Dietary fibre controls blood pressure and cardiovascular risk by lowering large intestinal pH and activating the proton-sensing receptor GPR65

Running title: Large intestinal pH, GPR65 and blood pressure

Liang Xie¹,², Dakota Rhys-Jones¹, Rikeish R. Muralitharan¹,³, Evany Dinakis¹,

Michael Nakai¹, Madeleine Paterson¹, Alex Peh¹, Hamdi Jama¹, Ekaterina Salimova⁴, Dovile Anderson⁵, Caroline Ang⁶, Md Jahangir Alam², Yu-Anne Yap⁷,

Darren Creek⁵, Remy Robert⁷, CK Yao⁸, Daniel So⁸, Geoffrey A. Head⁹, Peter R. Gibson⁸, Jane Muir⁸, Joanne A. O’Donnell¹, Charles R. Mackay²,¹⁰, Francine Z. Marques¹,¹¹*
Discovery Institute, Monash University, Clayton, VIC 3800, Australia; 3Institute for Medical Research, Ministry of Health Malaysia, Kuala Lumpur, Malaysia; 4Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia; 5Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; 6Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; 7Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; 8Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, 3000, Victoria, Australia; 9Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, 3000, Victoria, Australia; 10School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; 11Heart Failure Research Group Baker Heart and Diabetes Institute, Melbourne, VIC 3000, Australia.

\textbf{*Corresponding author:} A/Prof Francine Z. Marques, PhD, Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University,
Melbourne, Australia, Phone: +61-03-9905 6958. E-mail:

francine.marques@monash.edu
Abstract

Dietary fibre regulates blood pressure (BP) through gut microbial production of acidic metabolites known as short-chain fatty acids (SCFAs). The specific mechanisms of how SCFAs regulate BP are still emerging. We hypothesised that acidic metabolites that are abundant in the large intestine may activate proton-sensing G-protein coupled receptors, such as GPR65, thus conferring BP regulating effects. Using mouse models, we found that dietary fibre levels determined the luminal pH in the large intestine, through production of SCFAs by the gut microbiota. We then investigated a new mouse model lacking GPR65, which spontaneously developed higher BP, cardiac and renal hypertrophy and fibrosis. We identified that low pH, acting via GPR65 signalling, increased cAMP production and phosphorylation of CREB, and regulated inflammatory cytokine production involved in hypertension. We showed that the benefits of diets high in fibre, which usually prevent hypertension and its associated phenotypes, were decreased in mice lacking GPR65. Finally, we provided proof-of-concept evidence that the luminal pH profile in the colon of hypertensive participants is higher than that of normotensive participants. Colonic pH was further associated
with dietary fibre, particularly in the colonic regions where fibre is fermented by the
gut microbiota. Together, we show that pH sensing by GPR65 underlies at least some
of the cardiovascular benefits of dietary fibre.

Keywords: hypertension, heart, metabolites, microbiome, pH, G-protein coupled receptor
Introduction

High blood pressure (BP), known as hypertension, accounted for 19.2% of all deaths (10.8 million deaths) in 2019, primarily due to cardiovascular disease (CVD), being the leading global disease burden¹. Insufficient intake of foods high in fibre, such as vegetables, fruits and wholegrain foods, contributes to mortality and morbidity of non-communicable diseases (NCDs)² resulting from higher BP and CVD³. Gut microbial metabolites, short-chain fatty acids (SCFAs), produced from dietary fibre fermentation, underlie the cardiovascular benefits conferred by dietary fibre⁴,⁵. As a consequence, dietary interventions that increase colonic SCFAs (either via direct administration or a high fibre diet) have been tested in animal studies⁴,⁵ and, more recently, in a randomised clinical trial as a novel and safe therapy against hypertension⁶. SCFAs significantly lowered blood pressure not only in animal hypertension models⁴,⁵, but in human non-treated essential hypertensive patients as well⁷. However, the underlying mechanism of how SCFAs lower BP remains to be fully elucidated. Thus far, studies have focused on the direct role of SCFAs, binding to GPCRs such as GPR43⁴,⁵. An important observation that has not been explored yet
is that the large production of SCFAs from bacterial fermentation of dietary fibre in
the colon reduces the luminal pH from ~8 in the distal small intestine to ~6.5$^{8-10}$.

Acidification of the colonic pH benefits the host’s health through facilitating the
expansion of SCFA-producers and suppressing some gastrointestinal pathogens11.

Nevertheless, the direct effects of the acidic luminal pH in the colon to the host’s
physiology remain largely unknown. The acidic intestinal pH ~6.5 created by SCFAs
may activate proton-sensing receptors, including the G-protein coupled receptor
GPR6512,13. A set of genetic variants (e.g., rs3742704, rs8005161) in the human
GPR65 gene are associated with inflammatory bowel disease (IBD)$^{14-19}$. Indeed,
GPR65-deficient mice exhibited exacerbated inflammation in experimental colitis
models19,21. More recently, other inflammatory diseases, were associated with the
GPR65 minor T allele of rs8005161 and the minor C allele of rs3742704 in phenome-
wide association studies18,22. These genotypes are associated with reduced GPR65
signalling, by ~50% measured by intracellular cAMP accumulation19 and so provide
an insight into the relevance of GPR65 in human disease. High BP was initially
associated with rs8005161 (P=0.0029) but this was no longer significant after
adjustment by FDR (q=0.300)18. A potential explanation for this may be that a large
proportion of hypertensive patients (41\% of female patients and 51\% of male patients)
are not aware of their elevated BP23. Another explanation may be that activation of
GPR65 is not due to intrinsic parameters, such as genotype, and depends on pH.
Independently, GPR65 is highly expressed by various leukocyte subsets24-26 and
regulates inflammatory responses that are relevant to hypertension. For example,
GPR65 inhibits the secretion of the pro-inflammatory cytokine, TNF\textsubscript{\alpha}, which has
been implicated in hypertension pathogenesis27, from CD4+ and CD8+ T cells,
particularly under acidic pH (pH 6.0)18. Thus, proton sensing by GPR65 may be an
instrumental link between fibre, colonic luminal pH and cardiovascular health.

Here we aimed to establish the role of colonic pH and the proton-sensing receptor
GPR65 in hypertension and its associated risk factors for CVD, particularly when
fermentable fibre intake is high. We designed a series of studies in mice that provide
evidence for a role of GPR65 in the cardiovascular protection conferred by dietary
fibre and described the mechanism involved. Furthermore, we provided proof-of-
concept that hypertensive patients have higher colonic luminal pH, compared to
normotensives, in the colonic region where dietary fibre is fermented. Collectively, we provide translational evidence that dietary fibre confers cardiovascular protection by lowering colonic pH, and activating downstream signalling of the proton-sensor GPR65 that lowers inflammatory cytokines and inflammation. This represents a novel way of gut microbiota-to-host communication and may form the basis for new therapeutic strategies for hypertension.

Results

Dietary fibre lowers large intestinal pH, and this is dependent on the gut microbiota

The large intestine, including caecum and colon, provides an anaerobic environment for the microbiota, where fermentation of dietary fibre by the microbiota releases a large amount of SCFAs, which reduce the local pH. Therefore, colonic luminal pH is a quantitative marker for carbohydrate, mostly dietary fibre, fermentation by the microbiota, particularly bacteria, in the large intestine. To determine the impact of dietary fibre on the colonic luminal pH in the large intestine, we fed C57BL/6J (wild-
type, WT) mice a control diet (AIN93G) and diets high (SF11-025) and low (SF09-028) in resistant starches (hereby referred to as ‘fibre’) for 7 days (Fig. 1a). As expected, these dietary interventions significantly altered the composition of the gut microbiome (Extended Data Fig. 1a-f), with SCFA producers, such as Lachnospiraceae-NK4A136-group, being enriched with the high fibre diet (Extended Data Fig. 1g). Low fibre diet significantly enriched *Alistipes* spp., which is associated with intestinal inflammation and hypertension\(^31,32\). The luminal pH of the caecum and colon was ~7.2 when mice were fed with the control diet (Fig. 1b). Notably, the caecal and colonic pH were reduced by high fibre diet to 6-6.5 – this was accompanied by a significant increase in the levels of acetate and total SCFAs in the colonic contents (Fig. 1c). On the contrary, low fibre diet increased the luminal pH in the caecum and colon to ~7.5 (Fig. 1b) and reduced the levels of acetate, butyrate, propionate, which together consist of more than 95% SCFAs produced in the large intestine\(^33\), and total SCFAs in both the colonic contents and portal vein plasma relatively to the high fibre intervention (Fig. 1c). However, these short-term dietary interventions (7 days) did not alter the levels of SCFAs in the peripheral circulation.
(Extended Data Fig. 1h), suggesting it is the colon where fiber intake produces marked effects.

We then aimed to determine whether the pH lowering effect of dietary fiber is dependent on the gut microbiota. To achieve this, we pre-treated mice with an antibiotic cocktail to reduce the bacteria load before we started the same dietary interventions (Fig. 1e). Indeed, the antibiotic cocktail effectively reduced the bacterial load (Fig. 1f). This reduction in bacteria in the intestine resulted in a higher luminal pH in the caecum and colon, independent of the level of fiber in the diet (Fig 1g-j). These data suggest that acidic large intestinal pH produced when fiber is consumed is dependent on the gut microbiota, particularly bacteria.

Deficiency of GPR65 results in spontaneous cardiovascular dysfunction

The colonic luminal pH produced by high fiber intake, pH 6.5, activates the family of proton-sensing GPCRs, while that produced by low fiber intake, pH 7.5, silences them12,13. Within this family, GPR65 has functional evidence supporting its protective roles in gut homeostasis14-20,22. Thus, we examined the impact of GPR65 deficiency within the gut. Using CRISPR/Cas9, we developed a new mouse strain that lacks
GPR65 (Gpr65^{-/-}). Under normal physiological conditions, Gpr65^{-/-} mice exhibited similar gut microbiome composition (Extended Data Fig. 2a-c), immune cell infiltration (Extended Data Fig. 2d) and tissue histology in the caecum (Extended Data Fig. 2e-h) and small intestine (data not shown) compared to WT mice.

The role of GPR65 in the cardiovascular system and BP regulation remains largely unknown. Therefore, we characterized multiple key cardiovascular phenotypes of Gpr65^{-/-} mice. Compared to WT mice, male Gpr65^{-/-} mice had no difference in body weight (Extended Data Fig. 3a), body composition (Extended Data Fig. 3b-d), food and water intake (Extended Data Fig. 3e, f), or faeces and urine excretion (Extended Data Fig. 3g, h). We discovered, however, that Gpr65^{-/-} mice spontaneously developed significantly higher systolic BP, diastolic BP and mean arterial pressure compared to WT mice (Fig. 2a-c). Consistently, Gpr65^{-/-} mice had significantly enlarged heart, kidney and spleen (all adjusted to tibia length) compared to WT mice (Fig. 2d-f). This was accompanied by significantly higher levels of cardiac fibrosis (Fig. 2g, h), cardiac left ventricular posterior wall in the end diastole (LVPW;d, Fig. 2i) and cardiac output (Fig. 2j). Similarly, renal fibrosis was also significantly
elevated in \textit{Gpr65}^{−/−} mice (Fig. 2k, l). To investigate the influence of GPR65 deficiency on renal function, we performed a saline challenge as previously described5,34. Compared to WT mice, \textit{Gpr65}^{−/−} mice excreted less water and sodium over a 5-hour period (Fig. 2m, n), which suggests impaired diuretic and natriuretic functions. Aligned with the significant functional phenotypes, urine creatinine levels were significantly increased in \textit{Gpr65}^{−/−} mice (Fig. 2o). We observed similar cardiovascular phenotypes in female \textit{Gpr65}^{−/−} mice, including higher BP (Extended Data Fig. 4a-c), cardiorenal and splenic hypertrophy (Extended Data Fig. 4d-f), thicker LVPW;d (Extended Data Fig. 4g), and elevated cardiorenal fibrosis (Extended Data Fig. 4h-k) compared to female WT mice. Collectively, these results clearly demonstrated that GPR65 deficiency leads to the spontaneous development of high BP and associated end-organ damage which leads to CVD.

\textbf{Acidic pH regulates GPR65 signalling and inhibits pro-inflammatory pathways}

A large body of evidence supports that a pro-inflammatory immune system contributes to the elevation of BP35,36. Considering GPR65 expression is particularly
enriched in the immune compartment24-26, we quantified the number of immune cells in the spleen, a major lymphoid organ. Using a T cell panel (Extended Data Fig. 5a), we found that $Gpr65^{-/}$ mice had significantly higher numbers of CD45$^+$ immune cells (Extended Data Fig. 5b), and major T cell subsets, including CD8$^+$ T cells (Fig. 3a), CD4$^+$ T cells (Extended Data Fig. 5c), $\gamma\delta$ T cells in the spleen (Extended Data Fig. 5e, f). Furthermore, we observed significantly more CCR6$^+$ $\gamma\delta$ T cells, which is a deleterious subset in CVD37, in the spleen (Extended Data Fig. 5g-i). However, using a myeloid cell panel (Extended data Fig. 5j), we found that neutrophils and macrophages/monocytes, and dendritic cells were not enriched in the spleens of $Gpr65^{-/}$ mice (Extended Data Fig. 5k-o). We then investigated the number of immune cells in kidney, a critical organ for BP regulation. Flow cytometry with the T cell panel (Extended Fig. 6a) demonstrated significantly elevated CD45$^+$ immune cells (Extended Data Fig. 6b), CD8 T cells (Fig. 3b), and other major T cell subsets (Extended Data Fig. 6c-i) in the kidneys of $Gpr65^{-/}$ mice. Expression of an early activation marker CD69 on T cells in kidney was not influenced by GPR65 deficiency (Fig. 4b, Extended data Fig. 6d), except on $\gamma\delta$ T cells whose expression of CD69 was
promoted in Gpr65-/- mice (Extended data Fig. 6h). Using the myeloid cell panel (Extended data Fig. 6j), we found that neutrophils were not significantly increased in the kidneys of Gpr65-/- mice, but macrophages/monocytes, particularly Ly6C- macrophages/monocytes and dendritic cells, were elevated in the kidney (Extended Data Fig. 6l-q) of Gpr65-/ mice. Thus, these data suggest Gpr65-/- mice spontaneously develop a pro-inflammatory profile that is consistent with that observed in hypertension.

We next aimed to determine whether pH modulates inflammatory responses via GPR65 signalling. GPR65 is a Gαs-coupled receptor whose activation induces intracellular cAMP accumulation. cAMP production in response to low pH was impaired in macrophages of GPR65 deficient mice. We discovered that low (GPR65 activating) pH (6.5) increased the level of intracellular cAMP in splenic cells in a GPR65 dependent manner (Fig. 3c). The increased intracellular cAMP can lead to the phosphorylation of cAMP response element-binding protein (CREB). Phosphorylated CREB (pCREB) has various roles in the immune responses, including suppressing the production of pro-inflammatory cytokines, IFNγ and TNFα, which underlie the
pathogenesis of hypertension35,36. T cells, particularly CD8+ T cells, have a causal role in hypertension41. Thus, we investigated whether pH and GPR65 signalling regulated the phosphorylation of CREB in splenic T cells \textit{in vitro}. Indeed, compared to pH 7.5, pH 6.5 significantly elevated pCREB levels in WT splenic CD8+ T cells activated by para-Methoxyamphetamine (PMA) and ionomycin (Fig. 3d). The elevation of pCREB by acidic pH was impaired in \textit{Gpr65-/-} splenic CD8+ T cells (Fig. 3d). In CD4+ T cells, acidic pH also elevated pCREB levels in WT mice but the regulation of pCREB by GPR65 was not observed (Extended Data Fig. 7a). To further characterise the impact of pH and GPR65 on the effector functions of T cells, we examined their influence on the production of IFN\textsubscript{\gamma} and TNF\textsubscript{\alpha} by CD8+ T cells. pH 6.5 inhibited the production of IFN\textsubscript{\gamma} and TNF\textsubscript{\alpha} by stimulated splenic CD8+ T cells (Fig. 3e-h) and TNF\textsubscript{\alpha} but not IFN\textsubscript{\gamma} production by CD4+ T cells (Extended Data Fig. 7a-d) compared to pH 7.5. Splenic CD8+ T cells from \textit{Gpr65-/-} mice produced more IFN\textsubscript{\gamma} and TNF\textsubscript{\alpha} after stimulation, particularly at pH 6.5 (Fig. 3e-h), but we observed no difference in CD4+ T cells (Extended Data Fig. 7b-e), consistent with pCREB results. In summary, pH change, which resembles the regulation of colonic luminal pH by dietary fibre,
regulates GPR65 signalling. Low pH, via GPR65 activation, suppresses the pro-inflammatory cytokine production by CD8+ T cells, which may reduce BP (Fig. 3i).

Depletion of GPR65 decreased the protection of dietary fibre against high blood pressure

We next investigated whether pH-sensing by GPR65 conferred the cardiovascular protection by dietary fibre. To achieve this, we challenged WT and Gpr65-/− mice with angiotensin-II (Ang-II, 0.5mg/kg body/weight/day) and fed the mice either high or low fibre diets (Fig. 4a). As previously reported by us, high fibre diet suppressed the elevation of systolic BP (Fig. 4b), diastolic BP (Fig. 4c) and mean arterial pressure (Fig. 4d) induced by Ang-II infusion in WT mice. Such suppression was significantly lower in Gpr65-/− mice (Fig. 4b-d, Extended Data Fig. 8a, b). GPR65 deficiency significantly increased BP with hypertensive stimuli when mice were fed with high fibre diet, while the impact of GPR65 genotype was negligible under low fibre diet (Fig. 4b-d, Extended Data Fig. 8a, b). GPR65 deficient mice treated with high fibre had higher cardiac weight to tibia length ratio (Fig. 4e), thicker LVPW;d (Fig. 4f), reduced ejection fraction (Fig. 4g) and fractional shortening (Fig. 4h), and higher
cardiac fibrosis (Fig. 4i, j). Similarly, kidney weight to tibia length ratio (Fig. 5a) and renal fibrosis (Fig. 5b, c) were increased, but not natriuretic or diuretic function (Fig. 5d, e, Extended Data Fig. 8c, d). We quantified the number of immune cells in the kidneys and observed that high fibre fed Gpr65−/− mice had significantly more CD45+ immune cells compared to the high fibre fed WT mice (Fig. 5f). Of note, the infiltration of CD8+ T cells, whose responses was regulated by acidic pH and GPR65 signalling, was significantly higher in the kidney of Gpr65−/− mice (Fig. 5g). In addition, γδ T cells were also increased (Fig. 5h), but there was no change in CCR6γδ T cells (Fig. 5i). Macrophages/monocytes, particularly Ly6C− macrophages/monocytes, were increased in the kidney (Fig. 5j, k), while Ly6C+ macrophages/monocytes, CD4+ T cells, Foxp3+ regulatory T cells, neutrophils and dendritic cells were not (Fig. 5l, Extended data 8e-h). However, when mice were fed with a low fibre diet, which copies a pH where GPR65 is not active, there was no difference on cardiac and renal parameters besides fibrosis, which was further exacerbated in Gpr65−/− mice (Fig. 4e-j, 5a-e, Extended Data Fig. 8a-d). Consistent with this, no difference was observed in immune cell infiltration in the kidney under a
We then examined the intestinal tissue of mice fed low and high fibre diets. High fibre intake thickened the muscularis propria layer and increased the length of intestinal villi in caecum, irrespective of the genotype for \textit{Gpr65} (Extended Data Fig. 9a-c), but did not influence the width of the fibrotic layer and the number of goblet cells (Extended Data Fig. 9d, e). However, low fibre or GPR65 deficiency reduced the number of goblet cells in the duodenum (Extended Data Fig. 9f, j). We also characterized the gut microbiome composition by analysing 16S rRNA gene. The main factor driving the differences in gut microbiota was diet rather than the genotype for \textit{Gpr65} (Extended Data Fig. 10a-e). This was also reflected in the abundance of bacterial taxa, shown at the genus level (Extended Data Fig. 10f). \textit{Lachnospiraceae}-NK4A136-group, which was enriched by 7-day high fibre intervention (Extended Data Fig. 1g), was also more abundant in mice fed high fibre diet in this study (Extended Data Fig. 10h). The top leading taxonomic change explaining the differences in gut microbiome was the enrichment of \textit{Bacteroides} in the groups fed high fibre diet (Extended Data Fig. 10g, h). \textit{Bacteroides} species are the most...
predominant anaerobes in the gut with significant cardiovascular benefits. Low fibre diet expanded the genera *Bilophila* and *Alistipes* (Extended Data Fig. 10g, h), associated with inflammation and higher risk of CVD. Interestingly, *Bacteroides* spp. are the dominant carbohydrate fermenters at pH 6.0 to 7.0, the normal luminal pH within the caecum and colon. The major products of carbohydrate fermentation by *Bacteroides* spp. are propionate and acetate, rather than butyrate. Indeed, compared to low fibre, high fibre diet profoundly elevated acetate and propionate levels in the caecal contents, independent of the genotype of the mice, while no significant difference in caecal butyrate levels were observed (Extended Data Fig. 10i).

The intestinal luminal pH profile in human hypertension: A pilot study

To translate our experimental findings, we then examined colonic luminal pH using a wireless real-time capsule (SmartPill™) in a pilot cohort study, the pH of Intestines and Blood-pressure Regulation (pHibre) study (Fig. 6a, Extended Data Table 1). Although relative to normotensive participants, those with hypertensive had a similar total dietary fibre intake (Fig. 6b, Extended Data Table 2), dietary fibre intake of the...
whole cohort was negatively associated with colonic minimum pH (Fig. 6c), but not
colonic median (Fig. 6d) or maximum pH (Fig. 6e). This is important as GPR65 is
activated by lower pH13. We discovered hypertensive patients had higher colonic
minimum pH (Fig. 6f and Extended Data Table 3), without changes in maximum (Fig.
6g) or median pH (Fig. 6h). These were independent of the transit time across the
small and large intestine, which were similar between groups (Extended Data Fig.
11a-c). Thus, we determined that fibre intake was associated with lower colonic
minimum pH, which was higher in hypertensive compared to normotensive
participants.

Most of the dietary fibre fermentation takes place in proximal colonic regions,
such as the ascending and transverse colon29. Due to gradual reductions of dietary
fibre availability, bacterial load and activity, the levels of SCFAs in the colon reduce
gradually from the ascending to the descending colon; therefore, the luminal pH
increases (Fig. 6i)9,54,55. Such pH elevation is technically difficult to be observed in
small rodents, like mice, due to their small size, but can be investigated using the
SmartPillTM in humans9,56. Thus, to study changes in pH in the different colonic
regions, we divided the colon into four equal quartiles, as previously reported\cite{9,56} –
these quartiles are thought to approximately correspond to the main regions of the
large intestine. Our data indeed fitted with the expected pattern of pH distribution
along the colon (Fig. 6j). Colon minimum pH was significantly correlated with the
luminal pH in the first and second quartiles (Fig. 6k), consistent with higher fibre
fermentation and production of SCFAs in these proximal colonic regions. We
observed a non-significant increase in pH in hypertensive participants in the second
quartile (\(P=0.157\) after adjustment for age, sex and BMI). This quartile may be
representative of the transverse colon, where slowly fermented fibres, such as
resistant starches, are fermented29. These types of fibres, including resistant starch
which was used in our animal studies, are a major source for SCFA-production and
were shown to reduce BP in animal models4,5 and, more recently, a human clinical
trial7.

\textbf{Discussion}

Dietary fibre and SCFAs are potent BP-lowering agents. SCFAs, particularly acetate,
propionate and butyrate, are well-known for their immunomodulatory effects through activation of metabolite-sensing G-protein coupled receptors (GPCRs), such as GPR41, GPR43 and GPR109A. Some evidence suggests these receptors may confer cardiovascular protection. Here, we used a translational approach to identify a novel mechanism of how dietary fibre regulates BP and cardiovascular health via colonic luminal pH and GPR65. Using animal models, we determined high fibre diet lowers large intestinal pH by increasing the production of SCFAs by bacteria. This change in large intestinal pH activates the proton-sensing receptor GPR65 and its downstream anti-inflammatory signalling cascade. We then used wireless real-time pH monitoring in normotensive and hypertensive participants diagnosed using ambulatory blood pressure monitoring. Consistently with our animal findings, we identified an association between human hypertension and higher colonic minimum pH. Together, our findings support that large intestinal pH-sensing by GPR65, at least partly, explains the systemic cardiovascular protection by dietary fibre.

The colon is one of the rare sites in the body where pH is naturally acidic. This largely results from the microbial production of acidic metabolites, particularly
SCFAs8-10. Acidic pH in the colon is essential in maintaining gut homeostasis through suppressing the growth of pathogens and facilitating the expansion of beneficial microorganisms, including SCFA producers11. Indeed in mice, we used dietary interventions to show that fibre determined the luminal pH in the colon, and that it was inversely associated with the levels of SCFAs in both the large intestine and plasma. Such regulation was dependent on the existence of bacteria in the colon. Moreover, we validated that total dietary fibre intake was negatively correlated with the luminal pH in the first regions of the colon in participants of the pHibre cohort.

Among the host’s pH sensors, GPR65 has critical roles in gastrointestinal homeostasis14-20,22. In this study, we generated a new systemic GPR65 knockout mouse model (\textit{Gpr65-/-}) using CRISPR/Cas9 technology. Aligned with a previous report 21, no clear difference was observed in the gut homeostasis between naïve and otherwise healthy \textit{Gpr65-/-} and WT mice. However, characterisation of its cardiovascular phenotype demonstrated that lack of GPR65 led to the spontaneous development of cardiovascular disorders featured by higher BP, impaired cardiorenal function, and cardiorenal remodelling. These results demonstrate GPR65 has a
protective role for cardiovascular health.

GPR65 is particularly enriched in immune cells and lymphoid tissues24-26. Evidence built in the last decade strongly support the contribution of inflammation in the development of hypertension35,36, making hypertension an unconventional inflammatory disease. Our study suggested GPR65 deficiency increased immune cell counts in both spleen and kidneys. T cells, particularly CD8+ T cells, were more abundant in $\text{Gpr65}^{-/-}$ mice. CD8+ T cells are a well-known immune cell subset contributing to the pathogenesis of hypertension41. Our data demonstrated that low pH, similar as the large intestinal pH post high fibre intervention, suppresses pro-inflammatory cytokine production by CD8+ T cells, but not CD4+ T cells, via activating GPR65 signalling. This is a plausible mechanism linking dietary fibre, large intestinal pH, GPR65 and cardiovascular protection. CD8+ T cells express GPR65 at higher levels compared to CD4+ T cells18,24, which may suggest this receptor has a more significant role in CD8+ T cells rather than CD4+ T cells. CCR6+ $\gamma\delta$ T cells, which are a major initial source of the pro-inflammatory cytokine IL-17A37, were significantly more abundant in the spleens and kidneys of $\text{Gpr65}^{-/-}$ mice. GPR65
protects against myocardial infarction in mice, likely through suppressing IL-17A producing CCR6$^+$ γδ T cells58. This may represent another mechanism involved in the BP regulation by GPR65, which requires further investigation. Thus, we propose that pH-sensing by GPR65 mediates the cardiovascular protection by dietary fibre via immunosuppressive mechanisms.

Our study demonstrates that the cardiovascular protection conferred by dietary fibre is, at least in part, mediated by GPR65. When challenged with Ang-II, $Gpr65^{-/-}$ mice had higher BP and cardiorenal hypertrophy compared to WT controls fed high fibre, and similar BP when fed a low fibre diet, which would also abort GPR65 signalling in the large intestine. Indeed, we observed that high fibre fed $Gpr65^{-/-}$ mice had more CD8$^+$ T cells in the kidney compared to high fibre fed WT mice. Analysis of the microbiome using 16S rRNA sequencing demonstrated that diet, not $Gpr65$ genotype, drove the difference in the gut microbiota composition. High fibre diet promoted $Bacteroides$ spp., a genus with known cardiovascular benefits$^{43-46}$, and increased the levels of acetate and propionate, but not butyrate, in the intestine. Moreover, high fibre also inhibited certain taxa associated with inflammation and
cardiovascular disorders, including *Bilophila* and *Aliptipes*. These data suggested that GPR65 signalling does not regulate gut microbiota composition directly and its effects in cardiovascular health are dependent on downstream pathways triggered by GPR65, such as immunomodulation as discussed above.

We acknowledge that since we used a systemic knockout model, our animal studies cannot exclude the effect of pH-sensing in other tissues. However, the interventions with low and high fibre diets show robust differences in the phenotype between WT and Gpr65−/− knockout mice that support that the importance of GPR65 signalling in hypertension starts in the colon. The *in vitro* experiments used the luminal colonic pH we determined *in vivo*; however, we acknowledge these may not correspond to colonic tissue pH. Moreover, the colonic quartiles used in the pHibre cohort analysis were based on transit time and not geography, and thus, they may not represent the exact colonic region we attempted to characterise.

In conclusion, this is the first study to report a role of luminal pH in the colon on the host’s cardiovascular health in both humans and mice. We provided new insights on how dietary fibre and gut microbiota-derived metabolites regulate host health from
the perspective of pH. We established a role for GPR65 as a metabolite-sensing
GPCR by sensing pH changes caused by microbial fermentations. Since pH
alternation is happening universally, this mechanism through proton-sensor GPR65
may extend to broader applications. Agents reducing colonic luminal pH, or agonists
activating GPR65 may be potential tools for the global control of CVDs.

Conflict of Interest

None to declare.

Acknowledgements

This study was supported by a National Heart Foundation Vanguard Grant (102927)
and a National Health & Medical Research Council of Australia (NHMRC) Ideas
Grant (GTN2017382). L.X., M.J.A are supported by Monash Graduate Scholarships.
R.R.M is supported by a scholarship from the Faculty of Science, Monash University.
J.A.O. is supported by a NHMRC Fellowship. F.Z.M is supported by a Senior
Medical Research Fellowship from the Sylvia and Charles Viertel Charitable
Foundation Fellowship and a National Heart Foundation Future Leader Fellowship.
The Baker Heart & Diabetes Institute is supported in part by the Victorian Government's Operational Infrastructure Support Program. The authors thank Department of Gastroenterology, The Alfred, Monash Animal Research Platform, Monash Genomic Modification Platform, Monash Histology Platform, FlowCore, Monash Biomedical Imaging, Monash Proteomics and Metabolomics Facility, Department of Pathology, Monash Health, Australian Genome Research Facility for their technical supports.

Author contributions

L.X. planned and performed most of the animal in vivo and in vitro experiments, data analyses, provided intellectual inputs and wrote the manuscript. D.R.J. coordinated the pHibre and performed human data summarization, SmartPill™ data analyses. R.R.M., E.D. provided major contribution to animal in vivo experiments. J.A.O. provided major contribution to pCREB detection. M.P., A.P. performed gut histology analyses. H.J. contributed to animal in vivo experiments and rodent cardiac ultrasound data analyses, heart and kidney histology analyses. E.S. performed rodent cardiac ultrasound scanning and supervised the data analyses performed by L.X.. D.A.
performed SCFA measurement by LC-MS. C.A., M.J.A., Y.A.Y. contributed to animal
in vivo experiments, mouse strain maintenance and cAMP assay. D.C. supervised
SCFA measurement by LC-MS. R.R. contributed to animal in vivo experiments,
mouse strain maintenance and provided intellectual inputs. C.K.Y contributed pHibre
study and supervised SmartPill™ data analyses performed by D.R.J.. D.S., G.A.H.,
P.R.G., J.M. contributed to pHibre study and provided intellectual inputs. C.R.M. and
F.Z.M. conceived the study and supervised the research. F.Z.M. secured the funding
supporting this study. All authors approved of and contributed to the final version of
the manuscript.
References

Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease.

Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous

Tcymbarevich, I. *et al.* Lack of the pH-sensing Receptor TDAG8 [GPR65] in

Figures and Figure legends

(a) 7-day dietary interventions
 Control diet (AIN93G) flush
 Control/High fibre/Low fibre
 Euthanasia, Tissue harvesting

(b) Caecum
 Colon

(c) Various panels showing data analysis

(d) Various panels showing data analysis

(e) Baytril + Co-amoxi (Abx) starts
 7-day dietary interventions
 Control/High fibre/Low fibre
 Euthanasia, Tissue harvesting

(f) Various panels showing data analysis

(g) Various panels showing data analysis

(h) Various panels showing data analysis

(i) Various panels showing data analysis

(j) Various panels showing data analysis
Fig. 1. Dietary fibre lowers colonic pH through the gut microbiota.

a, The experiment design to characterize the impact of dietary fibre on luminal pH in caecum and colon. **b,** Caecal and colonic luminal pH at the endpoint post dietary interventions. **c,** Levels of acetic, propionic, butyric acids and total short-chain fatty acids (SCFAs) in caecal contents. **d,** Levels of acetic, propionic, butyric acids and total SCFAs in plasma from the portal vein. **e,** The experiment design to characterize the impact of dietary fibre on luminal pH in caecum and colon with antibiotic treatment. Time points with asterisks indicates when faecal samples were collected for bacterial load measurements. **f,** Bacterial load. **g,** Caecal and colonic luminal pH at the endpoint post dietary interventions with antibiotics treatments. **h-j,** Caecal and colonic luminal pH at the endpoint post dietary interventions with/without antibiotics treatments. Each data point represents an individual mouse, and n=6 mice in each group; All data represented as means ± SEM; **c, d, g,** One-way ANOVA; **h-j,** Student’s t test; *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig. 2. GPR65 deficiency spontaneously increases tissue hypertrophy and blood pressure in male mice.

Blood pressure (BP) was measured non-invasively by tail cuff at the age of 10 weeks.

a, Systolic BP. b, Diastolic BP. c, Mean arterial pressure. Tissues of male mice were collected and weighed at the age of 12 weeks. d, Heart weight to tibia length index. e, Kidney weight to tibia length index. f, Spleen weight to tibia length index. Heart sections were stained with Masson’s trichrome. g, Representative heart sections; For
upper panels, magnification = ×10, scale bar = 1mm; For lower left panels (interstitial), magnification = ×200, scale bar = 50μm; For lower right panels (perivascular), magnification = ×100, scale bar = 100μm. h, Percentage of fibrotic area in the cardiac tissues. Cardiac ultrasound screening was performed at the age of 11 weeks. i, Left ventricle posterior wall in the end diastole. j, Cardiac outputs. Kidney sections were stained with Masson’s trichrome. k, Representative kidney sections; For left panels, magnification= ×5, scale bar = 2mm; For right panels, magnification = ×200, scale bar = 50μm. l, Percentage of fibrotic area in the renal fibrosis. Saline challenge was performed at the age of 11 weeks. Mice were intraperitoneally injected with 10% of their body weight of 37 °C 0.9% saline solution. m, Renal diuretic functions measured by accumulated water excretion over 5 hours post injection. n, Renal natriuretic functions measured accumulated sodium excretion over 5 hours post injection. Urine samples were collected from 24h metabolic cage. o, The level of creatinine in urine. For the left figures of panels m and n, n=10-14 mice in each group; All data represented as means ± SEM; Two-way ANOVA. For other panels, each data point represents an individual mouse, and n=6-26 mice in each
group; All data represented as means ± SEM; a-c, h, j, l and o, Student’s t test; d-f, i, Mann-Whitney test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Fig. 3. pH and GPR65 signalling modulates immune responses related to hypertension pathogenesis.

Single cell suspensions were prepared from spleens or kidneys of male mice at the
age of 12 weeks. a, CD8⁺ T cell count in the spleen. b, CD8⁺ T cell count and percentage of CD69⁺ cells from CD8⁺ T cells in the kidney. Splenocytes were isolated from mice at the age of 8-10 weeks and incubated under either pH 6.5 or pH 7.5 for 30 min. c, Levels of cAMP in the cell lysate extracts. 1×10⁶ splenocytes were incubated with 100ng/ml PMA and 1μg/ml ionomycin for 2 hours. d, Representative histogram of pCREB (Ser133) levels of CD8⁺ T cells and bar plot of pCREB (Ser133) levels of CD8⁺ T cells. 1×10⁶ splenocytes were incubated with 100ng/ml PMA and 1μg/ml ionomycin for 4 hours.1×10⁶ splenocytes were incubated with 100ng/ml PMA and 1μg/ml ionomycin for 4 hours. e, Representative pseudocolor plots for IFNγ producing WT and Gpr65⁻/⁻ CD8⁺ T cells at pH 6.5 and 7.5 (Gated from CD8⁺ T cells). f, Percentage of IFNγ producing CD8⁺ T cells at pH 6.5 and 7.5 among WT and Gpr65⁻/⁻ CD8⁺ T cells. g, Representative pseudocolor plots for TNFα producing WT and Gpr65⁻/⁻ CD8⁺ T cells at pH 6.5 and 7.5 (Gated from CD8⁺ T cells). h, Percentage of TNFα producing CD8⁺ T cells at pH 6.5 and 7.5 among WT and Gpr65⁻/⁻ CD8⁺ T cells. i, Graphic summary of how pH regulates inflammatory responses contributing to hypertension in CD8⁺ T cells. Created with BioRender.com. Each data point
represents an individual mouse, and n=4-9 mice in each group; All data represented as

means ± SEM. a, b, Student’s t test. c, f, h, Two-way ANOVA. *P<0.05, ***P<0.001, ***P<0.0001.
Fig. 4. Deficiency of GPR65 decreased the cardiac protective effects of dietary fibre.

6-week-old male WT and Gpr65−/− were infused with 0.5mg/kg body weight/day angiotensin-II for 28 days and fed with either HF or LF diet. a, The experiment design. b, Systolic BP profile over 4 weeks of infusion; c, Diastolic BP profile over 4 weeks of infusion; d, Mean arterial pressure profile over 4 weeks of infusion; e, Heart weight to tibia length index; Cardiac ultrasound scanning was performed at the week...
4 of infusion. f, Left ventricle posterior wall in the diastole; g, Cardiac ejection fraction; h, Cardiac fractional shortening; Heart sections were stained with Masson’s trichrome. i, Percentage of fibrotic area in the cardiac tissues. j, Representative heart sections; For upper panels, magnification = ×10, scale bar = 1mm; For lower left panels (interstitial), magnification = ×200, scale bar = 50μm; For lower right panels (perivascular), magnification = ×100, scale bar = 100μm. Each data point represents an individual mouse, and n=8-11 mice in each group; All data represented as means ± SEM. Two-way ANOVA. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
Figure 5. Deficiency of GPR65 impaired renal function and promoted renal inflammation post-hypertensive stimuli in mice fed with high fibre diet.

Kidneys were collected at the endpoint of the study. a, Kidney weight to tibia length index; Kidney sections were stained with Masson’s trichrome. b, Percentage of fibrotic area in the renal tissues. c, Representative kidney sections; For left panels, magnification= ×5, scale bar = 2mm; For right panels, magnification = ×200, scale bar = 50μm. Mice were intraperitoneally injected with 10% of their body weight of
37 °C 0.9% saline solution at the 3rd week post minipump implantation. d, Renal diuretic functions measured by accumulated water excretion at the 5th hour post injection. e, Renal natriuretic functions measured accumulated sodium excretion at the 5th hour post injection. Single cell suspensions were prepared from kidneys of the mice at the endpoint of the study. f, CD45+ immune cell count; g, CD8+ T cell count; h, γδ T cell count; i, CCR6+ γδ T cell count; j, Macrophage/Monocyte count; k, Ly6C− Macrophage/Monocyte count; l, Ly6C+ Macrophage/Monocyte count. Each data point represents an individual mouse, and n=6-11 mice in each group; All data represented as means ± SEM. Two-way ANOVA. *P<0.05, **P<0.01, ***P<0.001.
Fig. 6. The intraluminal pH profile within the colon of normotensive and hypertensive participants.

a, Recruitment summary. Out of 91 expressions of interest, 55 participants have finished the trial so far. GI, gastrointestinal; COVID, coronavirus disease; BMI, body mass index; BP, blood pressure. The demographic summary and the relevant clinical information collected at the initial screening is in Extended Data Table 1. b, Daily total dietary fibre intake. c-e, Correlations of daily total dietary fibre intake with colon minimum, median and maximum pH generated by the SmartPill™, showing that fibre intake affected the colonic minimum pH the most. f, Colon minimum pH, g, colon median pH, and h, colon maximum pH in normotensive (n=15) versus hypertensive participants (n=40). i, Graphic scheme of regional pH profile in colon and respective bacterial activity, short-chain fatty acids (SCFAs) concentration. Adapted from 9,55 (Created with BioRender.com). j, Regional pH profile in the pHibre cohort generated by the SmartPill™. k, Correlations of colon minimum pH with luminal pH in different quartiles of colon. Each data point represents an individual participant. All data represented as mean ± SEM; P-values from correlations, one-way ANOVA, or regression analysis adjusted for sex, age and BMI (n=55).