: glycolysis, nutrient sensing, amino acid 53 

metabolism, nucleotide biosynthesis, protein processing (including translation, folding, modification, 54 

translocation, and degradation), coenzyme and cell wall biosynthesis, transcription of genes involved 55 

in stress response, respiration, cell cycle control, and division. For more details about biological 56 

processes during the lag please see the review by Bertrand (2019) [6].  57 

While many studies focus on the exponential phase and use the exponential growth rate as a measure 58 

of population fitness [7], the quantification of the lag duration is equally important to assess the stress 59 

or fitness of microbial populations [8,9]. Classically, fitness is defined by the number of progeny, 60 

which in microbiology is translated into the growth rate (i.e. the rate at which the population size 61 

doubles). However, the lag phase duration also affects fitness because it shows how quickly a given 62 

cell or population can adapt to an environmental change. Shorter lags enable earlier divisions, which 63 

might allow a cell to produce higher number of progeny within a fixed period of time. Such growth 64 

dynamics would be especially important in case of competition for limited resources or a limited time 65 

frame when resources can be used. Thus, the short lag phase is generally believed to be beneficial, and 66 

therefore populations in favourable conditions may be expected to evolve toward decreased lag 67 

duration [10]. However, the opposite strategy was observed in presence of antibiotics. In particular, 68 

when bacterial populations were exposed to antibiotics before a transfer to new growth media, they 69 

evolved towards increased lag duration which matched the duration of antibiotic exposure [11].  70 
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The variation in lag phase duration can be influenced by genetic, epigenetic, and environmental factors 71 

(e.g. [12–14]). For Saccharomyces cerevisiae, both nuclear and mitochondrial genes are important 72 

during the lag phase, and their expression patterns correlate with the lag phase length [13]. Besides 73 

genetics, it has been shown that the lag phase duration is history-dependent. Namely, previous cells’ 74 

exposure to given conditions shortens the time needed to adapt if the conditions are reintroduced [14–75 

17]. What’s even more interesting - this effect has also been observed in daughter cells that had never 76 

experienced the initially introduced conditions what suggests epigenetic inheritance. [15]. Lags of 77 

individual cells may differ even within a clonal population grown in unaltered conditions. For 78 

example, older cells experience longer lags than their younger clones [18,19]. Such heterogeneity may 79 

be beneficial for the population, as it enables a bet-hedging strategy where a fraction of cells assures 80 

fitness advantage by fast growth in favourable conditions, while the other fraction provides survival in 81 

stressful conditions by extending their lag time [19–21].  82 

There are multiple definitions of the lag phase and multiple ways of measuring its duration. One 83 

common definition is based on microscopic observations and it uses the first morphological signs of 84 

cell division as markers of the lag phase end (e.g. [15,22,23]). Within the studies on population-level, 85 

the lag phase can be defined as the time before any detectable increase in the cell abundance (biomass) 86 

[19], or as the time delay before a population reaches exponential growth [5]. To measure how the 87 

population’s density (cell abundance) changes in time standard laboratory methods can be used. 88 

Usually, one of the following methods is applied: spectrophotometry, colony counting on agar plates 89 

(CFU, Colony Forming Unit), and flow-cytometry. Viability counts (CFU) provide precise estimates 90 

of cell abundance even in a small population, however, this technique is time-consuming, requires 91 

previously determined culture dilutions, and is difficult to automatize and scale up. Nevertheless, due 92 

to its high sensitivity, it’s broadly used in food safety control [24,25]. Flow cytometry has a broad 93 

detection spectrum and it enables simultaneous measurements of various cell properties e.g. cell size 94 

or DNA content [26]. Spectrophotometry (optical density (OD) or absorbance) has narrower detection 95 

limits, but it is convenient, fast, cost-effective, and can be easily adapted for high-throughput testing 96 

via automatic measurements in constant time intervals. 97 

Spectrophotometry is currently the standard way of obtaining microbial growth curves. However, one 98 

of its limitations is the fact that optical density is an indicator of biomass rather than cell counts 99 

(discussed by Swinnen et al. (2004) and Rolfe et al. (2012) [5,27]). To add to this problem, the optical 100 

density may be also affected by dead or lysed cells, or even by the cell shape which may change 101 

during the lag phase [28]. Additionally, if the inoculum size is small, exponential growth may start 102 

before the biomass reaches the OD detection level, and thus the observed (apparent) lag duration may 103 

be overestimated. This problem has been tackled by Baranyi (1999) [29] who proposed a so-called 104 

time to detection (TTD) method which has been applied in some experimental studies (e.g. [30]). The 105 

problem of initial biomass being below the detection level has also been tackled by Pierantoni et al. 106 
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(2019) [31] who have proposed a new calculation method that uses the apparent lag phases to measure 107 

the initial population biomass. More broadly, the problem of density-based detection of growth for 108 

small populations could be mitigated by assuming certain model growth curve shapes below the OD 109 

detection level and/or by knowing the exact starting density of cells capable to proliferate (excluding 110 

dead and senescent cells) [32].  111 

Mathematical models can be used to overcome some methodological limitations. In order to know 112 

when exactly cells started duplicating (i.e. the end of the lag phase), we would need to continuously 113 

monitor the number of cells. This is, however, not possible with methods such as spectrophotometry. 114 

As outlined above, the spectrophotometry measurements not only are taken in intervals, but also may 115 

be inaccurate if the cells change their mass or shape, or if their initial amount is below the detection 116 

level [5]. In such cases, some assumptions are needed to calculate the lag phase duration with 117 

sufficient accuracy. If one assumes that there is no population growth during the lag phase and then 118 

cells start synchronically dividing at a constant growth rate, the end of the lag phase can be calculated 119 

as the intersection between the tangent line to the point of maximum growth rate and the y = log(N0) 120 

line, where N0 is the inoculation density (hereinafter “tangent method” [6]; see for example: 121 

[12,15,24]). This is in fact the most frequently used method of calculating the lag duration. However, 122 

there are also other methods, for example: defining the end of lag as the point of the growth curve 123 

where the second derivative of the population size in time is maximal (hereinafter “max growth 124 

acceleration”, e.g. [33,34]), determining when the biomass increased from the initial value by some 125 

predefined threshold (minimal detectable increase, hereinafter “biomass increase”, e.g. [19]), or fitting 126 

experimental data to a mathematical model (hereinafter “parameter fitting to a model”, e.g. [8]). 127 

Various mathematical models have been proposed to account for the lag phase [27], and there are tools 128 

and packages which use those to estimate the lag duration from the experimental data (for example R 129 

package nlsMicrobio [35]). However, none of these tools is strictly focused on calculating the 130 

population lag duration. Moreover, they require a good knowledge of the models and R programming 131 

skills, which may make them difficult to use. Finally, as discussed in Baty et al. (2004) [32], the data 132 

quality impacts the lag duration measurements to a higher extent than the choice of a model. Although 133 

Baty et al. (2004) [32] investigated the insufficient number of data points as a potential problem in lag 134 

duration calculation, experimental biologists may face other problems with the data quality such as 135 

noisiness or growth curve shape that deviates from mathematical models [36]. Interestingly, 136 

technicalities related to dealing with such ‘unideal’ data tend to be omitted in methodologies described 137 

by empirical studies that measure lags. They have also not been discussed in theoretical studies which 138 

focus on the mathematical formulations and biological assumptions rather than the reality and 139 

limitations of laboratory experiments. These facts make a knowledge transfer between theoretical and 140 

experimental biologists difficult. 141 
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Within this study, we describe the methods most frequently used to measure the lag duration and 142 

discuss how these methods stem from various mathematical models describing microbial growth 143 

curves. We highlight the advantages and limitations of each lag calculating method. We further use 144 

both empirical and simulated growth curve data to show how the lag duration estimate may depend on 145 

the data quality (i.e. noisiness), the shape of the growth curve, and the lag duration calculation method. 146 

We propose a decision tree that may be useful in choosing the lag calculating method best suited to 147 

one's data. We aim to emphasise that chosen methodology, parameters, and data pre-processing can 148 

strongly influence the results, which is especially visible for less typically shaped growth curves. 149 

Finally, we develop a publicly available web server MICROBIAL LAG PHASE DURATION 150 

CALCULATOR (https://microbialgrowth.shinyapps.io/lag_calulator/) which allows calculating the 151 

population lag duration according to various state-of-art methods. The calculator allows for fast and 152 

easy data analysis and direct comparison of different methods. 153 
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THE LAG PHASE IN MATHEMATICAL MODELS 155 

There are many mathematical models that describe the microbial population growth depicted by a 156 

growth curve. They include the traditional simple models such as exponential [37], logistic [38] or 157 

Monod growth [39], as well as more modern stochastic or agent-based models (see the review by 158 

Charlebois and Balázsi (2019) [40]). While the pure exponential model is parametrised only by the 159 

growth rate, the other models may depend on multiple parameters. For example, the logistic model 160 

introduces the carrying capacity parameter which represents the maximum population size, and 161 

Monod model introduces the so-called half-velocity constant (which quantifies the relationship 162 

between nutrient concentration in media and population growth rate). Another version of this model 163 

may be parametrised by the maximum resource uptake rate and the saturation constant as derived by 164 

Michaelis-Menten.  165 

Please note, that within this publication „method” refers to the way in which the lag phase is 166 

determined, while “model” refers to a set of equations that reproduce the entire microbial growth 167 

curve. 168 

Out of the three typically described growth phases (lag, exponential and stationary phase), the 169 

exponential and stationary phases are recovered by most of the models discussed in Charlebois et al. 170 

(2019) [40]. One exception is the pure exponential model which only describes the exponential phase. 171 

However, the lag and death phases require additional assumptions and are rarely described with 172 

sufficient detail. The models that aim to capture or predict the lag phase are well summarised in the 173 

two extensive reviews [27,32]. Some models describe the lag only phenomenologically. For example, 174 

the Baranyi (1993) and Baranyi and Roberts (1994) [41,42] models assume that there is some 175 

adjustment function that describes the population's adaptation to a new condition. On the other hand, 176 

there are models that attempt to make specific assumptions regarding what happens in the lag phase. 177 

The Hills and Wright (1994) [43] assume that certain biomass needs to be reached for the cell to start 178 

the chromosomal replication. Consequently, their model independently tracks in time the amount of 179 

biomass and chromosomal material. The model proposed by McKellar (1997) [44] assumes there is 180 

some heterogeneity in the population, and that one part of the population grows exponentially from the 181 

very beginning, whereas the other part does not replicate. A more realistic version of this model was 182 

proposed by Baranyi (1998) [45] where the non-replicating cells are assumed to transform at a 183 

constant rate into the replicating ones, meaning that they exit the lag phase. Finally, a model by Yates 184 

(2007) [46] adds another compartment, namely cells that die at a constant rate. This specific 185 

assumption allowed the model to reproduce the initial biomass decline which is sometimes observed 186 

during the lag phase. Interestingly, as noticed by Baty (2004) [32], some of the models described 187 

above are equivalent, in spite of being based on distinct biological assumptions.  188 
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THE LAG PHASE CALCULATION METHODS 190 

The most popular and intuitive method of calculating the lag duration ("tangent method”) defines the 191 

lag phase end at the intersection point of log(N0) (where N0 denotes the initial biomass) and a line 192 

tangent to the logarithm of population size in the exponential phase [6,39]. Why bother about more 193 

complicated mathematical models? 194 

The definition above is in fact a consequence of the pure exponential growth assumption. If cells do 195 

not divide for some time λ and then start growing with a constant growth rate, then the time λ perfectly 196 

corresponds to the lag as measured by the intersection between the lines described above (Table 1, Fig. 197 

1: exponential model & tangent method). 198 

However, microbial populations in a batch culture do not grow with a constant growth rate. According 199 

to the Monod model assumptions [39], the growth rate depends on the availability of the resources, 200 

and therefore it decreases over time. The growth rate may also depend on other factors, e.g. the 201 

population density [47]. In the case of cancer cells or in populations that reproduce sexually the 202 

growth rate may be lower at low population density, which is known as the Allee effect (e.g. [48,49]). 203 

This is why, in order to assess the most exact time when cells start divisions, there is a need for a 204 

mathematical model that is likely to represent the empirical growth curve and to fit the lag time 205 

together with other growth parameters. In particular, note that when there is some growth detection 206 

threshold, the time by which we notice any growth (i.e. apparent lag) may be impacted not only by the 207 

lag length but also by other growth parameters. For example, when the initial biomass and growth 208 

rates are very low, the slow growth may not be detected and treated as lag. This problem has been 209 

extensively discussed in Pierantoni et al (2019) [31]. 210 

The summary of the most popular methods of calculating the lag duration, the assumptions underlying 211 

each of the methods as well as possible challenges related to each method are given in Table 1. 212 

 213 
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Name Lag end calculation method Underlying model assumptions Challenges 
Example data for which 

the method is suitable 

Examples of 

experimental 

studies using 

the method 

BIOMASS 

INCREASE 

The increase of OD or biomass by a 

certain value from the beginning of 

the growth. 

The population size does not increase its 

biomass during the lag and then starts growing 

with any growth rate that may be variable or 

hard to measure. The increase by the threshold 

value is the minimal increase possible to detect 

with high confidence. 

Choice of the threshold value is 

arbitrary (not ‘biologically- relevant’) 

Data where the initial size 

of the viable population 

cannot be determined 

with high confidence. 

Opalek et al. 

2022 [19] 

MAX GROWTH 

ACCELERATION 

The point of the growth curve 

where the second derivative of 

population size in time is maximal. 

The population size does not increase its 

biomass during the lag and then starts growing 

with a decreasing growth rate. 

Noisy data may affect the detection of 

such a point. 

Growth in a batch culture 

where the amount of 

resources decreases with 

time and the amount of 

unfavourable by-products 

increases with time. 

Liu et al. 

2021 [33] 

TANGENT 

METHOD 

The intersection of the initial 

density line and the line tangent to 

the growth curve at the maximal 

growth rate (on log. scale). 

The population size does not increase its 

biomass during the lag and then starts growing 

exponentially with a constant growth rate. 

If the growth rate varies, it may be 

challenging to find the “real” or 

maximal growth rate. Moreover, the 

initial density needs to be determined 

with high confidence  

Growth in constant 

resources and 

environmental conditions 

(e.g. chemostat (at 

starting point), serial 

transfers). 

Valík et al. 

2021 [24] 

PARAMETER 

FITTING 

TO THE 

BARANYI 

MODEL 

Using parameter fitting procedures 

in order to simultaneously find all 

Baranyi & Roberts model 

parameters that provide the best fit 

to the entire growth curve. Then the 

lag is defined as ln(1+ 1/𝑞0)/r where 

r is the maximal growth rate and 𝑞0 

represents the physiological state of 

the inoculum. 

The population size grows according to the 

logistic model adjusted by function: 

𝛼 = 𝑞(𝑡)/(1 + 𝑞(𝑡)) where 𝑞(𝑡) = 𝑞0𝑒𝑣𝑡 

describes the concentration of some critical 

substance. The adjustment function slows down 

the initial growth but it does not pause it during 

the lag time as assumed by other methods. 

The lag duration fitted to the data may 

depend on many technical parameters 

of the fitting algorithms, or it may not 

be found if the fitting algorithms fail to 

converge. Finally, the lag understood 

by Baranyi is not the time when cells 

do not divide, but the time required to 

adjust to the new media (see Discussion 

for more details) 

Data that is well 

described by the Baranyi 

& Roberts model, where 

ideally some parameters 

(r, K, or 𝑞0) are known a 

priori. 

Kim et al. 

2022 [50] 

PARAMETER 

FITTING 

TO THE 

LOGISTIC 

MODEL 

Using parameter fitting procedures 

in order to simultaneously estimate 

the lag duration, carrying capacity, 

and growth rate parameter values. 

The population size does not increase during the 

lag and then starts growing according to the 

logistic model: i.e. with the growth rate 

decreasing according to the following equation: 

r(1-N(t)/K) where r is the maximal growth rate, 

K is the maximal population size, and N(t) is the 

population size at time t. 

Assumes a very specific growth curve 

shape. Moreover, the lag duration fitted 

to the data may depend on many 

technical parameters of the fitting 

algorithms. Finally, the fitting methods 

may not converge to any solution. 

Data that is well 

described by the logistic 

model, where ideally 

some parameters (r or K) 

are known a priori. 

Reding-

Roman et al. 

2017 [8] 
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RESULTS 215 

TESTING METHODS FOR LAG DURATION DETERMINATION ON THE SIMULATED DATASET 216 

Given that the methods of calculating the lag phase duration described above (Table 1) were based on 217 

theoretical assumptions, we first simulated microbial growth curves based on various well-known 218 

deterministic mathematical models: (i) the simple EXPONENTIAL model which assumes that microbes 219 

do not grow nor divide for some time (lag) and then start growing exponentially with a constant 220 

growth rate; (ii) LOGISTIC model which assumes the microbes do not grow nor divide for some time 221 

(lag) and then start growing exponentially with a decreasing growth rate; (iii) MONOD model where 222 

microbes do not grow nor divide for some time (lag) and then the speed of the growth after the lag 223 

phase is coupled with the decrease in resources, and (iv) BARANYI model which assumes cells do 224 

grow and divide in the lag phase but that growth is slower than in the exponential phase. See the 225 

Appendix for the formulation of each model. We set that for all generated growth curves the lag phase 226 

lasts for 2.5 hours. 227 

Then, for each of these simulated growth curves, we calculated the lag phase duration using the well-228 

established methods described in Table 1. The most common tangent method was further split into: 229 

tangent to point (i.e. where the tangent line is drawn to the first point where the growth rate is 230 

maximal) [23] and tangent to line method (i.e. where the tangent line is understood as a regression line 231 

fitted to a number of points around those with the maximal growth rate) [7]. 232 

Max growth acceleration, parameter fitting to the logistic model, and both tangent methods found the 233 

correct lags (lag = 2.5 h) for data simulated under exponential, logistic, and Monod models (Fig. 1). 234 

Even the simplest tangent method worked well for the data simulated under these models, even though 235 

the data does not necessarily meet the assumption of a constant growth rate. Importantly the Baranyi 236 

model seems to be inconsistent will all other models. Namely, the lag durations calculated for the data 237 

simulated under the Baranyi model are underestimated by all methods apart from the one where 238 

parameters are fitted explicitly to the Baranyi model. Conversely, the parameter fitting to the Baranyi 239 

model method tends to overestimate the lags for data simulated under all models apart from Baranyi. 240 

The biomass increase method overestimates lag phase duration by one timepoint (0.5 h) for logistic 241 

and Monod models and two timepoints (1 h) for the exponential model. It is the consequence of this 242 

method formulation, where lag phase end is defined as the first timepoint after detectable growth.  243 
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 245 

 246 

Fig. 1. Lag phase durations (given in red) calculated for data (blue lines) simulated under various 247 

models (rows) and calculated by different methods (columns). The red dashed lines indicate the end of 248 

the lag phase, black solid lines indicate the initial biomass (first measurement) and the green lines are 249 

(left to right): the threshold of log(biomass) value at which the lag phase is assumed to end [biomass 250 

increase method]; second derivative of log(biomass) scaled to the values visualised in the plot [max. 251 

growth acceleration method]; fitted growth curve [par. fitting to the Baranyi model and par. fitting to 252 

logistic model methods]; tangent lines to the exponential growth [tangent to max. growth line and 253 

point methods].  254 

 255 

 256 
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TESTING METHODS FOR LAG DURATION DETERMINATION ON THE EMPIRICAL DATASET 258 

Having verified how the lag calculation methods work on simulated data (Fig. 1), we set off to verify 259 

how these methods perform on real experimental data. We used 11 growth curves from 260 

Saccharomyces cerevisiae grown in various conditions (see Methods and Supplement). Some of these 261 

curves resemble the model data, while others are much noisier and challenge some of the model 262 

assumptions, for example: the biomass drops at the beginning of measurements (Fig. 2: curve_5 and 263 

curve_6), there is no typical exponential phase (Fig. 2: curve_11) or the lag phase is boldly prolonged 264 

and turbulent (Fig. 2: curve_7 and curve_11). Results obtained for empirical data show that the lag 265 

duration estimates may vary depending on the lag calculation method (Fig. 2, Supplementary Table 2). 266 

The lowest discrepancy between different methods is observed for curve_1, where the lag duration 267 

calculated by all methods is 1.86 ± 0.83 h. In some cases, all but one method give similar results (e.g. 268 

curve_7, where the biomass increase method gives an outlying result), in others, some methods fail to 269 

find the correct lag duration (e.g. curve_7, curve_11) due to the data noisiness (Fig. 2). The highest 270 

discrepancy between methods was obtained for curve_11 where a minimal lag phase length of 1.5 h 271 

was obtained by the max growth acceleration method, while both tangent methods and parameter 272 

fitting to logistic model yielded the lag duration of ~18h.  273 

 274 
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Fig. 2. Lag phase duration (given in red) calculated for empirical growth curves (blue lines) obtained 276 

for S. cerevisiae grown in various conditions (top to bottom). The red dashed lines indicate the end of 277 

the lag phase, black solid lines indicate the initial biomass (first measurement) and the green lines are 278 

(left to right): threshold value at which the lag phase is assumed to end [biomass increase method]; 279 

second derivative of log(biomass) scaled to the values visualised in the plot [max. growth acceleration 280 

method]; fitted growth curve [par. fitting to Baranyi model and par. fitting to logistic model methods]; 281 

tangent lines to the exponential growth [tangent to max. growth line and point methods].  282 

 283 
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TESTING THE SENSITIVITY OF LAG DETERMINATION METHODS TO DATA NOISINESS  285 

In order to understand the source of possible errors and biases in lag calculation on experimental data, 286 

we simulated growth curves from the logistic model (which in our experience  the most adequately 287 

represents  the real growth curves ) and to each curve we added noise simulated from the random 288 

distribution with mean = 0 and standard deviation dependent on the initial biomass B0 (Supplementary 289 

Fig. 2). Thus, our simulated growth curves could be described as: 290 

𝐵𝑛𝑜𝑖𝑠𝑦(𝑡) = 𝐵(𝑡) + 𝑁(0, 𝑠𝑑 ∗ 𝐵(0)), where B(t) is the solution from the deterministic logistic model 291 

with a lag component (see Supplement for the formulation of this model).  292 

We varied the level of noisiness (i.e. set 𝑠𝑑 between 0 and 0.5) together with other parameters such as: 293 

population growth rate, lag time, and time interval between data points (which represents the 294 

frequency of population size measurements). For each combination, we simulated 100 curves. Then 295 

for each of these curves, we calculated the lag according to each of the lag calculation methods and we 296 

calculated the bias i.e. the difference between observed and expected lag. 297 

First, we tested how the frequency of population size measurement impacts the lag estimation. In 298 

agreement with previous reports [32], it turned out that frequent measurements improve the accuracy 299 

of lag duration estimation. This effect can be observed within all lag calculation methods (Fig. 3: top 300 

vs bottom row) and it is especially pronounced for data with high noise (sd = 0.5). Large time intervals 301 

between data points (Fig. 3: bottom row) lead to increased variance in the lag duration estimation 302 

(wide boxplot) and to high bias (median value deviates from y = 0 line). It is especially pronounced in 303 

the biomass increase and max growth acceleration methods which overestimate lag durations even 304 

when there is minimal amount of noise (low sd). Such bias results from the fact that these methods 305 

operate only on the data points provided and they do not use any implicit models to interpolate 306 

between them. 307 
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 309 

 310 

Fig. 3. The impact of time intervals (TI) between subsequent measurements of population size on lag 311 

phase duration estimations. For each sd (noisiness, x-axis), measurement frequency (time interval, 312 

rows), and lag calculation method (columns) 100 simulations were conducted (points). The y-axis 313 

illustrates the difference between true (expected, set as 2.5 h) and estimated (observed) lag. Boxplots 314 

illustrate the distribution of points, and the median value (grey square). All points located above y = 0, 315 

show these calculations where lag phase length was overestimated, similarly, all points below y = 0 316 

show calculations where lag duration was underestimated.  317 
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Next, we checked whether the population’s growth rate has an impact on lag estimation. We calculated 319 

lags for three growth rates representing slow, moderate, and fast growth, and for varied levels of data 320 

noisiness (Fig. 4). For most of the methods slow growth results in low accuracy of lag estimation, 321 

which may additionally decreases when data is noisy. These results are consistent with our experience, 322 

namely, when the growth curve is flat, it is challenging to find a point where the population starts 323 

growing exponentially (Fig. 4: top row). In contrast, even for noisy data, fast growth facilitates lag 324 

phase estimations (Fig. 4: bottom row). The only method which is not affected by the growth rate is 325 

the biomass increase method, however it systematically underestimate lag duration, and this bias 326 

increases with introduced noisiness. Conversely, the parameter fitting to the Baranyi model 327 

systematically overestimates lag lengths especially when the population grows slowly. Max growth 328 

acceleration and both tangent methods are not biased, and are sensitive to growth rates to a similar 329 

degree, where lag estimates becoming less accurate with increasing noise. Interestingly, parameter 330 

fitting to the logistic model shows good accuracy and no bias for moderate and fast growth, but it 331 

suffers from low accuracy and high bias in the case of low population growth rate and high levels of 332 

noise. 333 

Another factor that affects the lag length estimation accuracy is the actual length of the lag phase. The 334 

longer the lag, the easier it is to erroneously detect some noise during the lag phase as the first signs of 335 

growth. Indeed, if a population has a long lag phase, its duration tends to be underestimated, while 336 

very short lags tend to be overestimated by all methods. This bias is increasing with higher noisiness 337 

(Supplementary Fig. 3), with the estimations of lag phase duration by parameter fitting to the logistic 338 

model being the most robust.  339 

  340 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516631
http://creativecommons.org/licenses/by-nc-nd/4.0/


 341 

Fig. 4. Impact of growth rate (GR) on lag phase duration estimations. For each sd (noisiness, x-axis), 342 

growth rate (rows), and lag calculation method (columns) 100 simulations were conducted (points). 343 

The y-axis illustrates the difference between true (expected, set as 2.5 h) and estimated (observed) lag. 344 

Boxplots illustrate the distribution of points, and the median value (grey square). All points located 345 

above y = 0, show these calculations where lag phase length was overestimated, similarly, all points 346 

below y = 0 show calculations where lag duration was underestimated.  347 
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The comparison of biases of all lag calculation methods are shown in Fig. 5. The methods that tend to 349 

be systematically biased within our parameter range are the biomass increase (underestimates the lags) 350 

and fitting to Baranyi model (overestimates the lags). The biomass increase tends to erroneously pick 351 

random points as sudden lag phase end, which leads to underestimation of lag phase duration. 352 

Conversely, the parameter fitting to the Baranyi model systematically overestimates lag duration. This 353 

is a consequence of the dataset being simulated by the logistic model which is inconsistent with 354 

Baranyi’s assumptions. The other methods are less biased within our parameter range. Both tangent 355 

and max growth acceleration methods have poor performance on growth curves with long lags, and 356 

max growth acceleration method is very sensitive to high levels of noise. The parameter fitting to the 357 

logistic model is the most robust to data noisiness, however, interestingly what affects it the most is 358 

the low growth rate. 359 
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 361 

 362 

Fig. 5. The median bias of lag estimation of each of the lag calculation methods applied to growth 363 

curves with varied level of noise (x-axis) and other growth curve parameters (column panels). White 364 

squares mean the method is unbiased, blue means the lags tend to be overestimated, and red means the 365 

lags tend to be underestimated.  366 
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TESTING THE EFFECTS OF DATA PRE-PROCESSING ON ESTIMATED LAG LENGTHS  368 

Lag estimation is challenging if data is noisy. This problem could be mitigated by some data pre-369 

processing techniques that allow for removing noise from the data. Therefore, we verified how manual 370 

curation or data pre-processing affect the lag calculation accuracy. We applied the following pre-371 

processing methods to our experimental curves (Fig.2): (i) smoothening the curve by Tukey’s 372 

smoothing function, (ii) cutting the data at 12h to remove the noise observed in the stationary phase. It 373 

turned out that for the “typical” growth curve shapes, such as the ones presented in curve_1 and 374 

curve_2 (Fig. 2), various algorithms are consistent and the data pre-processing does not influence the 375 

results. However, the noisier the data, the less consistent the results based on multiple lag calculation 376 

methods and data pre-processing techniques (Fig. 3). We have additionally verified that adding a 377 

constant to the entire growth curve (e.g. by neglecting the blank correction) affects the lag phase 378 

length estimates given by all but the biomass increase method (Fig 3). Importantly, such a constant 379 

value added to the growth curve may not only relate to blank correction, but also to the case when a 380 

fraction of the population is dead or damaged and does not duplicate throughout the growth. We 381 

further investigate how that phenomenon affects the lag calculation in Supplementary Fig 1. 382 

 383 

 384 

Fig. 6. Distribution of lag duration estimated by six discussed methods (columns) per each curve 385 

(colour & shape) and pre-processing algorithm (x-axis). “Original” means no pre-processing has been 386 

applied, “not blank corrected” means data were not corrected for the blank value, “cut” means the data 387 

curve has been shortened to 12 hours only, and “smoothened” means Tukey smoothening has been 388 

applied. 389 

 390 
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HOW TO CHOOSE THE LAG CALCULATION METHOD BEST SUITED TO ONE'S DATASET? 392 

We propose a decision tree to facilitate the choice of lag calculation method (Fig. 7A). The 393 

recommendations are based on our results shown in previous sections. Altogether, we suggest trying to 394 

estimate lag duration by parameter fitting to the logistic model in the first place. This method is the 395 

most robust, it captures whole growth dynamics and because of that, it mitigates technical limitations 396 

(such as a device’s detection limits). On the other hand, the biomass increase method is the least 397 

dependent on any assumptions. In particular, it is the only one that is not affected by the blank 398 

correction or existence of dead cells in the culture. Therefore we recommend it if the other methods 399 

cannot be applied. Additionally, we encourage to use multiple methods and to investigate possible 400 

inconsistencies between their results. 401 

 402 
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THE LAG PHASE DURATION CALCULATOR 404 

Finally, in order to allow other researchers to calculate lag duration by different methods and compare 405 

the results, we created a web server MICROBIAL LAG PHASE DURATION CALCULATOR, where 406 

lags can be calculated by various methods upon insertion of the growth curve data (i.e. table with time 407 

and biomass columns). The webserver is freely available under the following address: 408 

https://microbialgrowth.shinyapps.io/lag_calulator/  409 

The MICROBIAL LAG PHASE DURATION CALCULATOR is designed to automate the lag 410 

duration calculation process. The tool does not require any programming, nor mathematical modelling 411 

skills. Additionally, we deposited our code and lag calculating functions on GitHub so that they can be 412 

used locally, customised, and further improved. 413 

 414 
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 415 

Fig. 7. A: Decision tree to facilitate the choice of appropriate lag calculation method. B: Print-screen 416 

from web server MICROBIAL LAG PHASE DURATION CALCULATOR where lag phase duration 417 

can be calculated for a user-specified growth curve, and by any of the methods discussed in Table 1.   418 
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DISCUSSION 419 

Lag phase duration is an important fitness component for microbial populations. Within this 420 

publication, we discussed the most popular approaches to calculate the lag phase duration for 421 

population-level data. We implemented these approaches and tested them on simulated and empirical 422 

data to show that they may disagree depending on the shape of the growth curve. To further compare 423 

the methods in terms of their accuracies and biases, we simulated growth curve data with varied level 424 

of noise and other parameters such as growth rates, lag lengths or the time intervals between data 425 

points (understood as the frequency of measurements). For each of these growth curves we estimated 426 

the lag duration with each of the lag calculation methods. It turned out that the noise and other 427 

parameters affect the quality of lag duration estimation, hence we tested how smoothening the growth 428 

curve and other data pre-processing techniques influence the lag estimation. Since various methods 429 

were sensitive to various parameters (for example the max. growth acceleration method was largely 430 

affected by the high noise, while the parameter fitting to logistic model method was affected by low 431 

growth rates), we used our results to propose a decision tree designed to help in choosing the lag 432 

calculation method best suited to one's data. We have also developed a web tool where the lag duration 433 

can be calculated based on the user-specified growth curve data, and for various explicitly specified 434 

methods, parameters, and data pre-processing techniques. Additionally, we deposited our code on 435 

GitHub so that the function “Calculate.Lag” can be taken directly to the R environment for local use 436 

and customization.  437 

Here, we chose the four most frequently used approaches to estimate lag phase duration. We compare: 438 

(i) THE BIOMASS INCREASE, which uses a predefined value of a biomass (or absorbance) gain that can 439 

be confidently marked as population’s growth; (ii) THE MAX GROWTH ACCELERATION, which assumes 440 

the lag ends at the time point where the second derivative of a population size in time is maximal, (iii) 441 

THE TANGENT METHOD, where lag phase endpoint is marked as the intersection point of a line tangent 442 

to maximal growth and a line y = log(N0), where N0 is population density at the inoculation; and (iv) 443 

PARAMETER FITTING TO A MODEL which simultaneously finds best-fitted parameter values for the 444 

entire curve (e.g. lag phase length, maximal population size, maximal growth rate) using logistic or 445 

Baranyi models. All these methods are developed based on typically shaped growth curves. Therefore, 446 

we tested the accuracy of their estimations using simulated (typical) and empirical (typical and 447 

untypical) growth curve data. As expected, for data with typically shaped growth curves, the majority 448 

of the methods showed similar results. This is in line with the previous observation, that the choice of 449 

a model influences the calculated lag phase duration to a lesser extent than the data quality and 450 

characteristic [32]. Interestingly the Baranyi model [51] is not consistent with other methods. This is a 451 

consequence of how the lag is defined within Baranyi model. While other models assume the lag is the 452 

time when the population size does not grow, Baranyi defines lag as the delay between the population 453 

size expected if the cells started growing immediately after inoculation with the maximum growth rate 454 
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and the observed one [32]. This is consistent with the original definition [52] which defines lag 455 

duration as the difference between the time expected to take to reach the observed population size if 456 

population size was growing at a maximal rate and the actual time taken to reach that population size 457 

(including the lag duration). Note, however, that such definition is affected by all factors that lead to a 458 

slower growth (e.g. nutrient depletion), and may be dependent on the time when measurements are 459 

taken.  460 

Taken together, the lag phase estimation cause little or no trouble when the growth curve resembles a 461 

standard model shape, and in such cases, the choice of the lag calculation method can be driven by 462 

one's preferences. It, however, becomes more complicated for noisy or untypical growth curves. 463 

In line with previous research [32], we demonstrated that the frequency of measurements can strongly 464 

influence the  lag phase duration estimates (Fig. 4). We recommend taking measurements with 465 

maximal 0.5h intervals, and more frequently if one expects untypically shaped growth curves. We also 466 

highlight the importance of correct calculation of N0 (the initial number of alive cells, capable of 467 

proliferating) and of that number being above the detection limit. In the laboratory settings, this 468 

number  can be relatively easily adjusted by adequate dilutions and simultaneously gives a much 469 

broader spectrum of possible analysis afterward. If N0 is below the detection level, then we are likely 470 

to overestimate the lag duration, because the first signals of growth will also be under detection level. 471 

To overcome this problem, one can assume a certain growth curve shape below the detection limit as 472 

done in Pierantoni et al. 2019 [31] and apply model fitting to estimate the lag duration. Additionally, if 473 

this number cannot be measured with high confidence (for example because of some dead or senescent 474 

cells being a part of the inoculum) one can use the biomass increase method to estimate population lag 475 

duration.  476 

Although THE BIOMASS INCREASE method is simplistic, and it may be questionable if its results 477 

represent the real lag length, we believe it provides a good ecological measure of how efficiently a 478 

given population can inhabit a niche (net biomass gain). We suggest to apply this method if the growth 479 

curve greatly deviates from model shape or when the growth curve cannot be corrected for blanks or 480 

dead cells (i.e. if a fraction of the population size accounts for dead cells). In this case all other 481 

methods do not work correctly, because their assumptions are violated (Fig. 6). Note however that an 482 

important drawback of this method is that the chosen threshold value is arbitrary and may have no 483 

biological meaning.  484 

THE MAX GROWTH ACCELERATION is a very elegant method from mathematical point of view, and it 485 

may be a good choice for growth curves with non-standard shapes. However, it is very sensitive to 486 

noise (i.e. the calculation of the second derivative is very noise sensitive, Fig. 5). We recommend 487 

using smoothening function before applying the max growth acceleration method (Fig. 6).  488 
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The most popular TANGENT METHOD works reasonably well even if the assumption about the constant 489 

growth rate is violated. Additionally, it is not highly affected by data noisiness, but it performs worse 490 

than the parameter fitting method if the measurements are not taken often enough (Fig. 5). The 491 

challenging step may be the choice of how to draw the tangent line. If the tangent line is drawn to one 492 

point only (the point where the growth rate is maximal) there is a risk its slope will be under or 493 

overestimated if the data is noisy and an outlying point is chosen. This problem can be mitigated by 494 

drawing the regression line around points in the exponential phase. However, it may be not obvious in 495 

which time range the population grows exponentially. In fact, in order to know where the exponential 496 

phase starts one needs to know where the lag phase finishes, which brings us back to the original 497 

problem. Thus, the selection of data points in exponential phase often requires some manual inspection 498 

or additional assumptions. Within our web tool, N points are chosen around the point with the 499 

maximal growth rate, where N is a user-specified parameter. Note that the tangent method requires the 500 

initial number of cells capable of proliferating (N0) to be determined with high confidence. If a 501 

substantial fraction of the population is dead or senescent, what may be the case for populations that 502 

had previously experienced some stress (e.g. drug exposure, long-term starvation) [19,36], the N0 503 

captured by absorbance will be heavily overestimated.  504 

THE PARAMETER FITTING TO THE LOGISTIC MODEL is the most robust lag calculation method. It shows 505 

good accuracy even for noisy data (Fig. 5), and it can be used to overcome some technical limitations 506 

(such as N0 below detection level, or a high level of noise). Importantly, the method performed well 507 

not only for the curves simulated from logistic model, but also for the ones simulated from Monod 508 

model (Supplementary Fig. 4). The performance of this method depend on the shape of the growth 509 

curve, e.g. if the growth curve highly deviates from the standard shape, the fitting may not converge to 510 

any solution (Supplementary Fig. 5). This problem can be fixed by finding a more suitable 511 

optimisation algorithm, initial parameter values, or data transformation. These options are available 512 

within our web tool LAG PHASE DURATION CALCULATOR. However, we highlight the fact that the lag 513 

phase duration estimation is dependent not only on the selected method but also on multiple 514 

parameters of that method which tend to be underreported within experimental studies.  515 

  516 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 16, 2022. ; https://doi.org/10.1101/2022.11.16.516631doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516631
http://creativecommons.org/licenses/by-nc-nd/4.0/


CONCLUSIONS 517 

The results presented here emphasize that while determining lag phase duration, all steps (pre-518 

processing, choice of a method, and parameters) influence the final outcome. We would like to 519 

highlight that all these steps should be thoughtfully reported to ensure data reproducibility and 520 

credibility. Even the simplest tangent method requires specifying some details such as (i) if the initial 521 

biomass is represented by the first measurement or the minimal value, or (ii) the number of data points 522 

(or time frame) taken to draw the tangent line - whether a single point (e.g. [23]) or multiple points 523 

from the exponential phase (e.g. [7]) were used.  524 

Within this publication, we came out with two solutions to facilitate the process of reproducible lag 525 

phase duration determination. First, we designed a decision tree (Fig. 7), which helps to choose the 526 

method best suited to one’s experimental conditions, taking into account various technical limitations 527 

and data imperfections. Second, we have developed an online tool, which will help to directly compare 528 

the lag phase duration estimated by different algorithms (i.e. combinations of methods, parameters, 529 

and data pre-processing techniques). The tool allows parameter adjustments and data pre-processing. 530 

Moreover, we share our code on GitHub 531 

[https://github.com/bognabognabogna/microbial_lag_calulator] so that it can be  further developed and 532 

customised. In particular, we share the function “Calculate.Lag” which can be taken directly to the R 533 

environment. We perceive our tool as an initial point to further improvements made by the scientific 534 

community so that any new potential challenges can be solved in a reproducible way. 535 
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METHODS 537 

EXPERIMENTAL GROWTH CURVES: 538 

The empirical growth curve data used here were a part of a project described in Opalek et al. (2022) 539 

[19]. All growth curves were acquired by growing Saccharomyces cerevisiae S288C cultures in rich 540 

YPD media at 30oC. The populations were starved in various conditions before the growth procedure 541 

(see details in Supplement). The populations’ densities were monitored by absorbance measurements 542 

(optical density (OD), 600 nm in SpectraMax iD3) taken every half an hour. Then, the biomass was 543 

calculated according to the equations: 544 

For OD measurements below 0.1: 10(1.885845 + 28.72096×OD) 545 

For OD measurement equal or above 0.1: 3566518×OD + 26754296×OD2 -19881567×OD3 546 

SIMULATED GROWTH CURVES: 547 

Growth curves shown in Fig. 1 were simulated from the models described in the Supplement, and for 548 

time points spanning every 6 minutes between 0 and 24 hours. The parameters used are listed in the 549 

Supplementary Table 3. 550 

LAG DURATION CALCULATION METHODS: 551 

Let t denote time, 𝜆 denote lag duration, B denote biomass, and let  𝑡𝑖 denote the i’th time point of the 552 

growth curve. If we define 𝑁 = ln (𝐵), then 
𝑑𝑁

𝑑𝑡
 can be understood as the growth rate. 553 

Additionally let 𝐵0 denote the first observation of biomass, and 𝑁0 = ln(𝐵0 )  554 

Tangent to max. growth line 555 

The derivative of 𝑙𝑁 is approximated using to the central scheme i.e. 556 

𝑑𝑁(𝑡𝑖)

𝑑𝑡
=  

N(𝑡𝑖+1) −  𝑁(𝑡𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1
  557 

Then the maximal growth rate is defined as the maximum value of 
𝑑𝑁

𝑑𝑡
 found within the growth curve 558 

i.e.: max
i

 (
𝑑𝑁(𝑡𝑖)

𝑑𝑡𝑖
). The first point at which growth rate is maximal is then denoted as (𝑡max .𝑔𝑟𝑜𝑤𝑡ℎ, 559 

𝑁max .𝑔𝑟𝑤𝑜𝑡ℎ ). Finally, a tangent line to this point is calculated.  560 

Subsequently, lag duration is defined as the time when that tangent line crosses the 𝑁0 line. This value 561 

can be calculated as: 562 

𝜆 =  (𝑁0 −  𝑁max .𝑔𝑟𝑜𝑤𝑡ℎ  − max
i

 (max
i

 (
𝑑𝑁(𝑡𝑖)

𝑑𝑡𝑖
)) ∗ 𝑡𝑚𝑎𝑥.𝑔𝑟𝑜𝑤𝑡ℎ)/ max

i
 (
𝑑𝑁(𝑡𝑖)

𝑑𝑡𝑖
) 563 

Tangent to max. growth point 564 

The first point at which growth rate is maximal is calculated as above and it is denoted as 565 

(𝑡max .𝑔𝑟𝑜𝑤𝑡ℎ, 𝑁max .𝑔𝑟𝑤𝑜𝑡ℎ ). Then n points around that point are taken and a regression line is 566 

calculated using the lm function from the stats package (R). Subsequently, lag duration is defined as 567 

the time when that regression line crosses the 𝑁0 line. Within the manuscript n = 3. However, within 568 
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our web tool this value can be modified by the user. Moreover, the value of 𝑁0 can be defined either as 569 

the first or the minimal log(biomass) value.  570 

Parameter fitting to logistic model 571 

All parameters of the logistic model (described in Supplement) are fitted simultaneously to the growth 572 

curve data using the nlsLM function from minpack.lm package (R), and the Levenberg-Marquardt 573 

algorithm, max.iter = 100. The initial values are estimated from the data and the following initial 574 

values: initial K = max (𝐵), and initial lag = lag as calculated with the tangent method, and the initial 575 

growth rate is fitted to the data points that are likely to be in exponential growth i.e. those where 576 

biomass is between 𝐵0 + 0.2(max (𝐵) − 𝐵0 ) and 𝐵0 + 0.8( max (𝐵) − 𝐵0 ). All these initial values 577 

can be adjusted within the web tool.  578 

Parameter fitting to Baranyi model 579 

All parameters of the Baranyi and Roberts model (described in Appendix) are fitted simultaneously to 580 

the growth curve data using the nls function from stats package (R) and the baranyi formula from the 581 

nlsMicrobio package. We use the Gauss-Newton algorithm, max.iter = 100, and the following initial 582 

values: init.LOG10Nmax = max (log10(𝐵), init.LOG10N0 =  log10(𝐵0), and the initial growth rate is 583 

fitted to the data points that are likely to be in exponential growth i.e. those where biomass is between 584 

𝐵0 + 0.2(max (𝐵) − 𝐵0 ) and 𝐵0 + 0.8( max (𝐵) − 𝐵0 ).  All these values can be adjusted within the 585 

web tool.  586 

Max. growth acceleration 587 

The second derivative of 𝑁 is calculated approximated with the central scheme i.e. 588 

𝑑2𝑁(𝑡𝑁)

𝑑𝑡2
=  

N(𝑡𝑁+1) +  𝑁(𝑡𝑁−1) −  𝑁(𝑡𝑁)

((𝑡𝑁+1 −  𝑡𝑁−1)/2)^2
  589 

Then the max. growth acceleration point is defined as the maximum value of 
𝑑2𝑁(𝑡𝑖)

𝑑𝑡2  found within the 590 

growth curve i.e.: max
i

 (
𝑑2𝑁(𝑖)

𝑑𝑡2 ). Consequently, lag duration 𝜆 is defined as the minimum time 𝑡𝑀 at 591 

which 
𝑑2𝑁(𝑡𝑖)

𝑑𝑡2  =  max
i

 (
𝑑2𝑁(𝑡𝑖)

𝑑𝑡2 ).  592 

Biomass increase 593 

Let us define: 594 

Δ𝐵𝑡𝑖
= 𝐵(𝑡𝑖) − 𝐵0  595 

Lag duration 𝜆 is defined as the minimum time 𝑡𝑀 at which 596 

 Δ𝐵𝑡𝑀
≥ threshold  597 

Finally, if the lag calculated by any of the method above turn out negative (which indeed may happen 598 

in the tangent and parameter fitting methods) we assume it is equal to 0. 599 

Throughout this manuscript threshold = 105. However, within our web tool this value can be modified 600 

by the user. Moreover, the value of 𝐵0 can be defined either as the first or the minimal biomass value. 601 

Additionally in case the lag estimate is negative, NA is returned. 602 

The code used to calculate the lag according to various methods can be found on GitHub 603 

https://github.com/bognabognabogna/microbial_lag_calulator 604 
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SUPPLEMENT 768 

FORMULATIONS OF MATHEMATICAL MODELS USED TO SIMULATE THE GROWTH CURVE DATA: 769 

1. Exponential model 770 
𝑑𝑁

𝑑𝑡
= {

𝑟𝑁,      𝑡 ≥ 𝐿
0, 𝑡 < 𝐿

 771 

which can be solved as 772 

𝑁(𝑡) = {
𝑁(0)𝑒𝑟(𝑡−𝐿),     𝑡 ≥ 𝐿
𝑁(0),                  𝑡 < 𝐿

 773 

where N(t) is the population size at time t, L is the lag phase duration, and r is the growth rate 774 

(constant in time). 775 

 776 

2. Logistic model 777 

𝑑𝑁

𝑑𝑡
= {𝑟𝑁 (1 −

𝑁

𝐾
) , 𝑡 ≥ 𝐿

0, 𝑡 < 𝐿
 778 

 779 

where N(t) is the population size at time t, L is the lag phase duration, r is the growth rate 780 

(constant in time), and K is the saturation constant (i.e. the maximum population size). 781 

 782 

3. Monod Model 783 

𝑑𝑁

𝑑𝑡
= {𝑎

𝑉𝐺

𝐾𝐺 + 𝐺
𝑁, 𝑡 ≥ 𝐿

0, 𝑡 < 𝐿
 784 

 785 

𝑑𝐺

𝑑𝑡
= {−

𝑉𝐺

𝐾𝐺 + 𝐺
𝐺, 𝑡 ≥ 𝐿

0, 𝑡 < 𝐿
 786 

where N(t) is the population size at time t, G(t) is the limiting nutrient (for example glucose) 787 

concentration at time t, L is the lag phase duration. V denotes the maximal rate of the glucose 788 

uptake pathway, and 𝐾𝐺 denotes the Michaelis-Menten constant (so that if 𝐾𝐺=G, 
𝑉𝐺

𝐾𝐺+𝐺
 = V/2). 789 

Moreover, the efficiency of converting glucose into biomass is described by a parameter a, which 790 

for simplicity is assumed to be constant. 791 

4. Baranyi and Roberts Model 792 
𝑑𝑁

𝑑𝑡
= 𝑟 (1 −

𝑁

𝐾
)

𝑄

1 + 𝑄
𝑁 793 

𝑑𝑄

𝑑𝑡
= 𝑣𝑄 794 

Where N(t) is the population size at time t, K is the saturation constant (i.e. the maximum 795 

population size), and Q represents the physiological state proportional to the concentration of 796 

some critical substrate.  797 
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THE GROWTH CURVE DATA: 798 

Supplementary Table 1 gathers information about the populations used as examples (Fig. 2, Fig. 3) for 799 

empirical growth curves within this publication (Fig. 2, 6). We choose growth curves that demonstrate 800 

possible challenges in analysis, such as: biomass drop at the beginning of measurements (curve_1, 801 

curve_6), prolonged lag phase (curve_7, curve_8, curve_11), lack of easily-visible lag phase 802 

(curve_3), slow biomass increase (curve_8, curve_9), lack of exponential growth phase (curve_11), 803 

turbulent measurements in biomass (curve_10). 804 

The data was originally collected to analyse possible advantages of phenotypic heterogeneity within a 805 

starving clonal population and it was used in Opalek et al. 2022. In particular, the growth curves come 806 

from three artificially prepared S.cerevisiae population types: Q monoculture, NQ monoculture, and 807 

mix culture. The Q (growth-arrested quiescent cells) and NQ (non-quiescent) cells are distinct 808 

phenotypes that can be separated from the stationary phase population (Allen et al. 2006). The 809 

populations had experienced starvation in complex (spent rich YPD medium) or simple (H20) 810 

environments and had been regrown in rich media afterward for fitness analysis. For details, see 811 

Opalek et al. 2022. 812 

The data was not analysed nor visualised in the form presented in this publication.  813 

Supplementary Table 1. The summary of starvation conditions, chronological age, and phenotypic 814 

states of populations used to acquire growth curves analysed within this publication.  815 

 CURVE ID 
STARVATION 

MEDIA 

STARVATION 

DURATION 
CELL TYPE 

curve_1 complex environment 7 days NQ monoculture 

curve_2 complex environment 7 days NQ monoculture 

curve_3 complex environment 7 days natural mix culture 

curve_4 simple environment 14 days NQ monoculture 

curve_5 complex environment 14 days Q monoculture 

curve_6 complex environment 14 days Q monoculture 

curve_7 simple environment 35 days NQ monoculture 

curve_8 complex environment 35 days NQ monoculture 

curve_9 complex environment 42 days NQ monoculture 

curve_10 simple environment 42 days Q monoculture 

curve_11 simple environment 42 days NQ monoculture 

 816 

  817 
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Supplementary Table 2. The summary of lag phase durations calculated by various methods 818 

(columns). The table compares the similarities of results for each of the curves. The numbers are given 819 

in hours. 820 

 821 

 822 

 823 

Supplementary Table 3. Default parameters used to simulate data from models described in section 824 

FORMULATIONS OF MATHEMATICAL MODELS USED TO SIMULATE THE GROWTH CURVE DATA. 825 

Parameter name Default value 

Growth rate 𝑟 (exponential and Baranyi model) 0.1 [ℎ−1] 

Max. growth rate 𝑟 (logistic model) 0.25 [ℎ−1] 

Carrying capacity 𝐾 (logistic model) 5 ∗ 106 [cells/mL] 

Initial biomass 𝑁0 106 [cells/mL] 

Lag 𝐿 in logistic, exponential, and Monod model 2.5 [h] 

Initial physiological state in Baranyi model 𝑄0 3.52 [units] 

Efficiency of substrate uptake in Monod model 𝑎  3*105 [cells/mmol substrate] 

Maximal substrate uptake rate in Monod model 𝑉 1.5*10(−5) [mmol substrate / cells × h])  

Michaelis-Menten constant in Monod model 𝐾𝐺 300 [mmol substrate] 

 826 

 827 

 828 

 829 

CURVE_ID 
BIOMASS 

INCREASE 

MAX 

GROWTH 

ACCELE-

RATION 

PAR. 

FITTING 

TO THE 

BARANYI 

MODEL 

PAR.  

FITTING 

TO THE 

LOGISTIC 

MODEL 

TANGENT 

TO MAX 

GROWTH 

LINE 

TANGENT 

TO MAX 

GROWTH 

POINT 

AVERAGE ± 

SD 
MAX MIN 

curve_1 2 1.5 2.6 1.9 1.6 1.6 1.87 ± 0.83 2.60 1.50 

curve_2 1 1.5 2.6 1.9 1.6 1.6 1.70 ± 1.40 2.60 1.00 

curve_3 1 1.5 2 0.9 0.7 0.7 1.13 ± 1.33 2.00 0.70 

curve_4 3.5 3.5 6.1 5.2 4.4 4.4 4.52 ± 5.07 6.10 3.50 

curve_5 2 1 2.5 1.9 1.8 1.7 1.82 ± 1.19 2.50 1.00 

curve_6 2 1 2.5 2.2 1.9 1.9 1.92 ± 1.27 2.50 1.00 

curve_7 1.5 5 NA 11 8.5 8.5 6.90 ± 54.70 11.00 1.50 

curve_8 7 3 7.9 6.8 6.6 6.7 6.33 ± 14.43 7.90 3.00 

curve_9 4 1 5.6 4.1 4.5 4.4 3.93 ± 11.95 5.60 1.00 

curve_10 1 4 7.3 5.8 5.1 5.1 4.72 ± 22.47 7.30 1.00 

curve_11 14.5 1.5 20.2 17.6 18.2 18.2 15.03 ± 236.77 20.20 1.50 
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 830 

 831 

Supplementary Figure 1. Lag duration as calculated for 11 experimental growth curves with various 832 

methods, assuming that a percentage of the initial population is non-replicative.  833 

In case of growth curves, where there is no biomass increase for prolonged time (e.g. curve_11), the 834 

proportion of alive vs senescent (permanently non-replicative cells) highly impact estimated lag 835 

duration. If all cells are capable of proliferating (x = 0), then the observed lack of biomass increase is 836 

indeed a lag phase, however if a substantial fraction of population is unable to proliferate (x = 0.9), 837 

then the remaining 10% of alive cells start proliferate earlier (lag = 5-10 h, depending on the method 838 

(columns)), however the increase in biomass is small to be marked as the lag phase end. That is why 839 

the proportion of dead cells should be also monitored when analysing growth curves.  840 

 841 

  842 
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 843 

 844 

 845 

Supplementary Figure 2. The visualization of the impact of introduced noisiness (sd) on growth curve 846 

shape. The noise was simulated from the random distribution with mean = 0 and standard deviation 847 

standardized by the initial biomass B0  848 

 849 

 850 

  851 
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 852 

 853 

Supplementary Fig. 3. Impact of real lag phase duration on calculation accuracy. For each sd 854 

(noisiness, x-axis), expected lag length (rows), and lag calculation method (columns), 100 simulations 855 

were conducted (points). For each row, the true (expected) lag was set as a different value, e.g. in the 856 

first row, the true lag was set as 0.5h, and the y = 0 correspond to lag = 0.5h, while in the second row, 857 

y = 0 correspond to lag = 2.5h. Boxplots illustrate the distribution of points, and the median value 858 

(grey square). All points located above y = 0, show these calculations where lag phase length was 859 

overestimated, similarly, all points below y = 0 show calculations where lag duration was 860 

underestimated.  861 

Parameter fitting to Baranyi model systematically overestimates lag phase duration. For short lags 862 

(first row), all but biomass increase methods tend to overestimate lag duration when noisiness 863 

increase, while for long lags (last row), all but parameter fitting to logistic model methods 864 

underestimate lag duration when noisiness increase. Median value (grey square) for the parameter 865 

fitting to the logistic model is closest to y = 0 what indicates that this method is least biased.  866 

 867 

  868 
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 869 

Supplementary Fig. 4. Testing robustness of results for data simulated via Monod model. The biases 870 

and accuracies of the methods show the same pattern as described in the manuscript (Fig. 3, Fig. 4, 871 

Supp. Fig. 3), and as such, the outcomes are not driven by the model itself.  872 

  873 
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 874 

 875 

Supplementary Fig. 5. Frequency of NA value generated (indicating failure of the lag estimation) out 876 

of 100 simulated growth curves (the curves described in section: TESTING THE SENSITIVITY OF LAG 877 

DETERMINATION METHODS TO DATA NOISINESS). In case of parameter fitting to model NA means that 878 

the fitting didn’t converge to any solution, while for tangent method NA is generated if lag was 879 

estimated as a negative value. No filling indicates that all 100 lag estimations values were generated. 880 

For biomass increase and max growth acceleration methods all lag estimations were successful and as 881 

such they were excluded from the graph. The maximum of 78 failed lag estimations were generated 882 

twice for parameter fitting to Baranyi model: for data simulated with slow growth rate (0.1) and long 883 

lag phase (5h), both with and high noise (sd = 0.5).  884 

 885 
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