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Supporting methods 
 

Behavioral procedure 
 

Localizer phase details 
The instructions were followed by 12 practice trials. At the mid-point of each localizer 

block, a 20 s rest was inserted (after which participants pressed a key to continue). After 

each block, performance was indicated by 1-4 yellow stars indicating performance 

>65% correct through >95% correct. If performance was lower than 65%, participants 

were shown the text: “Please try to perform better in the next part!” 

 In a localizer trial, participants were presented with a stimulus in the center of the 

screen for 0.85 s. Then the stimulus disappeared and two words appeared, one above 

the screen midpoint and the other below. One of the words correctly named the 

preceding object, while the other was incorrect; the top / bottom locations of the correct 

and incorrect word were randomized. Participants were instructed to select the correct 

word using the 1st or 2nd buttons on a 4-button response pad, which was rotated in 

orientation such that the 1st button was above the 2nd. Words were presented for 0.45 s, 

followed by a fixation ITI during which button responses for the words were still 

recorded. The ITI duration mean was 1.2 s (range 0.7 – 2.7 s). If performance on the 

naming task fell below 70% correct (across missed responses and false alarms in the 

preceding 32 trials), a warning was presented: “Please increase your performance on 

the picture identification!” 

The stimulus images were presented in a pseudo-random order, with the 

constraint that no stimulus repeat in subsequent trials. Each stimulus was presented 50 

times. The localizer was divided into 4 blocks, with 150 trials per block for a total of 600 

trials. 

 

Reward learning session 2 details 
A reward learning trial began with a 2.5 s planning period where a response was not 

allowed. To indicate this period, a black cross was presented in the center of the 

screen. Above the two shape options, the reward stakes on the current trial (1x or 5x) 
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were shown. When the fixation cross disappeared, participants could select a shape for 

a maximum of 1.5 s. Note that this enforced delay before choice execution limits the 

ability to interrogate choice reaction time. If no choice response was recorded for this 

choice, the trial ended with text indicating a loss of nine points: “Too late or wrong key! -

9 pts”. After a 0.5 s inter-stimulus interval (ISI) the stimulus from the first path state was 

presented randomly on the left or right side of the screen for a minimum of 0.5 s up until 

a response was recorded, or 1.5 s max. Participants responded with a button 

corresponding to the screen location of the stimulus. After a 0.5 s ISI, this procedure 

was repeated for the second and third path state stimuli. If participants failed to respond 

to any path stimuli, the trial ended with the above no-response error message. Either a 

0.5 s or 7.0 s ISI preceded the feedback period. This pre-feedback delay in one world 

(randomly assigned) was always 0.5 s while the delay in the other world was 7.0 s. 

(This delay had no effect on behavioral or neural results and thus all analyses combine 

results across worlds.) The feedback points were then presented in colored text 

determined by the point amount, where a bright green color was used for the maximum 

amount of 9 points and bright red color for the minimum amount of 0 points (with 

intermediate point values colored along a green-to-red gradient). Below the display of 

the points, the total point value accounting for the stakes multiplier was shown. The 

feedback text initially flickered in brightness for 0.75 s. Next, the text faded away across 

a period of 2.25 s after which the screen was blank for the remaining ITI of 2-3 s, for a 

total feedback period of 5-6 s. 

We generated a set of counterbalanced lists in order to decrease variability 

between participants. Trial lists and counterbalancing assignments for the task were 

generated for reward point drifts, world order, start state order within world, stimulus 

assignments to states, shape assignment to paths, and stakes. First, reward points 

drifted from trial-to-trial according to a process using a standard deviation of 1.75 and 

reflecting boundaries of 0 and 9. Additional criteria included a mean point value 

between 4.45 and 4.55 for each path in each half of the task and a weak negative 

correlation between reward points in a given world of between -0.175 and -0.225. Two 

pairs of reward point drifts of 72 trials were generated, corresponding to the two worlds. 

One of the paths in each world was initialized with a start value of 8 while the other was 
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initialized with a start value of 2. The reward point drifts were counterbalanced across 

worlds across participants. Second, world order was pseudorandomized with 

predominant alternation across trials and a maximum repetition of the same world of 3 

trials. Third, within a given world, the start state was pseudorandomized with 

predominant alternation of start state across trials and a maximum repetition of the 

same start state in a world of 4 trials. Fourth, stimuli were assigned to states based on 

four counterbalance lists. Fifth, shapes were assigned to paths based on five 

counterbalance lists. Finally, per-trial stakes were pseudorandomly assigned with a 

maximum repetition of the same stakes value of 4 trials. For the cued reward stakes 

manipulation, unfortunately, we identified an unintended significant correlation between 

stakes and estimated option values (Supp. Results). Because of this limitation, we 

could not clearly assess any relationships between stakes and behavior or neural 

activity. Further, as we found no benefit from including stakes information in the learning 

models (Supp. Results), the effect of stakes was not included in any behavioral or 

MEG analyses; i.e. any analyses based on reward points used the unmodulated point 

value.  

At the end of each block of 24 learning trials, participants engaged in a set of 

memory probe trials during a break in MEG data acquisition. The first two learning 

blocks were each followed by 8 memory probe questions to ensure the existence of 

robust structure knowledge, while the remaining four blocks were followed by 5 memory 

probe questions. As in session 1, the memory probe questions were made more difficult 

in the reward learning phase than the structure learning phase by randomizing the 

incorrect lure stimuli to be from any stage and any path. (In the first two participants, 

confidence ratings were not collected.) See the preceding description in session 1 for 

memory probe trial timing information. After the memory questions, participants could 

rest and stretch until ready for the next block. 

In the first two participants, only five learning blocks were collected and the 

learning list also varied, resulting in different numbers of trials with MEG data (100 and 

88). In these participants, the memory test questions were randomly interspersed 

between choice trials instead of being segregated into mini-blocks. In the third 
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participant, only five learning blocks were collected, leading to 120 trials with MEG data. 

All analyses were adjusted to account for the difference in total trials. 

For 21 participants, an additional localizer scan was collected after the reward 

learning blocks; these data are not analyzed here. Following scanning, all participants 

then completed a brief written post-experiment questionnaire. 

 

Behavioral analysis 
Primary analyses examined behavior independent of whether a trial (or trials) from the 

alternative world were interleaved between current world trials. All missed response 

trials (where no response was recorded within the response time window; mean = 3.75 

trials per participant) were excluded from the below analyses. In the stay and switch 

analyses, the previous non-missed trial was counted as the last choice. For 

reinforcement learning models, the Q-value estimates were carried forward, ignoring 

missed trials.  

 

Regression 
In the regression analysis, we used logistic regression to account for each participant’s 

sequence of choices. For all regression analyses, we focus on the influence of 

preceding events within the same world (ignoring intervening trials related to the other 

world). We used multilevel regression functions implemented in R (lme from the nlme 

package for linear regression; glmmTMB from the glmmTMB package for logistic 

regression). All predictors and interactions were included as random effects, following 

the ‘maximal’ approach (Barr et al., 2013). Correlations between random effects were 

included when convergence was achievable with this structure.  

The first model predicted stay choices based on previous reward and whether 

the current start state was the same or different (Kool et al., 2016). Here, if participants 

receive a relatively high reward on the preceding trial, it is generally advantageous in 

the current task to stay with that choice on the current trial. Conversely, if participants 

receive a relatively low reward, it is generally advantageous to switch to choosing the 

alternative option. Thus, the strength of this reward effect on stay choices indexes how 

well participants were guided by preceding reward. Critically, to test whether experience 
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in one start state is carried over to influence actions in the other start state, our model 

included a binary variable representing same versus different start state. Any 

generalization was captured in our model by including the interaction between the 

previous reward variable and the same start state variable. This measures to what 

degree, if any, an individual is more influenced by preceding reward when a trial begins 

in the same start state as the previous trial. Such an influence is characteristic of model-

free behavior. Alternatively, given that generalizing across equivalent start states 

requires knowledge of the structure of the task, the lack of an interaction supports the 

existence of model-based behavior. 

 A second model examined how option selection was influenced by the choice 

and reward received on the previous trial. Instead of predicting stay decisions, this 

model predicts option choice (with options arbitrarily coded as 0 and 1) using the history 

of preceding rewards and option choices (Lau and Glimcher, 2005; Wimmer et al., 

2014; Doll et al., 2015). (Such models approximate reinforcement learning models when 

longer histories of previous choices and rewards are included, with the decaying 

influence of previous events reflecting learning rate.) Critically, in addition to preceding 

choices and rewards, to assess model-based behavior, the model also included a 

variable representing whether the current start state was the same or different than the 

preceding trial. As in the first analysis, the interaction of this same start state variable 

with previous trial reward and choice is able to capture any model-free influence on 

behavior (Doll et al., 2015). As above, if there is a stronger influence of previous events 

on choice when the start state is the same, this provides evidence for a model-free 

component to behavior. Conversely, the lack of such an interaction supports model-

based behavior. 

Supplemental regression analyses were conducted within-participants to analyze 

individual differences in model-based generalization; here, individual participant fits 

were derived from the bayesglm function in the arm package to constrain extreme 

coefficients in one participant. 
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Reinforcement learning 
In the reinforcement learning analysis, we fit three different Q-learning reinforcement 

learning (RL) models to subjects choice behavior (Sutton and Barto, 1998): model-free, 

model-based, and hybrid models. These models generated participant-specific model 

parameters and model fit values (log likelihood). These models also allow us to 

compute trial-by-trial variables related to choice value and reward feedback for use in 

neural analyses. 

The model-free reinforcement learning model learns to assign an independent 

action value to each state of the task. For simplicity, we assign model-free values to the 

path as a whole, without considering the value of each intermediate state (see 

discussion below), yielding two “states” in the experiment: the choice state (state 1) and 

the path (state 2). In this way, the model below is equivalent to and based on the model 

applied to two-step tasks lacking the intermediate path states (Kool et al., 2016). 

Further, with no second stage choice, there are only two actions, a1 and a2,, with one 

action selected in the start state. Model-free values are updated at stage i and trial t 

according to a prediction error ẟ, modulated by a learning rate ⍺ (with range [0 1]): 

 

QMF(s,a) = QMF(s,a) + ⍺ ẟi,t       (1) 

 

For the model-free strategy, the prediction errors differ after moving from the start 

states (A and B) to one of the paths (states X1 or X2), and from a path to a reward. The 

values of the start state options are first updated according to the difference in value 

between the start and path states: 

 

ẟ1,t = QMF(sX,t,a1,t) – QMF(s1,t,a1,t)      (2) 

 

After reward feedback (re-scaled for modeling to a range of [0 1]), the values for 

the path states are updated according to the difference in value between the path state 

and the reward received: 

 

ẟ2,t = r2,t – QMF(sX,t, a1,t)       (3) 
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 Additionally, the model-free values for the start states are updated after the 

received reward, modulated by a fractional eligibility trace parameter e (with range [0 

1]): 

 

ẟ1,t = e ( rX,t – QMF(sX,t,a1,t) )       (4) 

 

 This allows for start states to be updated by the reward received after the second 
state.	
 
 

The model-based strategy utilizes the learned path (state 2) model-free Q-values 

in combination with the learned transition matrix between task states. 

 

QMB(sA,aj) = P(sX | sA,aj) QMF(sX1) + P(sX | sB,aj) QMF(sX2)  (5) 

 

The hybrid reinforcement learning model combines model-free and model-based 

learning models and computes per-trial option values based on a weighted sum of the 

two estimates. Our model was based on that used by Kool et al. (2016), where the 

values input to the softmax choice rule are calculated according to:  

 

Qnet(sA,aj) = ⍵QMB(sA,aj) + (1 – ⍵)QMF(sA,aj)     (6) 

 

Given value estimates on a particular trial where participants were choosing 

between two options, participants are assumed to stochastically with probabilities 

according to a softmax distribution (Daw et al., 2006): 

 

P(si,t) = exp(β(Qnet si,t,a) / ∑a' ( exp(β(Qnet si,t,a') )   (7) 
 

The free parameter β represents the softmax inverse temperature (with range [0 

Inf]), which controls the exclusivity with which choices are focused on the highest-

valued option. This exclusivity can reflect certainty in option estimates. Note that since 
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the softmax is also the link function for the logistic regression model discussed above, 

this analysis also has the form of a regression from Q values onto choices except here, 

rather than as linear effects, the past rewards enter via the recursive learning of Q, 

controlled, in nonlinear fashion, by the learning rate parameters. 

The purely model-based RL model is a reduced form of the hybrid model where 

the weighting parameter ⍵ = 1 and the eligibility parameter e  have no effect and are 

dropped. Conversely, the purely model-free RL model is a reduced form of the hybrid 

model where ⍵ = 0. 

We found that models with decaying (“forgetting”) Q-values for non-experienced 

states provided a better fit. Specifically, one parameter decayed the value of non-

chosen Q values. In the task, some decay of non-chosen Q values is rational, as the 

reward values drift for both chosen and non-chosen terminal states. A second 

parameter decayed Q-values for the non-experienced world. The decay parameters 

were constrained to the range [0 1]. The parameters decayed values to the median 

reward value of 0.5. Thus, if the non-experienced world decay parameter was less than 

1, when both Q-values were above or below 0.5, both values moved toward the median 

while the distance between values was maintained. In the situation where Q-values 

were above and below the median, the distance between values decreased. 

Thus, on each trial, the value for the non-chosen Q-values was decayed 

according to the fractional parameter τALT: 

 

QMF(si,anonchosen) = ( (QMF(si,anonchosen) – 0.5) * τALT) + 0.5  (8) 

 

Separately, on each trial, all values in the non-experienced world were decayed 

according to the fractional parameter τW: 

 

QMF(si,aj) = ( QMF (si,aj) – 0.5) * τW) + 0.5     (9) 

 

Parameters were optimized for each subject using an optimization routine based on the 

fmincon in Matlab. Option values were initialized with mid-range values of 0.5, which 

also provided the best fit to the data. 
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To generate per-participant, per-trial variables based on the reinforcement 

learning models, the models were simulated on each participant’s sequence of 

experiences with their best-fit parameters. 

 

Reinforcement learning with feedback replay 
To test if feedback period other world replay was directly related to the quality of 

subsequent choice behavior, providing additional evidence of a role in memory 

preservation, we estimated an additional reinforcement learning model augmented by 

neural replay. Enhanced memory preservation was expected to benefit the 

representations of the other world structure and associated values, which could be 

related to decreased uncertainty on subsequent choices. Conversely, memory decay 

was expected to be associated with increased uncertainty. To capture a preservation-

related decrease in uncertainty in our reinforcement learning model, we focused on the 

softmax inverse temperature associated with the translation of learned values into 

choice. While this parameter is often interpreted as a signal reflecting noise or 

uncertainty specific to choice processes, this parameter can also reflect longer-term 

shifts in the uncertainty of underlying memory representations. In our best fit model-

based RL model, the uncertainty at choice is over the prospective value 

representations, where the effect of uncertainty is a function of the uncertainty of 

memory for 1) the links between the shape options and the paths, 2) the paths and 

terminal values, and 3) the terminal values themselves. The softmax inverse 

temperature can be viewed as effectively controlling the width of the distribution of the 

estimates of the terminal values. With a high inverse temperature, uncertainty (the width 

of the distribution) is low and choices are strongly influenced by the stored value 

estimates. Conversely, with a low inverse temperature, choices become more random 

and undirected. We predicted that transient increases in memory preservation would be 

associated with decreased uncertainty, captured by a higher inverse temperature. 

 We extracted trial-by-trial sequenceness values from the preceding feedback 

period and the planning period. The modulation of uncertainty applied to trials where the 

‘world’ changed from a preceding trial (e.g. from world 1 to world 2, or vice versa). It is 

only on ‘world change’ trials where preceding “other world” backward replay represents 
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the path options that are under consideration in the current trial. To determine trials with 

relatively high backward replay, the sequenceness data were thresholded at the 60th 

percentile to ensure sufficient choice trials for RL parameter estimation. The threshold 

was determined by stepping down until the inclusion of at least 10 trials per participant 

where there was strong replay (minimum number of trials, 11; median, 27). For the 

replay strength variable, a 1 represented the presence of strong replay and 0 

represented the absence. In control analyses, we also examined alternative replay 

variables derived from the preceding feedback phase as well as the current planning 

period. 

The RL memory preservation model was built upon the above RL model, 

augmented with two additional softmax inverse temperature parameters. The baseline β 

applied to trials where the world was the same as the previous trial. βwchange applied to 

trials where the world changed from the previous trial but where there was no strong 

replay. βwchange_replay applied to trials where the world changed from the previous trial 

and there was strong replay. We predicted that βwchange_replay would be higher than 

βwchange. The choice equations for the augmented model are as follows. For world-same 

trials, choice was determined by Eq. 7: 

 

World-change trials where replayt-1 = 0 (low): 

 
P(si,t) = exp(βwchange(Qnet si,t,a) / ∑a' ( exp(βwchange(Qnet si,t,a') )   (10) 

 

 
World-change trials where replayt-1 = 1 (high): 
 

P(si,t) = exp(βwchange_replay(Qnet si,t,a) / ∑a' ( exp(βwchange_replay(Qnet si,t,a') ) (11) 

 

 

MEG methods 
 

MEG acquisition  
The participants were scanned while sitting upright inside an MEG scanner located at 

the Wellcome Centre for Human Neuroimaging at UCL. A whole-head axial gradiometer 
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MEG system operating at third order synthetic gradiometry configuration (CTF Omega, 

VSM MedTech) recorded data continuously at 1200 samples per second, utilizing 272 

channels (3 channels of the original 275 channels are not included due to excessive 

noise in routine testing). Three head position indicator coils were used to locate the 

position of the participant's head in the three-dimensional space with respect to the 

MEG sensor array. They were placed on the three fiducial points: the nasion and left 

and right pre-auricular areas. The coils generate a small magnetic field which is used to 

localize the head and enable continuous movement tracking. We also used an Eyelink 

eye-tracking system to record participant's eye movements and blinks; the MEG 

implementation uses no additional head restraint or support. Eye-tracking was 

calibrated prior to scanning and data was stored alongside the MEG data in three 

additional channels at the MEG sampling rate. The task was projected onto a screen 

suspended in front of the participants. The participants responded during the task using 

a 4-button response pad to provide their answers (Current Designs), responding with 

self-selected digits to the first and second buttons. Trial events were written into the 

MEG data via a TTL parallel port. Event timing was verified by concurrent photodiode 

recording of trial-event-associated brightness changes in a bottom-left location of the 

projected screen (not visible to participants); this channel was also written into the MEG 

data. 

 

MEG Pre-processing  
MEG data were processed in MATLAB using the packages SPM12 (Wellcome Trust 

Centre for Neuroimaging) and FieldTrip, following previous procedures (Liu et al., 2019; 

Wimmer et al., 2020). See https://github.com/gewimmer-neuro/multistep_replay for an 

example preprocessing script. The CTF data were imported using the OSL package 

(the OHBA Software Library, from OHBA Analysis Group, OHBA, Oxford, UK). Slow 

drift was removed by applying a first-order IIR high-pass filter at 0.5 Hz. The data were 

down-sampled (including anti-aliasing low-pass filter) from 1200 Hz to 100 Hz (for 

sequenceness analyses, yielding 10 ms per sample) or 400 Hz (for time-frequency 

analyses) for improved signal to noise ratio and to conserve processing time.  
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Preprocessing was conducted separately for each block. An initial preprocessing 

step in OSL identified potential bad channels whose signal characteristics fell outside 

the normal distribution of values for all sensors. Then independent component analysis 

(FastICA, http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data 

for each session into 150 temporally independent components and associated sensor 

topographies. Data from the three eye-tracking channels was also included and flagged 

for artifact monitoring. Artifact components were classified by automated inspection of 

the combined spatial topography, timecourse, kurtosis of the timecourse, and frequency 

spectrum for all components. For example, eye-blink artifacts exhibit high kurtosis (>20), 

a repeated pattern in the timecourse and consistent spatial topographies. Mains 

interference has extremely low kurtosis and a frequency spectrum dominated by 50 Hz 

line noise. Artifacts were then removed by subtracting them out of the data. All 

subsequent analyses were performed directly on the filtered, cleaned MEG signal from 

each sensor, in units of femtotesla. 

The MEG data were epoched to extract data for each trial. To allow participants 

to shift from a goal of structure learning to a goal of value-directed choice, the first 4 

trials of the reward learning task were excluded from sequenceness analyses; this 

exclusion had no qualitative effect on the results. In the localizer blocks, a 2.5 s epoch 

was extracted in each trial, encompassing 0.5 s preceding stimulus onset and 

continuing past the stimulus and word response. In the pre-choice planning period, we 

extracted epochs of 2.5 s at the beginning of each trial. In the post-feedback reward 

period we extracted epochs of 3.5 s, following the first 1.5 s after reward. At this stage, 

in the epoched data, we further excluded time periods within individual channels that 

exhibited extreme outlier events in a given trial epoch (defined by values > 7x the mean 

absolute deviation) by replacing these values with zero. 

In the initial scanned structure learning phase, only 40 trials were presented. To 

increase power, our sequenceness analyses included all valid paths in the current and 

other worlds. The contrast of late versus early sequenceness subtracted the mean 

across the first 20 trials from the second 20 trials. In this phase, the participants’ goal 

was exploration and learning; no reward feedback was presented. Thus, the inter-trial-

interval was analogous to the feedback period in the reward learning phase. For MEG 
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analyses, we examined the 4 s inter-trial-interval period beginning at the offset of the 

third and final path stimulus.  

 

MEG data decoding and cross-validation  
For each stimulus we trained one binomial classifier. Positive examples for the classifier 

were trials on which that stimulus was presented. Negative examples consisted of two 

kinds of data: trials when another stimulus was presented, and data from the fixation 

period preceding stimulus onset. The null data were included to reduce the correlation 

between different classifiers – enabling all classifiers to report low probabilities 

simultaneously. Only the sensors that were not rejected across all scanning sessions in 

preprocessing were used to train the decoding models for a given participant. A trained 

model k consisted of a single vector with length of good sensors n consisting of 1 slope 

coefficient for each of the sensors together with an intercept coefficient. 

Prediction accuracy was estimated by treating the highest probability output 

among all classifiers as the predicted stimulus. In the functional localizer task, prediction 

performance of classifiers trained at each 10 ms bin from 0 ms to 800 ms after stimulus 

onset and performance was tested iteratively on left-out trials. The range of peak 

classifier performance across participants was then identified, with the 200 ms time 

period selected among the peak times for all subsequent analyses based on previous 

replay experiments (see Results) (Kurth-Nelson et al., 2016; Liu et al., 2019; Wimmer et 

al., 2020). A new classifier trained at this time point on all the localizer data trials was 

estimated for use in subsequent decoding analyses. To ensure that the classification 

results were not overfit to the regularization parameter of the logistic regression, all 

results were obtained with the lasso regularization parameter that yielded the strongest 

mean cross-decoding from the localizer to the sequential presentation of the actual 

stimuli in the reward learning phase. This independent cross-decoding approach yielded 

the same parameter value (l1 = 0.002) as we found previously (Wimmer et al., 2020). 

In a control analysis, prior to the sequential analyses, we examined whether we 

could find characteristics suggestive of single stimulus reactivation in the reward 

learning task periods of interest. This control is supplemental, as we do not identify 

specific events in any of our analyses and the features of the human MEG signal are 
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best analyzed by regression analyses using all the data in periods of interest (Liu et al., 

2021a). For this reactivation analysis, we compared the 12 stimulus time series derived 

from applying the trained stimulus classifiers to the trial-wise planning and feedback 

period data (when no stimuli were actually being presented) to time series derived from 

applying permuted classifiers. To create permuted classifier data, within each 

participant and for each of the 12 trained stimulus classifiers, we took the original 

trained sensor weights (a 1-dimensional vector) and randomized the vector weightings 

across the non-zero-weighted sensors, which preserves the use of informative sensors. 

We compared two measures of the resulting time series: mean and skewness. In 

simulations, when true spike-like events were added to a random vector, the positive 

spike deviations increased the mean signal, and – independent of the mean – the spike 

events also increased skewness. Comparing our real data to the permuted data, we 

indeed found significantly higher mean values in the real versus permuted data 

(averaged across all stimuli, as we found equal reactivation for current and other word 

stimuli; p-values < 0.01). Second, we found significantly increased skewness in the real 

versus permuted data (p-values < 0.01). These effects were found in both the planning 

period and the feedback period; note that in these periods none of the relevant trained 

stimuli were presented on-screen.  

 

Sequenceness measure 
Our analysis of sequential reactivation uses Temporally Delayed Linear Modelling 

(TDLM), as fully described in Liu et al. (Liu et al., 2021a). The decoding model 

described above allowed us to measure spontaneous sequential reactivation of the 12 

states either during the planning or after feedback periods. We applied each of the 12 

trained classifiers to the MEG data at each time point in each period. This yielded a 

[time x state] reactivation probability matrix for each period in each trial, containing 

twelve time series of reactivation probabilities each with the length of time samples 

included in the analysis window (Fig. S3a). 

We then used TDLM to quantify evidence of ‘sequenceness’, which describes the 

degree to which these representations were reactivated in a task-defined sequential 

order (Kurth-Nelson et al., 2016; Liu et al., 2019; Wimmer et al., 2020; Liu et al., 2021a; 
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Liu et al., 2021b). TDLM is a multiple linear regression approach that quantifies the 

degree to which a time-lagged reactivation timecourse of state j, (𝑋(∆𝑡)j, where ∆𝑡 

indicates lag time) predicts the reactivation timecourse of state i, (𝑋i). It involves two 

stages. At the first stage, we use a set of multiple linear regression models to generate 

the empirical state-to-state reactivation pattern, for each period in each trial, using each 

state’s (i ∈ [1: 12]) reactivation timecourse as a dependent variable, and the historical 

(i.e., time-lagged) reactivation timecourses of all states (j ∈ [1: 12]) as predictor 

variables. Separate linear models were estimated for each stimulus i and each time lag 

∆𝑡: 

 

𝑋! =(𝑋(∆𝑡)"𝛽(∆𝑡)"!

#$

"%#

+ 𝐶																																								(12)											 

 

where C is a constant term and 𝛽(∆𝑡)𝑗i is the coefficient capturing the unique variance in 

𝑋i explained by 𝑋(∆𝑡)j. The resulting regression coefficients quantify the evidence for 

each empirical state -> state reactivation pattern at a specific lag, ∆𝑡. We calculated 

sequenceness from time lag 10 ms to 600 ms. All such first-level coefficients are 

represented in a lag-specific empirical transition matrix 𝑩, representing evidence for all 

possible state-to-state transitions at a given time lag  (Fig. S3b). 

 At the second stage, we quantified the evidence that the empirical transition 

matrix 𝑩 can be predicted by the sequences of interest, i.e., the 4 paths across both 

worlds in the task. All transitions of interest were specified in model transition matrices 

(of size 12x12, with 1s for transitions of interest and 0s otherwise), separately for a 

forward direction (TF, the same as visual experience) and the inverse for a backward 

direction (TB), where TF = TB'. As control variables, the model included a constant matrix 

(Tcons) that captures the average of all transitions (estimating the intercept), ensuring 

that any identified effects were not due to background neural dynamics. Second, the 

model included a matrix (Tauto) that models self-transitions to control for auto-correlation 

(Fig. S3b). The evidence for all sequences of interest was then quantified by: 
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𝑩 =	( 𝑍(𝑟)
&

∗ 𝑇& 																																																									(13)										 

     

where 𝑟 is the number of all regressors included in the second stage, as specified 

above. 𝑍 is the scalar regression coefficient quantifying the evidence that the 

hypothesized transitions, Tr predict the empirical transitions, B (i.e. sequenceness 

strength). Note, this estimate of sequence strength is a relative quantity. An estimate of 

zero for state i to state j, for example, does not mean there is no replay of i → j, it 

means there is no stronger replay of i → j, than that of other transitions. Repeating the 

regression of Equation 13 at each time lag (∆𝑡 = 10, 20, 30, ... , 600 ms) results in 

timecourses of both forward and backward sequence strength as a function of time lag, 

where smaller lags indicate greater time-compression of replay (Fig. S3b). For each 

trial, sequenceness results were z-scored across lags; note that this had no qualitative 

effect on the learning phase results. A subsequent model substituted the full transition 

matrices with matrices that separated the paths from the two worlds (current, other) in 

the forward (TFcurrent, TFother) and backward (TBcurrent, TBother) direction and was otherwise 

identical. Subsequently, in the initial lag localization method (below), sequenceness was 

averaged across trials. All other analyses utilized per-trial sequenceness values. 

Unlike rodent electrophysiology, we cannot detect discrete replay events given 

that we are not measuring spiking data, but an LFP-like continuous signal. This is 

another reason we utilize linear modelling to assess the sequence strength on average 

across a trial period. Whilst the sequenceness method was originally tested on longer 

time periods > 10 s (Kurth-Nelson et al., 2016; Liu et al., 2019), recent work has 

demonstrated its applicability to shorter time periods (Wimmer et al., 2020; Liu et al., 

2021b), where simulations have verified an ability of the method to discriminate 

between true sequences and noise. As our analysis used short trial periods and not 

long rest periods, we did not find a strong alpha rhythm and did not control for alpha in 

the sequenceness analyses (Liu et al., 2019; Wimmer et al., 2020). Note that for 

analyses of relatively short state sequences, as found in our task, sequenceness values 

could be driven selectively by preferential replay of early or late transitions, but we did 

not find that this was the case.  
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To localize forward and backward time lags of interest for the primary trial-by-trial 

regression analyses, we identified significant lags using non-parametric permutation 

tests with shuffled transition matrices (n = 100). Shuffled transition matrices were 

randomly generated for each trial to include only invalid transitions but to otherwise 

follow the structure of the true matrix. To match the structure of the true paths, each 

shuffled transition matrix was required to have four independent paths. Thus, each 

shuffled matrix contained eight entries (two per path). This ensured that each stimulus 

would appear in a sequence a maximum of once per permutation and that true 

sequential triplets of states were formed across states.  

For each permutation, sequenceness values were averaged across trials (within-

participant), and then across participants. Then, significance thresholds were 

determined in two steps (separately for forward and backward sequenceness). First, for 

each permutation, we computed the maximum permutation-derived sequenceness 

value across all time lags. Second, across the resulting set of 100 maximum values, we 

applied a 95% threshold to determine the corrected significance level. By using the 

maximum value across lags in the first step, the resulting threshold provides for a 

statistical correction across all lags at the 0.05 level (Liu et al., 2021a). This approach 

has been validated in both simulation and empirical data (Liu et al., 2019; Wimmer et 

al., 2020; Liu et al., 2021a). As human studies of sequential state reactivation have only 

found evidence for replay at relatively short lags (e.g. Kurth-Nelson et al., 2016; Liu et 

al., 2019), a finding which we replicate here, we display results up to a lag of 350 ms. 

Further, given the above rationale, in post-hoc analyses for lags not identified in the lag 

localization step, we use this shorter range of lags (10 – 350 ms) as the basis for 

Bonferroni multiple comparisons correction. 
 

Identifying Replay Onsets 
For follow-up source localization and time-frequency analyses, replay onsets were 

defined as moments when a strong reactivation of a stimulus was followed by a strong 

reactivation of the next (or preceding) stimulus in the sequence from a path (Liu et al., 

2019; Wimmer et al., 2020). As described in the Results, a different direction and lag 

was the focus of the planning and reward feedback period analyses. We identified the 
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stimulus-to-stimulus time lag ∆𝑡 at which there was maximum evidence for 

sequenceness (as described above). We first generated a matrix Orig as 

 

    𝑂𝑟𝑖𝑔 = 𝑋 × 𝑇       (14) 

 

where X is the [time x state] reactivation matrix, and T is the task transition matrix. The 

transition matrix T defines the mapping between the task state corresponding to column 

i in X, and column i in Orig (specifically, column i in Orig is the reactivation timecourse of 

the state that ‘precedes’ state i in T). We then shifted each column of X by the relevant 

replay lag, ∆t, to generate another matrix Proj, 

 

    𝑃𝑟𝑜𝑗 = 𝑋(∆𝑡)       (15) 

 

where row i of Proj corresponds to row i+[lag] ms of X. Multiplying Proj and Orig 

elementwise, and summing over the columns of the resulting matrix, therefore yields a 

[time x 1] vector, R, where each element, t, corresponds to the evidence for a two-state 

replay with given lag, starting from any task state at time t. 

 

𝑅' =	(𝑂𝑟𝑖𝑔'! ∗ 	𝑃𝑟𝑜𝑗'! 																																																		(16)																	
(

!

 

 

We then identified putative replay onsets. Within-participants, we thresholded R at its 

95th percentile to only include high-magnitude putative replay onset events. We also 

imposed the constraint that a replay onset event must be preceded by a 200 ms pre-

onset baseline period exhibiting summed reactivation evidence < 90th percentile at each 

time point. 

 

 

MEG Source Reconstruction 
Source reconstruction (beamforming) was performed in SPM12 and FieldTrip utilizing 

OAT. Forward models were generated on the basis of a single shell using superposition 
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of basis functions that approximately corresponded to the plane tangential to the MEG 

sensor array. 

Linearly constrained minimum variance beamforming (Van Veen et al., 1997) 

was used to reconstruct the epoched MEG data to a grid in MNI space, sampled with a 

grid step of 5 mm. The sensor covariance matrix for beamforming was estimated using 

the preprocessed data in broadband power across all frequencies in the lower range 

1.5–47.3 Hz.  

For the replay onsets analysis, we computed baseline activity as the mean power 

averaged over -100 ms to -50 ms relative to replay onset. All non-artifactual trials were 

baseline corrected at source level. We looked at the main effect of the initialization of 

replay. This analysis was conducted separately to investigate forward replay events in 

the planning period and backward replay events in the feedback period. To increase 

power, primary analyses examined putative replay onset events across both worlds, 

while secondary analyses examined current world replay onsets during planning and 

other world replay onsets during feedback. 

The statistical significance of clusters identified in the beamforming analysis was 

calculated using non-parametric permutation tests in OSL to identify clusters significant 

at PFWE < 0.05 (whole-brain corrected; cluster-defining threshold p < 0.01 (t = 2.81); 

5000 permutations). We expect power increases in source space to reflect increases in 

underlying neural activity. Replay onsets are defined by high evidence for internal 

generation of a visual stimulus. As expected, previous reports find robust replay-onset-

related activity in the visual cortex in addition to the MTL (Wimmer et al., 2020; Liu et 

al., 2021b). Further, this internally-generated activity overlaps with that detected for 

actual stimulus presentation (Wimmer et al., 2020) and generally corresponds to 

regions showing increased visual-evoked signal in fMRI and electrophysiological 

studies. Finally, we assume that continuous regions of activity extending anterior from 

the visual cortex to the medial temporal lobe would reflect the same positive direction of 

underlying neural activity. 
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Time-frequency analyses 
A frequency decomposition (wavelet transformation) was computed separately for the 

planning and reward feedback period in every trial. From this data, we extracted power 

changes surrounding the putative replay onset events (± 200 ms) identified using the 

preceding method. To increase power, primary analyses examined putative replay 

onset events across both worlds, while secondary analyses examined current world 

replay onsets during planning and other world replay onsets during feedback. We 

examined evidence across participants for (mean) power increase at replay onset 

compared to a pre-onset baseline (from –200 to –150ms before replay onset) within a 

frequency range of interest of 120-150 Hz, in the ripple band that has been previously 

associated with replay events (Liu et al., 2019; Liu et al., 2021b; Nour et al., 2021) as 

well as a theta band range of interest (5-8 Hz). Within these bands of interest, we tested 

individual difference correlations between replay onset (± 2.5ms) and individual 

differences in the replay-behaviour relationships previously identified. A cluster-based 

permutation analysis implemented in OSL separately tested whether there were 

significant clusters associated with replay onset across the full time-frequency range. 

The clustering algorithm used an initial threshold of p < 0.01 (corresponding to a t-

threshold of 2.81) and an alpha level of 0.05. 

 In control analyses to test for the specificity of our results to sequential replay, we 

used the above trial-wise frequency decomposition for the planning and reward 

feedback periods. Within each participant, at each timepoint and frequency, we 

estimated the correlation across trials with the planning and feedback variables of 

interest: at planning, the benefit of generalization and state value; at feedback, rarity of 

other world experience. These results were submitted to cluster permutation analyses 

as in the preceding replay onset time-frequency analyses. 

 

Non-sequential reactivation analyses 
In two additional control analyses, we tested for the specificity of our results to 

sequential replay. We used the same time by state classifier evidence for the planning 

and reward feedback periods that also served as input for the sequenceness analyses. 

The first set of control analyses examined mean classifier activity across the time 
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period, separately for the current and other world, averaging across the states within a 

path. Additional checks examined each of the three path states separately. As in the 

sequenceness analysis, these measures reflect the relationship across the full time 

period of interest (planning, feedback) for each trial. The second set of control analyses 

examined pair-wise ‘clustered’ reactivation of states present on the same path, following 

previous work (Wimmer et al., 2020). Clustered reactivation was calculated for each trial 

as the zero-lag correlation of classifier evidence between two elements of a given path. 

Correlation values were z-transformed and then these z-values were averaged across 

the potential pairs in a path or world. Both of these trial-by-trial control measures were 

analyzed using multilevel models 

 In a more temporally fine-grained analysis, we also examined the relationship 

between reactivation at each time point (in 10 ms resolution) and variables of interest. 

For statistical comparison, these results were submitted to cluster permutation analyses 

as used in the preceding replay onset time-frequency analyses. 

 
Representational similarity 
We used Representational Similarity Analysis (RSA) (Diedrichsen and Kriegeskorte, 

2017) to investigate the emergence of a representation of task structure from the 

stimulus localizer (pre-learning) to reward learning, following previous procedure (Nour 

et al., 2021). We utilized this analysis because we lacked a post-task localizer and 

because RSA may be more sensitive to effects due to abstract structure than 

sequenceness analyses in short task periods (versus longer rest durations in previous 

studies). First, for each trial in each session we subtracted the mean of the 100ms 

preceding stimulus onset from the pre-processed MEG data (baseline correction); for 

each of the three stimuli presented in reward learning paths, this correction was 

performed per-stimulus. For each sensor, we then z-scored over all trials and time 

points relative to stimulus-onset (t, -100 to +1500 ms). We then regressed the [trial x 1] 

neural data, Y(s)t (from time point, t, and sensor, s) onto a session design matrix, X, 

denoting the stimulus label of each trial (dummy coded) (Luyckx et al., 2019),  

 
Y(s)t  = X * β(s)t     (17) 
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and used the resulting [stimulus x 1] vector of regression weights, β(s)t, as an estimate 

of the unique activation for each stimulus, in sensor s at time point t. Repeating this 

procedure over all sensors yielded a [sensor x stimulus] matrix at each time point. We 

then calculated the Pearson correlation distance between the sensor patterns for each 

pair of stimuli (columns). This generated a symmetrical [12 x 12] Representational 

Dissimilarity Matrix (RDM) at each time point (Deuker et al., 2016). We conducted this 

procedure identically in both stimulus localizer (SL) and reward learning (R), enabling us 

to calculate the learning-induced change in representational similarity (similarity 

change) at each time point, ∆St, as  

 

    ∆St  = RDM(SL)t – RDM(R)t   (18) 

 

where entry sij of ∆St quantifies the post-learning similarity increase between evoked 

signals for stimuli i and j, at time t (Deuker et al., 2016). ∆St was then smoothed over 

time with a 50 ms Gaussian kernel (Luyckx et al., 2019).  

Finally, we used a second multiple regression to quantify the variance in ∆St that 

was uniquely explained by an abstracted representation of ordinal position for each 

participant at each time point. The position predictor was separated into two matrices, 

capturing position similarity across worlds and position similarity within the same world. 

Path identity was also included in the model. The multiple regression thus included 3 

predictor variables corresponding to each of the hypothesized representational patterns, 

plus an intercept (see Fig. S9). Note that motor response to the stimuli was not a 

confound; participants responded with a button press whether stimuli were presented on 

the left or right side of the screen, but the left/right position was assigned randomly per 

trial per stimulus. 

We used nonparametric tests to identify time windows (clusters) with significant 

positive evidence for each predictor, correcting for multiple comparisons over time (Nour 

et al., 2021). Specifically, for a given predictor (e.g., position), at each time point post-

stimulus onset we conducted a separate one-sample t test on the representational 

effect (regression weights) over participants, to obtain the evidence for an effect > 0 
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(i.e., t-value). We computed the sum of t-values within each continuous stretch of time 

points exhibiting a positive effect at p < 0.05. We then repeated this procedure for 1000 

permutations, on each occasion applying the same novel shuffling to the rows and 

columns (stimulus labels) of ∆St prior to the second regression. The shuffled order was 

consistent across time within each permutation to preserve temporal smoothness in 

visually evoked neural data. We then extracted the maximal sum-of-t value for the group 

mean effect in each permutation (matching the procedure applied to the unpermuted 

data), to generate an empirical null distribution for the predictor in question. We 

expected any position representation effect to be positive. A suprathreshold positive 

cluster in the unpermuted data was deemed significant at PFWE < 0.05 if its sum-of-t 

values exceeded the 95th percentile of this empirical null distribution (Eldar et al., 2018; 

Nour et al., 2021). We had no expectations about the direction of any path identity 

representation effect, so clusters were judged to be significant at PFWE < 0.05, two-

tailed, if its sum-of-t values exceeded 97.5% (or fell below 2.5%) of this null distribution. 

 
Multilevel regression models 
Multilevel models relating sequenceness to trial-by-trial variables of interest were 

estimated using R, as further detailed above for the behavioral models. In these models, 

the independent variables were the relevant and control sequenceness strength values, 

e.g. current and other world paths sequenceness. All relevant sequenceness measures 

were included in the same model. To allow for valid comparisons, where analyses 

compared regression coefficients or computed interactions, the relevant variables were 

z-scored across trials. 

 

Statistical correction and null effects 
For permutation-based significance measures of mean overall replay, see the relevant 

section above. For trial-by-trial analyses, multilevel models were implemented in R, as 

described above. Other tests of means or fit parameters utilized t tests except where the 

noted. All reported tests are two-tailed unless otherwise noted. One-tailed tests were 

used when we had an a priori expected direction of a comparison, including modulation 

of current versus other world replay or planning versus feedback period replay. For the 



25 
 

exploratory analyses across additional replay time lags, significance was determined 

using Bonferroni correction for the number of comparisons (34, where calculated lags 

ranged from 10 to 350 ms). Contrasts of multilevel model regression coefficients were 

estimated using the glht function in the multcomp package; note that all variables 

entered into regressions were z-scored to allow for valid contrasts. For comparisons of 

softmax inverse temperature parameters, as expected, the distribution of the inverse 

temperature parameter was not normal, so we used Wilcoxon signed rank tests. For 

results of interest, we additionally tested whether non-significant results were weaker 

than a moderate effect size using the Two One-Sided Test (TOST) procedure 

(Schuirmann, 1987; Lakens, 2017), as implemented in the TOSTER library in R 

(Lakens, 2017). We used bounds of Cohen’s d = 0.60, where power to detect a 

medium- or larger-sized effect in the group of 24 participants was estimated to be 80%.  
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Supporting text 
 

Choice regression analysis 
We used two behavioral regressions approaches. The first, discussed in the Results, 

predicted stay decisions based on preceding reward. The second regression that we 

describe here was similar, but instead predicted the identity of the option selected 

based on preceding reward (Doll et al., 2015). As expected, we found a strong overall 

effect of previous reward receipt on choice (reward effect on choice, multilevel logistic 

regression coefficient β = 0.529 [0.420 0.637]; z = 9.582, p < 0.001). We then tested for 

any model-free influence via an interaction between reward and start state change. A 

model-free influence would be evident if the effect of previous reward on choice is be 

greater for choices where the current start state matched the previous start state. We 

found no such difference (reward effect and same start state interaction β = 0.036 [-

0.0248 0.0961]; z = 1.156, p = 0.248; TOST p = 0.44). We also extracted individual 

participant interaction coefficients, which serve as an index of model-based behavior 

(Doll et al., 2015). As expected, this derived model-based index was significantly 

correlated with the model-based weighting parameter w from the RL model (r = 0.663, p 

= 0.0004). 

 

Behavioral effect of trial-to-trial world change 
We expected that when trials changed from one world to the other, choice would be 

negatively affected, as a delay between repetitions of the same world would be 

expected to decrease the ability of working memory to support behavior (Collins and 

Frank, 2012; Wimmer et al., 2018). Indeed, alternating from one world to another had a 

negative effect on performance, decreasing the influence of previous reward on choice 

(β = -0.0482 [-0.0883 -0.0081]; z = -2.355, p = 0.019). We found a numerically stronger 

negative effect of world alternation when we accounted for the number of intervening 

alternate world trials (β = -0.0881 [-0.0144 0.1898]; z = -3.952, p = 0.00008). 

 

Behavioral effect of cued stakes 
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We asked whether reward stakes cued at the time of choice increased model-based 

behavior (Fig. 1b), following previous research (Kool et al., 2017). Unfortunately, we 

found that the pseudo-randomization of stakes and reward point drift across trials led to 

an unintended correlation between model-predicted option values and stakes (best fit 

model-based model-derived choice value, p = 0.0066; difference in values, p = 0.0012). 

As this relationship between signaled stakes and internally-estimated values may have 

influenced participants’ choice behavior in unpredictable ways, we are not confident in 

drawing conclusions from the stakes manipulation. For completeness, and with this 

confound in mind, we present basic behavioral analyses here. 

We found a non-significant positive influence of stakes on choice, such that high 

stakes tended to increase the influence of previous reward on choice (interaction β = 

0.0391 [-0.0066 0.0849]; z = 1.676, p = 0.0937). We tested for but did not find an 

across-participant relationship between this influence of stakes and our indices of 

model-based behavior (start state interaction correlation r = 0.217, p = 0.308; w 

parameter correlation r = 0.153, p = 0.477). Within-participant, stakes was also not 

correlated with reaction time (p = 0.745). We also fit a hybrid RL model with two model-

based weighting parameters w, one for high and one for low stakes trials, based on 

previous work showing a positive influence of stakes on the model-based weighting 

parameter (Kool et al., 2017). We found no impact of stakes on w (p > 0.47). Further, 

we found that current trial stakes did not modulate learning: in a model with a separate 

learning rate for high stakes and low stakes trials, we found no difference in learning 

rate and no increase in model fit to behavior.  

 

Model-based behavior and weighting parameter 
The deterministic structure in our task, among other features, sets apart this design 

from the probabilistic alternative by actually incentivizing model-based behavior (Kool et 

al., 2016; Kool et al., 2017; Patzelt et al., 2019). Indeed, we found in simulations that 

model-based behavior led to higher reward earnings (Fig. S2b). 

Beyond the regression and RL model evidence presented in the Results, 

additional support for the strength of model-based behavior was evident in the hybrid 

model where the model-based weighting parameter w was skewed toward 1 (median = 
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0.802; Table S1). Notably, this degree of model-based weighting is higher than reported 

in similar versions of this paradigm (Doll et al., 2015; Kool et al., 2016), as well as 

versions with probabilistic state transitions (Daw et al., 2011). This indicates that 

participants’ behavior in the present task may be more model-based than in preceding 

studies, potentially reflecting a deterministic task structure and multi-day training (Liu et 

al., 2021b). However, even with low variability in the model-based weighting parameter 

w, we found that w positively correlated with mean total reward earnings (r = 0.826, p < 

0.0001), suggesting that our task design effectively incentivizes model-based behavior 

(Kool et al., 2016). 

 

No change in model-based behavior across time 
We found a consistent model-based effect across time (first half β = 0.467 [0.320 

0.613]; z = 6.255, p < 0.0001; second half β = 0.515 [0.376 0.654]; z = 7.238, p < 

0.0001; trial interaction β = 0.059 [-0.089 0.207]; z = 0.783, p = 0.434; TOST p = 0.021). 

Thus, for choices requiring generalization, the influence of previous reward on 

subsequent choice if anything numerically increased over time. However, we found that 

the strength of a model-free influence, measured on choices not requiring 

generalization, significantly increased across time (first half β = 0.448 [0.316 0.580]; z = 

6.675, p < 0.0001; second half β = 0.813 [0.598 1.029]; z = 7.403, p < 0.0001; trial 

interaction β = 0.234 [0.022 0.447]; z = 2.160, p = 0.031), suggesting participants were 

better at using previous feedback to influence same-state choices. 

In reinforcement learning models, we found no change in the fit of the model-

based model across the task (first half mean likelihood = 32.8; second half = 33.4; p = 

0.691; TOST p = 0.009) and also no change in the fit of the model-free model across 

the task (first half = 38.4; second half = 40.4; p = 0.313; TOST p = 0.034). In the hybrid 

model, the model-based weighting parameter w also did not change (first half median = 

0.878; second half = 0.842; difference p = 0.249; TOST p = 0.046). Thus, participants’ 

signature of model-based learning, reflecting structure knowledge which allows for the 

generalization of reward when starting in a different state, did not change. For model-

free learning, one of two measures indicated an increase over time, indicating an 
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increased ability to use direct reward feedback to guide subsequent choice in the same 

start state. 

 

MEG: No overall planning sequenceness during initial structure learning 
We examined sequenceness during participants’ initial exploration of the two worlds 

preceding the reward learning phase. In this phase, participants received no reward 

feedback and their only goal was to learn the state-to-state transitions between the 

objects. For results of analyses of replay during the inter-trial interval, see the main 

Results section. During the planning period we found no above-threshold 

sequenceness. We found no significant effects when restricting analyses to the second 

half, and numerically positive but non-significant increases when testing the difference 

between the second and first half.  

 

Across-sequenceness correlations 
In the learning phase, we examined whether the different replay measures (planning 

and feedback forward and backward replay) were correlated with each other within-

participants at a trial-by-trial level. During planning, for forward sequenceness with a 70 

ms state-to-state lag, we found no significant correlation between current and other 

world sequenceness (p = 0.435) or between chosen and non-chosen path forward 

sequenceness (p = 0.183). 

At feedback, for backward sequenceness with a 40 ms state-to-state lag, we 

found no significant within-participant replay correlation between the current and other 

world path sequenceness (p = 0.710) or between chosen and non-chosen path 

sequenceness (p = 0.530). For forward sequenceness with a 70 ms state-to-state lag, 

we also found no significant correlation between current and other world sequenceness 

(p = 0.343) or between chosen and non-chosen path sequenceness (p = 0.299). 

Across periods, we tested for within-participant relationships between replay 

during planning and replay after feedback at a trial-to-trial level for current and other 

world sequenceness. We found no significant correlations between forward 

sequenceness measures, backward sequenceness measures, or across forward and 

backward sequenceness measures (p-values > 0.132). Further, we found no overall 
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relationship between previous other world feedback backward replay and current world 

forward replay (overall, or selective to world change trials). These results indicate that 

replay measures were not significantly related by simple positive or negative 

correlations, and that there was no significant evidence of a trial-by-trial relationship 

between replay strength at planning and at feedback. 

Finally, we examined across-participant (individual difference) relationships 

between mean sequenceness measures. During planning, mean forward replay at a 70 

ms lag was not significantly correlated with reverse replay at a 40 ms lag (measured 

across all paths in the current and other world; r = 0.306, p = 0.147). During feedback, 

mean forward replay at a 70 ms lag was not significantly correlated with reverse replay 

at a 40 ms lag (r = -0.245, p = 0.249). Across periods, we found that mean forward 

replay during planning was correlated with the same measure at feedback (70 ms lag; r 

= 0.694, p = 0.00017, uncorrected for multiple comparisons), potentially reflecting the 

finding of significant forward replay in both periods. Mean backward replay was not 

correlated across periods (40 ms lag; r = 0.0169, p = 0.938). 

 

No relationship between planning period replay and choice identity 
We also explored whether relative sequence strength for the to-be-chosen versus non-

chosen paths related to subsequent path choice. We found no evidence that 

sequenceness was predictive of choice overall, or for choices in different types of trials 

(stay, switch, or exploring low-value choices). Thus, overall sequenceness strength was 

similar for chosen and non-chosen paths (comparison -0.0084 [-0.0612 0.0445]; t(23) = -

0.327, p = 0.746; TOST p = 0.0078). We also found no relationship between mean path 

state reactivation (either across the whole path, or examining each state separately) 

and choice (Fig. S3b), or between non-sequential paired reactivation and choice. 

We speculate that it may be difficult to find general relationships between replay 

and option selection, especially in commonly-employed two-alternative choice 

paradigms. In these tasks, path evaluation and a correlated replay signal could 

positively bias choice because of expectation of relatively high reward from a given 

option (Wikenheiser and Redish, 2015), or could negatively bias choice because of 
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expectation of relatively low reward from the other option (Wu et al., 2017), with these 

effects potentially varying across participants and trials.  

 

 

Control analyses demonstrating specificity of replay effects 
 
Model-based generalization and replay. We tested whether individual differences in 

model-based decision making (indexed by the interaction with start state and reward) 

were related to an increase in sequenceness when generalization was more beneficial. 

We found no across-participant relationship between individual differences in model-

based behavior and the increase in current world replay by generalization (p = 0.873). 

However, in an exploratory analysis we found that individual differences in model-based 

behavior were associated with a decrease in other world replay by generalization (r = 

0.524, p = 0.0085). We also asked whether behavioral variability in the form of reaction 

time slowing for generalization (start state change) trials related to forward 

sequenceness. A decreased reaction time cost of start state change was numerically, 

but not significantly, related to stronger current world sequenceness (interaction β = -

0.3956 [-0.7989 0.0078]; z = -1.922, p = 0.0546). 

Control analyses for the replay–generalization effect verified that the relationship 

between replay and a benefit for model-based planning was specific to forward replay 

with a 70 ms state-to-state lag during the planning period (see Table S3 for a 

summary). First, during planning, current world backward replay at a 40 ms lag showed 

no relationship to model-based generalization benefit (p = 0.729; TOST p = 0.008), and 

the forward effect was significantly stronger (z = 2.267, p = 0.012, one-tailed). During 

planning, current world backward replay at a 70 ms lag showed no relationship to 

generalization benefit (p = 0.406; TOST p = 0.023), and the forward replay effect was 

significantly stronger than the backward effect (z = 3.175, p = 0.0008, one-tailed). 

Second, at feedback, we found no significant relationship between backward 

replay at a 40 ms state-to-state lag and generalization benefit (p = 0.119), and the 

planning period effect was significantly stronger than this feedback effect (z = 2.891,3 p 

= 0.002, one-tailed). We also found no relationship between feedback period forward 
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replay at a 70 ms state-to-state lag and generalization benefit (p = 0.537, TOST p = 

0.015; current world planning versus feedback forward replay, z = 1.192, p = 0.117, 

one-tailed). 

Third, we found no relationship between control non-sequential reactivation 

measures and the relative benefit of model-based generalization. Mean planning period 

activity strength for current world path states was not related to generalization (p = 

0.240; TOST p = 0.046; forward replay versus reactivation difference z = 01.532, p = 

0.063, one-tailed). Additionally, non-sequential “paired” reactivation of path states in the 

current world was also not related to generalization (p = 0.547; TOST p = 0.0142; 

forward replay versus reactivation difference z = 1.943, p = 0.026, one-tailed). In a 

separate analysis of time-frequency data, we also found no relationship with model-

based generalization (n.s. using permutation-based cluster correction). 

Fourth, in exploratory analyses, we also investigated planning period backward 

replay at a 160ms state-to-state lag. In a recent publication, several of the authors of the 

current paper found that backward replay after feedback was related to learning (Liu et 

al., 2021b). As discussed in the main text, the current paradigm was specifically 

designed to better elicit planning-related replay prior to choice. We found no relationship 

between 160 ms lag backward replay and the benefit of model-based generalization (p 

= 0.195, TOST p = 0.057) and the forward 70 ms relationship was significantly stronger 

than the 160 ms lag backward effect (difference z = 1.850, p = 0.0321, one-tailed). 

Forward replay at a 160ms state-to-state lag was also not related to model-based 

generalization (p = 0.314; TOST p = 0.033) and the forward 70 ms relationship was 

significantly stronger than the 60 ms lag forward effect (difference z = 3.467, p = 0.0026, 

one-tailed). 

Finally, we compared the predicted effects due to generalization with an 

alternative account related to memory retrieval and maintenance (‘refreshing’). This 

alternative uses the rarity (inverse recency) of a given start state, analogous to the 

world rarity variable linked to feedback replay. A planning account of our task 

implementation predicts that planning should be driven by the binary effect of start state 

change versus no change. However, an alternative account based on memory retrieval 

and maintenance predicts that current world replay should relate to the overall 
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frequency of experiencing a given start state. Here, replay would reflect the fact that 

retrieval and maintenance demands are higher for states that have less experience in 

the recent past. The memory retrieval model thus predicts that replay would be related 

to a graded variable tracking rarity of experience, instead of the binary effect of start 

state change (generalization) predicted by the planning account. 

Note that in our task, reward points drifted relatively rapidly across trials. As a 

consequence, the relevance of previous experience in a given start state for estimating 

current values decays relatively quickly when alternative start state trials intervene. 

Thus, when the start state changes, beyond reacting to the immediate demands for 

generalizing, there is little to no advantage in adjusting replay-related planning based on 

how frequently a start state has been experienced. 

We constructed a control ‘recency of experience’ learning model which tracks 

start shape frequency and updates this variable on a trial-to-trial basis according to a 

learning rate parameter. We then tested whether recency is more strongly related to 

planning period replay. First, we looked at a weaker version of the memory model, 

tracking recency of experience only within a given world. The planning account is similar 

to this model with a recency learning rate set to 1. As the recency learning rate 

decreases, the recency variable is less and less correlated with the binary start state 

change variable. If the memory account was a better explanation of the planning replay 

effect, the peak effect would occur with a learning rate below 1.0. However, as the 

recency learning rate decreased, the relationship to sequenceness systematically and 

linearly decreased and was no longer significant when the learning rate was below 0.20. 

Thus, this pattern of results supports the planning account over a memory retrieval 

account. 

We then tested a stronger version of the alternative memory retrieval and 

maintenance demand model: whether replay tracked the actual recency of start state 

experience across trials, accounting for intervening experience in the alternative world. 

In this model, in addition to adjustments due to intervening different start state trials 

within a world, the rarity of both start states in a world increases during the presentation 

of other world trials. The memory account would predict a peak in the relationship at 

some learning rate below 1.0, but this was not the case. We found that the relationship 
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with sequenceness was numerically weaker than the within-world recency control 

model, above, and was also no longer significant when the learning rate was below 

0.20. Finally, for a control model with no free parameters, we tested an alternative 

model that predicts an increase of current world replay when the world changes from 

trial to trial. The relationship between current world replay and world change was 

equivalent to zero (p = 0.341; TOST equivalence p = 0.0294). These patterns of results 

support the planning account over an alternative memory retrieval account. 

 

Option value and replay. Control analyses verified that the relationship between replay 

and value was specific to forward replay during the planning period (see Table S3 for a 

summary). Further, separating the paths and the value measure, we found that within 

current world paths, chosen path sequenceness was correlated with the estimated 

value of the chosen option (β = 0.0366 [0.0008 0.0724]; t = 2.00, p = 0.0452), while non-

chosen path sequenceness was not correlated with the estimated value of the non-

chosen option (β = 0.0210 [-0.0145 0.0565]; t = 0.876, p = 0.247; TOST p = 0.044). We 

found no significant relationship between current world replay and the difference in 

option values (β = 0.0251 [-0.0131 0.0632]; t = 1.289, p = 0.198; TOST p = 0.056). 

We also found no relationship between the control non-sequential reactivation 

measures and the benefit of model-based generalization. Mean planning period activity 

strength for current world path states was not related to state value (p = 0.686; TOST p 

= 0.009; replay versus reactivation difference z = 0.999 , p = 0.159, one-tailed). 

Additionally, non-sequential “paired” reactivation of path states in the current world was 

also not related to state value (p = 0.686; TOST p = 0.009; replay versus reactivation 

difference z = 1.136, p = 0.128, one-tailed). In a separate analysis of time-frequency 

data we also found no relationship to state value (n.s. using permutation-based cluster 

correction). 

 

Recent experience (memory preservation) and replay. Control analyses verified that 

the relationship between backward sequenceness and the rarity of recent experience 

was specific to backward replay in the feedback period (see Table S3 for a summary). 

First, during the planning period, we found no modulation of other world forward replay 



35 
 

at a 70 ms state-to-state lag and recent experience (p = 0.988; TOST p = 0.004), while 

the feedback effect was significantly stronger than the planning effect (z = 1.778, p = 

0.0378, one-tailed). We also found no evidence for modulation of planning period other 

world backward replay at a 40 ms lag (p = 0.606; TOST p = 0.012), while the feedback 

effect was significantly stronger than the planning effect (z = 1.972, p = 0.024, one-

tailed). 

Second, during the feedback period, we found no relationship between other 

world forward replay at a 70 lag and rarity (p = 0.690; TOST p = 0.0092; current world p 

= 0.857; TOST p = 0.0056), while the backward replay effect was non-significantly 

stronger than the forward effect (z = 1.50, p = 0.067, one-tailed). Separately, for the 

backward replay effect of interest, we found no interaction between the rarity effect of 

interest and other world value (p = 0.778; TOST p = 0.007). This indicates that a 

modulation of replay by rarity is unrelated to (low) value, a potential confound in 

previous related reports in rodents (Gupta et al., 2010; Carey et al., 2019). 

Third, we found no relationship between the control non-sequential reactivation 

measures and the rarity of recent experience. Mean planning period activity strength for 

current world path states was not related to recent experience (p = 0.305; TOST p = 

0.034; difference z = 0.969, p = 0.167, one-tailed). Additionally, non-sequential “paired” 

reactivation of path states in the current world was also not related to recent experience 

(p = 0.850; TOST p = 0.006; difference z = 1.539, p = 0.124, one-tailed). In a separate 

analysis of time-frequency data, we also found no relationship with rarity of experience 

(n.s. using permutation-based cluster correction). 

Fourth, in exploratory analyses, we also investigated feedback period backward 

replay at a 160ms state-to-state lag, as identified recently at feedback and as described 

above (Liu et al., 2021b). We found no relationship between 160 ms lag backward 

replay and the rarity of recent other world experience (p = 0.438, TOST p = 0.021), 

while the 40 ms lag backward effect of interest was numerically stronger than the 

control 160 ms lag effect (z = 1.208, p = 0.114, one-tailed). 
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Reinforcement learning effects of memory preservation signal 
An RL model incorporating neural signals examined the link between feedback period 

other world replay and memory preservation by allowing replay to modulate next choice 

in that world. We predicted that stronger preceding replay of the other world would 

translate to a higher softmax inverse temperature, reflecting lower uncertainty 

associated with structure memory and learned values. As expected, the distribution of 

the inverse temperature parameter was not normal (given constraints in fitting of [0 Inf]), 

so we tested our hypothesis using the Wilcoxon signed rank test (one-tailed, reflecting 

our a priori prediction). As described in the Results, when the world changed from trial 

to trial, we found a significantly higher inverse temperature on trials with strong 

preceding replay versus not. Control analyses verified that the influence of preceding 

feedback replay on softmax inverse temperature (uncertainty) in the RL model was 

specific to backward replay in the feedback period. 
We conducted several control analyses using an alternative model or substituting 

alternative replay measures to determine the specificity of this finding. First, we tested 

whether the replay modulation of inverse temperature was selective to world-change 

trials as expected. In this model, instead of world-change trials, the additional inverse 

temperature parameters applied to world-same trials with stronger preceding other 

world replay and with weaker preceding replay. We found no effect of replay modulating 

uncertainty (via inverse temperature) on world-same trials (p = 0.753, one-tailed, 

Wilcoxon signed rank test). 

Second, we examined the effect of different replay signals at feedback. The 

presence of previous trial current world replay – reflecting the “other world” structure on 

the current choice – did not relate to an increase in the inverse temperature parameter 

(p = 0.173, one-tailed). Further, forward, instead of backward, previous trial replay of the 

relevant other world also did not relate to a significant increase in the inverse 

temperature parameter (40 ms lag; p = 0.410, one-tailed). These analyses indicate that 

the feedback replay effect in the RL model was specific to sequential reactivation of 

states in the relevant world in the expected backward direction. 

Third, we examined the effect of planning period backward replay of the current 

world, which has the same content as previous trial “other world” replay. As expected, 
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we found no significant increase in the inverse temperature parameter (40 ms lag, p = 

0.274, one-tailed). We also found no effect of planning period forward replay of the 

current world on the inverse temperature parameter (40 ms lag; p = 0.421, one-tailed; 

70 ms lag; p = 0.443, one-tailed). These analyses indicate that the feedback replay 

effect in the RL model was specific to the feedback period. Moreover, this selectivity to 

the feedback period supports the proposal that the relatively low computational 

demands after feedback receipt favor a memory preservation signal. 

Finally, as reported in the Results, we examined whether this effect on the 

inverse temperature parameter was specific to replay, or a general function of rare 

experience of a world. It is possible that aspects of decision making could differ for 

worlds that have not been experienced recently, and that this could give rise to changes 

in the inverse temperature parameter independent of any preceding replay differences. 

Analogous to the replay measure, we thresholded rarity at the 60th percentile to create a 

binary variable and examined any influence on the inverse temperature on choices 

when returning to the other world. We found no difference in inverse temperature due to 

more versus less rare choices (p = 0.246, one-tailed). 

 

Feedback period reward response and forward replay 
In the feedback period, we also identified significant forward replay at a 70 ms lag. We 

examined whether current or other world forward replay after feedback was modulated 

by reward and other variables of interest (Table S3). We found a non-significant but 

numerically negative relationship between reward feedback receipt and current world 

forward sequenceness (β = -0.0875 [-0.2045 0.0295]; t = -1.467, p = 0.143; Table S3). 

This effect was similar for chosen path and non-chosen path sequenceness (chosen 

path p = 0.213; non-chosen path p = 0.287). There was no significant relationship 

between reward and other world sequenceness (β = 0.0641 [-0.0596 0.1878]; t = 1.016, 

p = 0.310). Forward sequenceness for current or other world paths also did not 

significantly relate to model-derived reward prediction error (p-values > 0.262). 

Additionally, for backward replay with a 40 ms lag we found no effects of reward 

prediction error (p-values > 0.611; Table S3). We also examined the replay signal in the 

initial period of feedback processing (the first 2.5 s, excluding the initial 160 ms to allow 
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for visual processing). Here, all relationships with reward and reward prediction error 

were equivalent to the null (via the TOST procedure). 

Next, we examined the effect of surprising outcomes, using unsigned (absolute 

value) reward prediction error. We found that other world forward sequenceness was 

negatively related to unsigned reward prediction error (β = -0.0077 [-0.0348 0.0490]; t = 

-2.822, p = 0.0048), with no effect on current world sequenceness (β = 0.0071 [-0.1020 

-0.0184]; t = 0.331, p = 0.741; difference z = 2.251, p = 0.0122, one-tailed). These 

results may suggest that when feedback surprise in the current world is high, relative 

current versus other world replay is higher, which may potentially aid processing of 

surprising outcomes. Speculatively, it is possible that a relative decrease in other world 

versus current world replay after surprising feedback may assist a planning or planning 

preparation function. However, our task was designed to promote planning when 

options are presented, in contrast to related recent work on feedback processing (Liu et 

al., 2021b); thus, measurable modulations of current world replay may be more likely to 

be found in the planning period. 

 
Feedback period backward replay with a 160 ms lag, as in Liu et al. 2021 

In a recent publication, several of the authors of the current paper found that backward 

replay after feedback was related to learning (Liu et al., 2021b). In the current data, in 

the feedback period we did not find significant backward (or forward) replay at or near a 

160 ms lag. As described above, we found no link between 160 ms lag replay and either 

the benefit of model-based generalization or the rarity of recent other world experience.  

When further examining 160 ms lag feedback backward replay, we found positive 

but non-significant effects for reward for both current and other world paths (160ms lag 

backward replay, current world, t = 1.6469, p = 0.0997; other world, t = 1.7835, p = 

0.0746). We found no significant relationship with reward prediction error, although 

there was a numerically positive effect (160ms lag backward replay, current world, t = 

1.704, p = 0.089; other world, t = 0.817, p = 0.414). We also found no significant 

correlation with reward prediction error when separately looking at replay for the chosen 

and non-chosen paths in the current world (chosen p = 0.084; non-chosen p = 0.392). 

We found no relationship with the absolute value of reward prediction error. We also 
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examined this signal in the initial period of feedback processing (the first 2.5 s, 

excluding the initial 160 ms to allow for visual processing). Here, we found numerically 

weaker effects than in the above analyses. 
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Supporting Tables and Figures 
 

Model Range ⍺	 β τALT τW e ⍵	
Model-free 25th percentile 0.80 5.06 0.53 0.17 0.71 - 
  Median 1.00 9.59 0.90 0.62 0.83 - 
  75th percentile 1.00 15.47 1.00 1.00 0.90 - 
Model-based 25th percentile 0.55 5.36 0.69 0.82 - - 
  Median 0.97 8.08 0.83 0.88 - - 
  75th percentile 1.00 14.84 0.99 0.96 - - 
Hybrid 25th percentile 0.74 6.36 0.51 0.77 0.01 0.50 
  Median 1.00 11.07 0.82 0.87 0.35 0.87 
  75th percentile 1.00 22.00 1.00 0.92 0.66 1.00 

 
Table S1. Reinforcement learning model parameter values. Across-participant 
median and 25th and 75th percentile fit parameter values for the three models. ⍺ = 
learning rate; β = softmax inverse temperature; τALT = (1–decay) of non-chosen path 
values; τW = (1–decay) of non-presented world values; e = eligibility trace (model-free 
and hybrid models only); ⍵ = model-based weighting (hybrid model only). 
 
 
 
 
 

Model -Lik AIC BIC 
Model-free 1948.43 4132.55 4488.93 
Model-based 1624.75 3441.51 3726.61 
Hybrid 1576.43 3441.44 3869.10 

 
Table S2. Reinforcement learning model fits. Lower values indicate better fits to the 
behavioral data. The model-based model was an equivalent or better fit to the 
behavioral data than the hybrid model when accounting for additional parameters (as 
shown in the AIC and BIC values). For interpretation of the AIC measures, we consider 
the fit of the hybrid and model-based models to be equivalent, as the hybrid model was 
only 0.0017% better (using the model-free model as a baseline). -LIK = negative log 
likelihood (not penalized for number of parameters). AIC = Akaike Information Criterion; 
BIC = Bayesian Information Criterion. 
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Planning Period lag Different start State value - - Rarity 
Forward Current   70ms (+) *** (+) ** - - eq. 
Forward Other       70ms eq. eq. - - eq. 
Backward Current 40ms eq. eq. - - eq. 
Backward Other    40ms eq. eq. - - eq. 
Forward Current 190ms (+) p = 0.206 eq. - - eq. 
Forward Other    190ms (-) p = 0.144 eq. - - eq. 

      
Feedback Period lag Different start - Reward RPE Rarity 

Forward Current    70ms eq. - (-) p = 0.143 eq. eq. 
Forward Other       70ms eq. - eq. eq. eq. 
Backward Current 40ms (-) p=0.119 - eq. eq. eq. 
Backward Other   40ms eq. - eq. eq. (+) * 

 
Table S3. Full sequenceness regression results, including control analyses, in the 
planning period (top) and feedback period (bottom), for different state-to-state 
sequenceness lags. In each period, the replay direction and lag of interest is indicated 
in bold. In the planning period, we did not observe significant overall replay at a 40ms 
lag, but we use italics to report these control analyses for completeness. Effects 
equivalent to a null effect are indicated with ‘eq.’ (TOST procedure to rule out the 
presence of a medium- or larger-sized effect). The symbols (+) and (-) indicate the 
numerical direction of a relationship that is not equivalent to a null effect; p-values are 
directly noted or indicated with ‘*’. * p < 0.05; ** p < 0.01; *** p < 0.0001. We also 
conducted additional control analyses of the feedback period using data from the first 
2.5 s of the period (excluding the first 160 ms to allow for initial processing). In this early 
feedback period, all relationships were equivalent to null effects. 
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Planning Region T-statistic 
Volume 
(mm3) Peak Coord. 

  – – 178,800 – 

  
R Occipital lobe / Lingual 
gyrus 7.07  20, -81, -2 

  
L Occipital lobe / Lingual 
gyrus 5.76  -10, -61, -2 

  L Fusiform gyrus 5.48  -30, -46, -17 
  R Thalamus / Pallidus 4.96  5, -1, 8 
  R Caudate 4.06  10, 4, 13 
  R Hippocampus 3.92  35, -26, -7 

  
R Hippocampus / Anterior 
MTL 2.88 300 30, -11, -22 

  Hippocampus ROI     
  R Hippocampus 3.24 900 30, -36, -4 
Current 
world R Hippocampus 4.01 1125 25, -36, 3 

Feedback Region T-statistic Volume Peak Coord. 
  – – 195,825 – 

  
L Occipital lobe / Lingual 
gyrus 6.99  -10, -91, -7 

  
R Occipital lobe / Lingual 
gyrus 6.86  15, -86, -17 

  R Fusiform gyrus 6.37  30, -71, -17 
  L Fusiform gyrus 6.27  -20, '-81, '-17 
  R Anterior Insula 5.75  30, 24, -2 
  R Caudate / Putamen 5.1  15, 9, 3 
  Hippocampus ROI     
  R Hippocampus 3.63 825 30, -21, -12 
  L Hippocampus 3.03 450 -25, -16, -17 
  L Hippocampus 3.02 225 -15, -36, -2 
Other world R Hippocampus 3.23 75 25, -36, 3 

Planning current > Feedback other T-statistic Volume Peak Coord. 
  R Fusiform gyrus 3.32 2025 35, -51, 3 

  R Middle occipital gyrus 3.32 375 25, -71, 3 

Feedback other > Planning current T-statistic Volume Peak Coord. 
  R Inferior frontal gyrus / Insula 3.47 2,475 25, 24, -2 
  L Medial frontal gyrus / OFC 2.91 150 -10, 14, -17 
  L Putamen 2.97 150 -25, 4, 3 

 



43 
 

 
Table S4. Beamforming significant clusters. Clusters significant at p < 0.05 using 
non-parametric permutation tests at the whole-brain level or within bilateral 
hippocampus ROI when noted. While we find larger areas of activity in the right 
hippocampus, it is possible that underlying bilateral activity is interpreted as unilateral 
activity by source reconstruction algorithms (O'Neill et al., 2021). For unthresholded 
maps, see https://neurovault.org/collections/11163/ 
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Figure S1. Trial structure and timing of reward learning trials and memory probe trials. 
(a) Trial timing of reward learning phase trials. Each trial began with a 2.5 s planning 
period, which was the focus on decision-related sequenceness analyses. Participants 
also saw the cued reward stakes above the shapes (‘5x’ or ‘1x’; see the Methods for a 
note on difficulty in interpreting effects of stakes in our data). Next, a central ‘+’ 
disappeared and participants could enter their choice selection. Trials ended with a 
mean 5 s feedback and ITI period (with the total points, multiplied by the stakes, shown 
below). This period was the focus of feedback-related sequenceness analyses. There 
was no separate ITI in the scanned reward learning phase; the feedback faded out 
across time and served as an ITI. For the preceding non-rewarded structure learning 
phase where participants freely chose in order to learn the links between stimuli, the 
trial events and timing were as above, with the exception that no reward feedback was 
presented. Preceding the reward phase, structure learning phase trials (not shown) did 
not have reward feedback or per-trial stakes information. (b) Trial timing of memory test 
probe trials used in mini-blocks after structure learning and reward learning blocks. 
Participants were shown a single shape, and after selection of this shape, their goal was 
to select the correct next stimulus from four alternatives at each of the three stages. 
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Figure S2. Simulations of model-free and model-based RL models demonstrating 
effect of start state change on stay behavior and benefit of model-based behavior 
for reward earnings. (a) Example reward point drift for the two options within one 
world, illustrating how a model-based agent can perform better than a model-free agent. 
The points associated with the two paths are shown in the red and green lines. The blue 
and yellow overlay represents the two alternative start states. Trials are concatenated to 
only show a single world; in the actual task, alternative world trials would be 
interspersed. (b) Simulations demonstrating the benefit of model-based behavior on 
mean reward earnings. Task parameters and reward distributions were as experienced 
by participants. 1000 simulations were conducted with each of the 24 individual 
participant’s fit RL model parameters. Mean per-trial reward earnings were higher in the 
model-based model (4.919 [4.916 4.922]) than the model-free model (4.719 [4.716 
4.721]). A given simulated model-based model earned more reward than a model-free 
model 79.9% of the time. (c-d) Simulation results of a group of 24 participants simulated 
1000 times. Figures follow the format of behavioral results displayed in Fig. 1d. (c) 
Depiction of model-free model simulation results. In the same multilevel regression 
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analysis as described in the main text, the interaction of reward by start state, indicating 
a model-free component to behavior, was significant in all simulations. (d). Depiction of 
model-based model simulation results. The interaction of reward by start state, 
indicating model-free component to behavior, was never significantly positive. Further, 
the interaction coefficient for every model-based group simulation was lower than all 
interaction coefficients across all model-free simulations. Both model-free and model-
based simulations use the individual participant fit model parameters for each type of 
model and the underlying reward point drifts from the behavioral task, while regressions 
use the full graded reward feedback distribution. As for Fig. 1d, for display, reward 
points were binned into high and low reward, excluding the point value nearest the 
mean for this illustration. (Note that stay probabilities in a given condition will not add to 
1 given that trials with near-mean feedback are excluded; this does not qualitatively 
affect the results.) As expected, the critical difference arises in the tendency to stay after 
reward when facing a different start state (orange bars) versus the same start state 
(purple bars). In the model-based model, the difference in stay probability is 
independent of start state, demonstrating generalization across specific top-level stimuli. 
The adaptive tendency to stay after reward versus stay after non-reward feedback when 
facing the same start state (purple bars) is weaker in the model-free model. Critically, 
the effect when the start state changed (orange bars) was much weaker in the model-
free model. Note that in the model-free model, the residual effect of reward on stay 
choices when the start state changes (orange bars) is due to temporal autocorrelation in 
the drifting rewards associated with each path. I.e. a high reward on trial t when the start 
state changed is likely to have followed a high reward on trial t-1 when the start state did 
not change, allowing the model-free model to provide some appearance of adaptation 
when generalization is more beneficial. 
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Figure S3. Schematic of sequenceness analysis pipeline. a) We train separate 
multivariate classifiers for each path state in the task from the localizer data, producing 
vectors of sensor weights for each state. The peak-accuracy classifiers are applied to 
the preprocessed MEG data [time x sensors] for each period in each trial (middle right). 
This transforms the data from sensor space to vectors of state reactivation [time x 
state]. For illustrative purposes only, we provide a visual example of sequential 
reactivation in the resulting state reactivation data. b) Using the state reactivation 
evidence data, a first-level GLM estimates the empirical strength of state-to-state 
transitions at each lag t for each period in each trial (left). For ease of visualization, only 
6 states of a total 12 are depicted in the example matrices. This empirical matrix is the 
dependent variable in a second-level GLM, where the true forward and backward 
transition matrices are independent variables, alongside control autocorrelation and 
constant matrices (middle left). Per-trial results are z-scored across lags. For lag 
localization, results are then averaged across trials and across participants (middle 
right). To control for multiple comparisons, a non-parametric permutation approach is 
employed (right). The true state-to-state transition matrices are replaced by random 
transition matrices. To correct for multiple comparisons, a 95% threshold is applied to 
the maximum values across lags. Figure adapted from Liu et al. (Liu et al., 2021a) and 
Nour, Liu et al. (Nour et al., 2021).  
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Figure S4. Decoding performance of all 12 states during localizer and cross-
classification of stimuli during reward learning. (a) Cross-validated classification 
performance for each of the 12 path state stimuli in the localizer phase. Results 
represent training on the 200 ms time point and testing across all time points. Dotted 
lines indicate the permutation threshold estimated by randomly shuffling the labels and 
re-estimating the decoding. (Note that the actual stimulus 9 was a photo of the face of a 
young girl; the puppy stands in to avoid including identifiable information.) (b) Check of 
classifier performance when applied to actual stimuli during reward learning in the trial 
period where stimuli on each path are sequentially presented. Comparison of true 
versus other world stimuli centered around 200 ms training time of classifier (190-210 
ms; *** p < 10-7 t-test true state versus non-presented state; peak at 220 ms). Shaded 
error margins represent SEM. 
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Figure S5. Sequenceness and regressions for the full range of time lags. (a) 
Forward sequenceness for all learned paths during planning and feedback periods was 
evident for a common state-to-state lag of 70 ms in both trial periods, and 190-200 ms 
during planning alone. Open dots indicate time points exceeding a permutation 
significance threshold, which differs for the two periods. (b) Planning period forward 
sequenceness separately for current world and other world paths. (c) Backward 
sequenceness for all learned paths during planning and feedback periods was evident 
for state-to-state lags that spanned 10-50 ms during the feedback period alone. Open 
dots indicate time points exceeding a permutation significance threshold, which differs 
for the two periods. (d) Feedback period forward sequenceness separately for current 
and other world paths. (e) Planning forward sequenceness and generalization: no 
alternative lag exceeded that of the effect at 70ms, and no alternative lag effect was 
significant after correcting for multiple comparisons (at a lag of 180ms, the effect 
exceeded an uncorrected threshold). (f) Feedback period replay and rarity: no 
alternative lag exceeded that of the effect at 40ms, and no alternatives were significant 
at an uncorrected or corrected level. For all panels, note that the x-axis in the 
sequenceness panels indicates the lag between reactivations, derived as a summary 
measure across seconds; the axis does not represent time within a trial period.   
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Figure S6. Individual sequenceness example events and individual difference 
correlations. (a) Example of forward sequenceness with a 70 ms state-to-state lag in 
the planning period for current world paths. (b) Example of backward sequenceness 
with a 40 ms state-to-state lag in the feedback period for other world paths; s = 
participant; trl = trial. Time is relative to the onset of planning or feedback. Note that 
these are presented as examples only; the sequenceness linear regression method, 
which provides the sequenceness measures used in all our analyses, utilizes data 
across the full time period of interest and does not identify individual events. (c) 
Structure learning phase: relationship between increased backward replay during the 
inter-trial interval and memory performance in the structure learning phase (p = 0.047).  
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Figure S7. Additional views of replay onset source localization (beamforming). (a-
c) Power increases associated with replay onset in the planning period in the MTL (a-b) 
and striatum (c). (d-f) Power increases associated with replay onset in the reward 
feedback period in the MTL (d-e) and striatum (f). For display, statistical maps were 
thresholded at p < 0.01 uncorrected; clusters significant at p < 0.05, whole-brain 
corrected using non-parametric permutation test. For unthresholded statistical maps 
and results within the hippocampus ROI mask see 
https://neurovault.org/collections/11163/. 
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Figure S8. Replay onset full-frequency results. (a-c) Planning period. (a) Power 
increases associated with replay onset in the planning period across the full 0-190 Hz 
range. (b) Significant power increases in the planning period in red. Clusters significant 
at p < 0.05; corrected using non-parametric 2D permutation test, after an initial 
thresholding at p < 0.01. (c) Planning replay onset power difference for current world 
paths minus other world paths; no significant differences. (d-f) Feedback period. (d) 
Power increases associated with replay onset in the reward feedback period across the 
full 0-190 Hz range, as in panel a. (e) Significant power increases in the reward 
feedback period, as in panel b. (f) Feedback replay onset power difference for other 
world paths minus current world paths; no significant differences. (g) Feedback period 
ripple frequency band ROI for other minus current world paths correlated with individual 
differences in the feedback replay memory rarity effect. However, overall, we saw no 
main effect of replay-associated power increase at higher frequencies (Liu et al., 2019; 
Liu et al., 2021b; Nour et al., 2021), with changes more consistent with previous lower-
frequency power increases observed for replay of episodic memories (Wimmer et al., 
2020).  
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Figure S9. Change in neural similarity after learning. Labeled task diagram, right 
column of figure. (a) Stimuli occupying the same path position increased their similarity 
to stimuli at the same position in the alternative world, left. Across-world position design 
matrix, middle. (b) Stimuli at the same path position increased their similarity to stimuli 
at the same position in the same world, left. Same-world position regression matrix, 
right. (c) Path identity: stimuli within the same path decreased their similarity, left. Path 
identity regression matrix, right. Note that position representations do not return to 
baseline because learning task trials continue on to other fixed-order stimuli. 
Specifically, in visual presentation, state1 is followed by state 2 and 3, and thus a 
position 1 representation transitions into a representation for position 2, while a position 
2 representation transitions into position 3. 
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