Supplementary Material for

An Agent-Based Model of Monocyte Differentiation into Tumour-Associated Macrophages in Chronic Lymphocytic Leukemia

Nina Verstraete^{a,b}, Malvina Marku^{a,b}, Marcin Domagala^{a,b}, Hélène Arduin^{a,b}, Julie Bordenave^{a,b}, Jean-Jacques Fournié^{a,b}, Loïc Ysebaert^{a,b,d}, Mary Poupot^{a,b}, and Vera Pancaldi^{a,b,c}

^a INSERM, Cancer Research Center of Toulouse, 2 Avenue Hubert Curien, 31037, CEDEX 1 Toulouse, France; ^b Université Toulouse-III Paul Sabatier, Route de Narbonne, 31330 Toulouse, France; ^cBarcelona Supercomputing Center, Carrer de Jordi Girona, 29, 31, 08034 Barcelona, Spain; ^d Service d'Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopole, 31330 Toulouse, France

Agent	Class	Parameters		Definition	Exploration ranges and	Units
		Full names	Abbreviated names		steps	
Cancer cell	NeedSignal	Shape parameter of the Gamma distribution setting NeedSignal cell life at initialization	$ns_{\Gamma \alpha}^{life-init}$	Life expectancy at initialization, according to a Gamma distribution using this shape parameter	[0.01:1], 10 ⁻¹⁵	hours
		Rate parameter of the Gamma distribution setting NeedSignal cell life at initialization	$ns_{\Gamma\beta}^{life-init}$	Life expectancy at initialization, according to a Gamma distribution using this rate parameter	[50:2500], 1	hours
		NeedSignal cell movement probability	ns _{mp}	Probability expressed as a percentage that a NeedSignal cancer cell will move at each time step	[0:100], 10	%
		NeedSignal cell sensing distance to NLCs	ns _{sd}	Perception radius within which a NeedSignal cancer cell will detect a NLC	[1:3], 1	patches
	Apoptotic	Apoptotic cell movement probability	apo _{mp}	Probability expressed as a percentage that an Apoptotic cancer cell will move at each time step	[0:100], 10	%
Myeloid cell	Monocyte	Monocyte phagocytosis efficiency	mono _{_{φeff}}	Probability expressed as a percentage that a Monocyte will phagocytose an Apoptotic or Dead cancer cell within its perception radius	[0:100], 1	%
		Standard deviation parameter of the Normal distribution setting Monocyte differentiation status at initialization	mono ^{diff} _{No}	Differentiation status of monocytes toward macrophages at initialization according to a Normal distribution with this standard deviation parameter	[0:48], 1	hours
		Monocyte differentiation threshold	monothreshold	Hours required for a Monocyte to differentiate into a Macrophage	[48:72], 1	hours
		Monocyte sensing distance to Dead and Apoptotic cancer cells	mono _{sd}	Perception radius within which a Monocyte can detect a Dead or Apoptotic cancer cell	[1:3], 1	patches
	Macrophage	Macrophage phagocytosis efficiency	macro _{çeff}	Probability expressed as a percentage that a Macrophage will phagocytose an Apoptotic or Dead cancer cell within its perception radius	[0:100], 1	%
		Macrophage killing efficiency	macro _{keff}	Probability expressed as a percentage that a Macrophage will kill a NeedSignal cancer cell within its perception radius	[0:5], 1	%
		Mean parameter of the Normal distribution setting Macrophage polarization status at instantiation	macro ^{nic-pol}	Polarization status toward NLC at instantiation, according to a Normal distribution with this mean parameter	[50:100], 1	hours
		Standard deviation parameter of the Normal distribution setting Macrophage polarization status at instantiation	macro _{No}	Polarization status toward NLC at instantiation, according to a Normal distribution with this standard deviation parameter	[0:50], 1	hours
		Macrophage sensing distance to Dead and Apoptotic cancer cells	macro _{sd}	Perception radius within which a Macrophage can detect a cancer cell	[1:3], 1	patches
	NLC	NLC phagocytosis efficiency	nlc _{_{peff}}	Probability expressed as a percentage that a NLC will phagocytose an Apoptotic or Dead cancer cell within its perception radius	[0:100], 1	%
		Level of protective effect from the anti apoptotic signals	anti-apo _{boost}	Life increment the cancer cells receive from NLCs when they capture the anti-apoptotic signals	[0:50], 1	hours
		Number of layers around NLCs	layers _{nic}	Layers of patches of cancer cells gathered around NLCs	[1:3], 1	N/A
		NLC sensing distance to Dead and Apoptotic cancer cells	nlc _{sd}	Perception radius within which a NLC can detect a Dead or Apoptotic cancer cell	[1:3], 1	patches
		NLC threshold	nic _{threshold}	Hours during which a Macrophage has been in contact with at least one NeedSignal or Apoptotic cancer cell, representing the threshold for macrophage-to-NLC conversion	[100:150], 1	hours

Patient	Initial monocyte proportion (%)	Initial apoptotic CLL cell proportion (%)		
Patient 1	1.04	1.7		
Patient 2	3.48	2.39		
Patient 3	1.1	20.9		
Patient 4	1.25	7.8		
Patient 5	0.21	2.06		
Patient 6	2.5	3.1		
Patient 7	0.68	0.0		
Patient 8	0.34	2.0		
Patient 9	0.95	1.0		

Table 2. Patient-specific initial monocyte and apoptotic cell proportions.

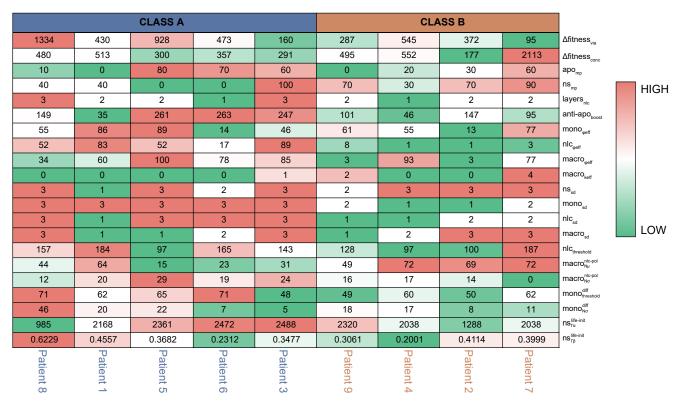


Table 3. Patient-specific knee-point parameter sets and fitness scores. Color scales were applied on each row independently.

А						В					
	general model		patient-specific model				general model		patient-specific model		
patient	NRMSE_via	NRMSE_conc	NRMSE_via	NRMSE_conc		patient	R²_via	R ² _conc	R²_via	R ² _conc	
1	1.09	0.72	0.54	0.62		1	-6.73	-2.64	-0.91	-1.7	
2	0.62	0.7	0.19	0.09		2	-4.09	-4.67	0.52	0.9	
3	0.54	0.2	0.13	0.18		3	-1.17	0.8	0.88	0.83	
4	0.41	0.18	0.19	0.29	HIGH	4	-0.48	0.71	0.68	0.24	HIGH
5	0.79	0.47	0.31	0.12		5	-7.34	-1.68	-0.24	0.83	
6	0.4	0.25	0.14	0.22		6	-0.25	0.58	0.85	0.68	
7	1.24	0.35	0.22	0.07		7	-11.86	0.13	0.58	0.96	
8	0.78	0.32	0.39	0.28		8	-4.77	0.05	-0.43	0.28	
9	0.09	0.18	0.19	0.06	LOW	9	0.88	0.56	0.5	0.95	LOW

Table 4. General model and patient-specific models performance scores. A) NRMSE. B) R². Color scales are adapted to reflect good scores in green, i.e. values of R² approaching one and values of NRMSE close to zero indicating a good performance of the model. Color scales were applied on each row independently.

	Patient 9	Patient 8	Patient 5	Patient 2
CD64	1.00	0.36	0.23	0.51
CD86	0.30	1.00	0.25	0.71
CD14	0.45	0.71	1.00	0.15
CD163	0.38	0.69	1.00	0.18
Sum(M1_markers)	1.30	1.36	0.48	1.22
Sum(M2_markers)	0.83	1.40	2.00	0.33
M1/M2	1.57	0.97	0.24	3.67
molecular profiling	M1	M2	M2	M1
unsupervised profiling	M1	M2	M2	M1

Table 5. Macrophages profiling by FACS. Macrophages were sampled from PBMC autologous cultures on Day 8. CD64 and CD86 were used as M1 markers and CD14 and CD163 were used as M2 markers. Each marker expression data was scaled using the maximum absolute scaling method. Sum of M1 markers and sum M2 markers were then calculated and their ratio was used to estimate the dominant macrophage phenotype. A M1/M2 ratio higher than 1 was associated with M1-like macrophages, while a ratio less than 1 was associated with M2-like macrophages.

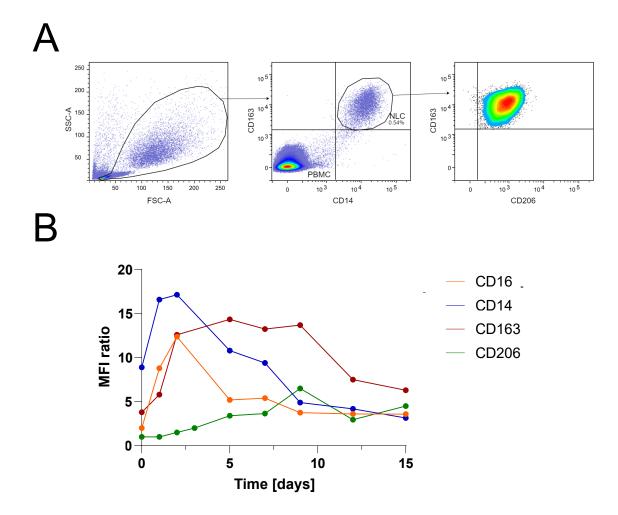


Fig. S1. Kinetics of myeloid marker expression during monocyte-to-NLC differentiation in CLL PBMC in vitro culture. A) Gating strategy NLCs were identified based on the co-expression of CD14 and CD163 markers. B) Evolution of myeloid marker expressions. Expressions were represented as MFI (median fluorescence intensity) ratio between the signal of specific antibody and corresponding isotype control, as measured by flow cytometry. Graph represents mean values from 2 independent donors. CD14 and CD16 are typically used to characterize monocyte subsets (1), while CD163 and CD206 are common macrophages M2 markers (2).

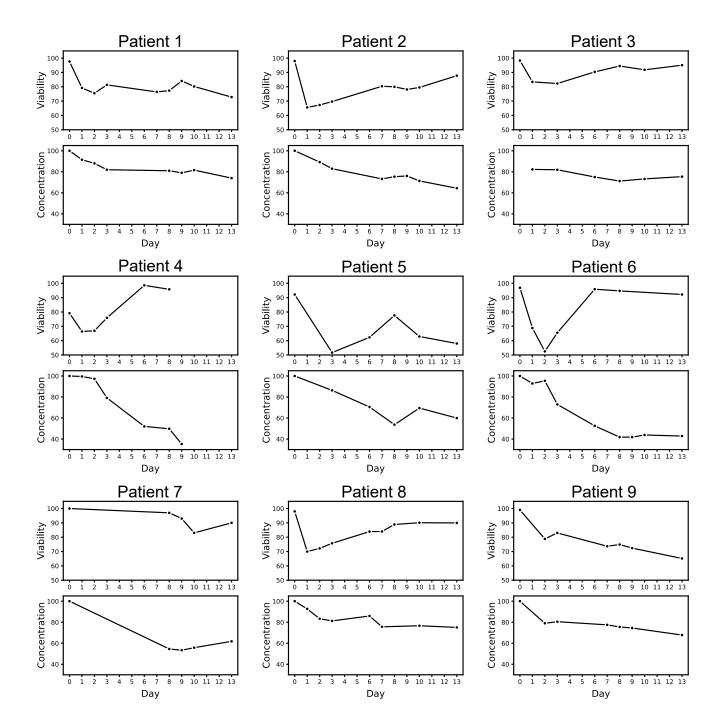


Fig. S2. Time course datasets produced from the PBMC autologous cultures. CLL cell survival was monitored by viability assay and concentration measurements at the indicated time points for each patient (dots).

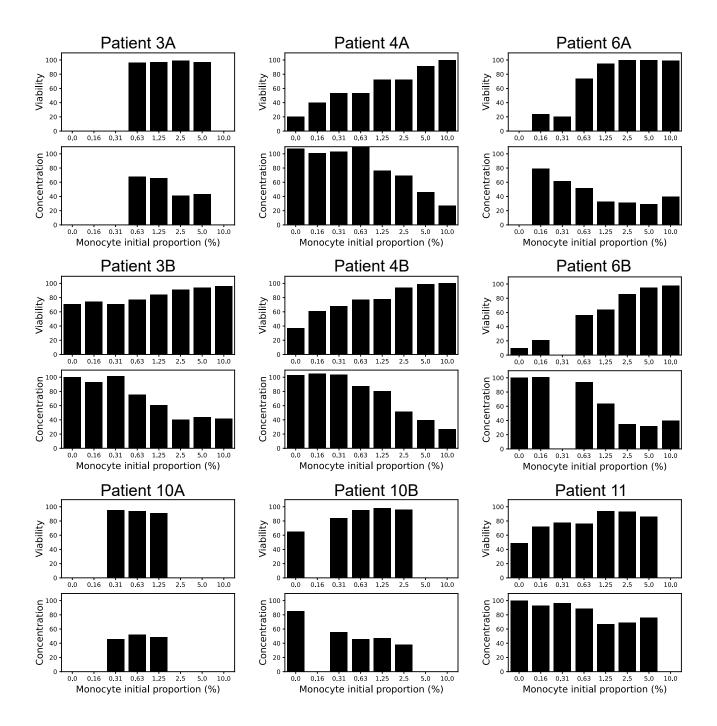


Fig. S3. Heterologous co-cultures. Monocytes from healthy donors (represented by the letters A or B) and B cells from CLL patients were co-cultured to assess the relationship between the initial density of monocytes and the level or survival of CLL cells after 9 days. The x-axis displays different monocytes initial proportions (not to scale for clarity).

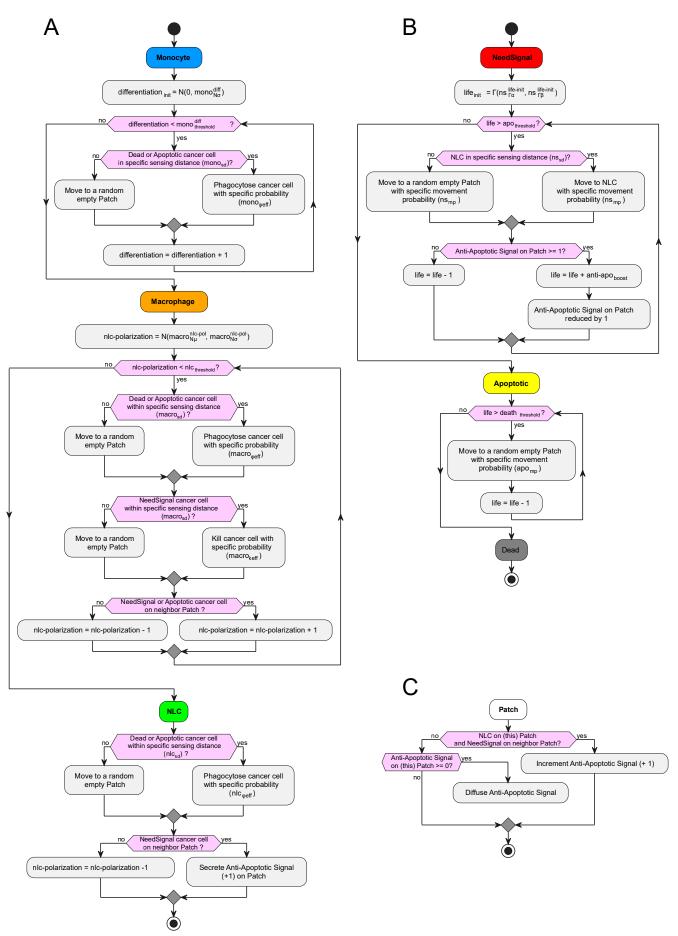


Fig. S4. UML class diagrams for A) myeloid cells, B) CLL cells, and C) patches.

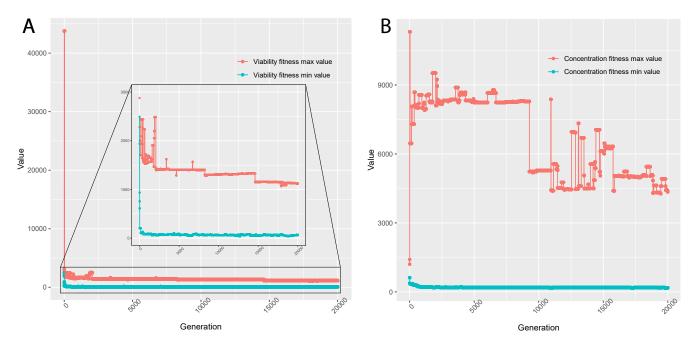


Fig. S5. Minimal and maximal values of fitnesses along 20'000 generations. A) Viability fitness evolution. B) Concentration fitness evolution.

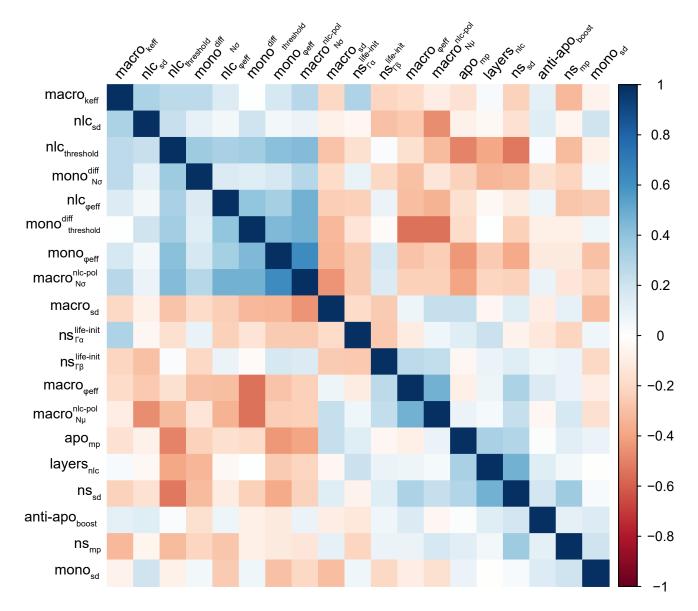


Fig. S6. Pearson correlation coefficients between model parameters. Parameters are clustered according to a complete method.

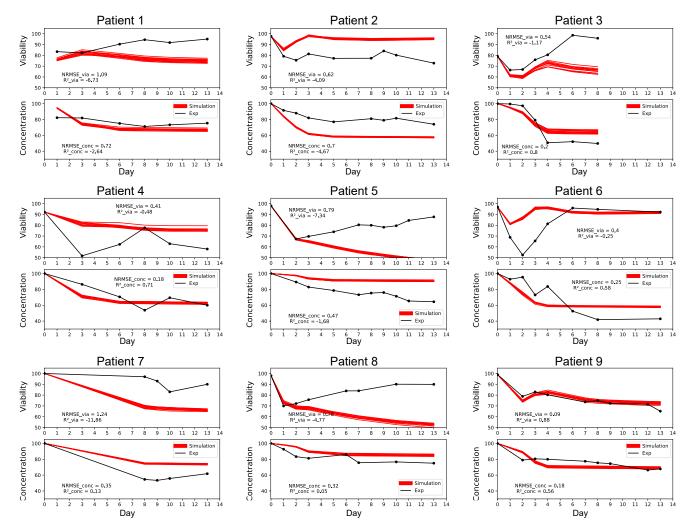


Fig. S7. General model fitting to patient-specific dynamics. 12 simulations were run with the knee-point set of parameters and compared with patient-specific viability and concentration observed experimentally setting the initial monocyte proportion to the specific percentage of monocytes and initial apoptotic cells proportions measured in each patient (Cf. Supplementary Table 2). Simulations are depicted in red and experimental data for the corresponding patient in black.

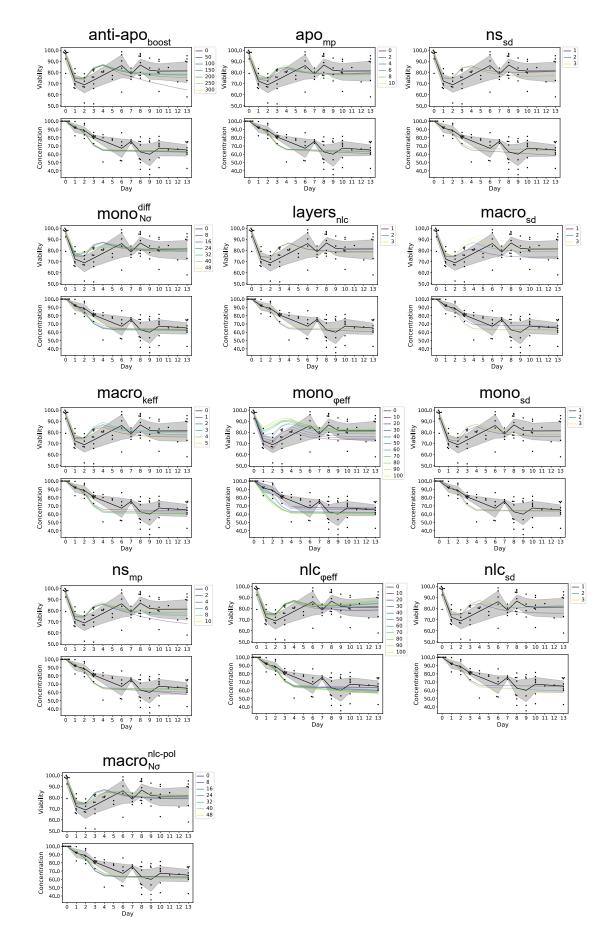


Fig. S8. Parameter sensitivity analysis. The analysis was performed on the remaining 13 parameters for which the absolute value of the correlation coefficient to the fitness on viability and fitness on concentration were below 0.4.

- 1 1. Lisa B Boyette, Camila Macedo, Kevin Hadi, Beth D Elinoff, John T Walters, Bala Ramaswami, Geetha Chalasani, Juan M Taboas, Fadi G Lakkis, and Diana M Metes. Phenotype, function, and
- 2 differentiation potential of human monocyte subsets. *PloS one*, 12(4):e0176460, 2017.
- 3 2. Sonia Boulakirba, Anja Pfeifer, Rana Mhaidly, Sandrine Obba, Michael Goulard, Thomas Schmitt, Paul Chaintreuil, Anne Calleja, Nathan Furstoss, François Orange, et al. II-34 and csf-1 display an
- 4 equivalent macrophage differentiation ability but a different polarization potential. *Scientific reports*, 8(1):1–11, 2018.