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Figure 1. Presented images (red box, top row) and images reconstructed from fMRI signals (gray box, bottom row) for one subject (subj01).

Abstract

Reconstructing visual experiences from human brain ac-
tivity offers a unique way to understand how the brain rep-
resents the world, and to interpret the connection between
computer vision models and our visual system. While deep
generative models have recently been employed for this
task, reconstructing realistic images with high semantic fi-
delity is still a challenging problem. Here, we propose a
new method based on a diffusion model (DM) to recon-
struct images from human brain activity obtained via func-
tional magnetic resonance imaging (fMRI). More specifi-
cally, we rely on a latent diffusion model (LDM) termed
Stable Diffusion. This model reduces the computational
cost of DMs, while preserving their high generative perfor-
mance. We also characterize the inner mechanisms of the
LDM by studying how its different components (such as the
latent vector of image Z, conditioning inputs C, and differ-
ent elements of the denoising U-Net) relate to distinct brain
functions. We show that our proposed method can recon-
struct high-resolution images with high fidelity in straight-
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forward fashion, without the need for any additional train-
ing and fine-tuning of complex deep-learning models. We
also provide a quantitative interpretation of different LDM
components from a neuroscientific perspective. Overall, our
study proposes a promising method for reconstructing im-
ages from human brain activity, and provides a new frame-
work for understanding DMs. Please check out our web-
page at this https URL.

1. Introduction
A fundamental goal of computer vision is to construct

artificial systems that see and recognize the world as hu-
man visual systems do. Recent developments in the mea-
surement of population brain activity, combined with ad-
vances in the implementation and design of deep neu-
ral network models, have allowed direct comparisons be-
tween latent representations in biological brains and ar-
chitectural characteristics of artificial networks, providing
important insights into how these systems operate [3, 8–
10, 13, 18, 19, 21, 42, 43, 54, 55]. These efforts have in-
cluded the reconstruction of visual experiences (percep-
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tion or imagery) from brain activity, and the examination
of potential correspondences between the computational
processes associated with biological and artificial systems
[2, 5, 7, 24, 25, 27, 36, 44–46].

Reconstructing visual images from brain activity, such
as that measured by functional Magnetic Resonance Imag-
ing (fMRI), is an intriguing but challenging problem, be-
cause the underlying representations in the brain are largely
unknown, and the sample size typically associated with
brain data is relatively small [17, 26, 30, 32]. In recent
years, researchers have started addressing this task using
deep-learning models and algorithms, including generative
adversarial networks (GANs) and self-supervised learning
[2, 5, 7, 24, 25, 27, 36, 44–46]. Additionally, more recent
studies have increased semantic fidelity by explicitly using
the semantic content of images as auxiliary inputs for re-
construction [5, 25]. However, these studies require train-
ing new generative models with fMRI data from scratch, or
fine-tuning toward the specific stimuli used in the fMRI ex-
periment. These efforts have shown impressive but limited
success in pixel-wise and semantic fidelity, partly because
the number of samples in neuroscience is small, and partly
because learning complex generative models poses numer-
ous challenges.

Diffusion models (DMs) [11,47,48,53] are deep genera-
tive models that have been gaining attention in recent years.
DMs have achieved state-of-the-art performance in several
tasks involving conditional image generation [4,39,49], im-
age super resolution [40], image colorization [38], and other
related tasks [6, 16, 33, 41]. In addition, recently proposed
latent diffusion models (LDMs) [37] have further reduced
computational costs by utilizing the latent space generated
by their autoencoding component, enabling more efficient
computations in the training and inference phases. An-
other advantage of LDMs is their ability to generate high-
resolution images with high semantic fidelity. However, be-
cause LDMs have been introduced only recently, we still
lack a satisfactory understanding of their internal mecha-
nisms. Specifically, we still need to discover how they rep-
resent latent signals within each layer of DMs, how the la-
tent representation changes throughout the denoising pro-
cess, and how adding noise affects conditional image gen-
eration.

Here, we attempt to tackle the above challenges by re-
constructing visual images from fMRI signals using an
LDM named Stable Diffusion. This architecture is trained
on a large dataset and carries high text-to-image genera-
tive performance. We show that our simple framework can
reconstruct high-resolution images with high semantic fi-
delity without any training or fine-tuning of complex deep-
learning models. We also provide biological interpretations
of each component of the LDM, including forward/reverse
diffusion processes, U-Net, and latent representations with

different noise levels.

Our contributions are as follows: (i) We demonstrate
that our simple framework can reconstruct high-resolution
(512 ⇥ 512) images from brain activity with high seman-
tic fidelity, without the need for training or fine-tuning of
complex deep generative models (Figure 1); (ii) We quan-
titatively interpret each component of an LDM from a neu-
roscience perspective, by mapping specific components to
distinct brain regions; (iii) We present an objective interpre-
tation of how the text-to-image conversion process imple-
mented by an LDM incorporates the semantic information
expressed by the conditional text, while at the same time
maintaining the appearance of the original image.

2. Related Work

2.1. Reconstructing visual image from fMRI

Decoding visual experiences from fMRI activity has
been studied in various modalities. Examples include ex-
plicitly presented visual stimuli [17, 26, 30, 32], semantic
content of the presented stimuli [15, 31, 52], imagined con-
tent [13, 29], perceived emotions [12, 20, 51], and many
other related applications [14, 28]. In general, these decod-
ing tasks are made difficult by the low signal-to-noise ratio
and the relatively small sample size associated with fMRI
data.

While early attempts have used handcrafted features to
reconstruct visual images from fMRI [17,26,30,32], recent
studies have begun to use deep generative models trained on
a large number of naturalistic images [2, 5, 7, 24, 25, 27, 36,
44–46]. Additionally, a few studies have used semantic in-
formation associated with the images, including categorical
or text information, to increase the semantic fidelity of the
reconstructed images [5, 25]. To produce high-resolution
reconstructions, these studies require training and possibly
fine-tuning of generative models, such as GANs, with the
same dataset used in the fMRI experiments. These require-
ments impose serious limitations, because training complex
generative models is in general challenging, and the num-
ber of samples in neuroscience is relatively small. Thus,
even modern implementations struggle to produce images,
at most 256 ⇥ 256 resolution, with high semantic fidelity
unless they are augmented with numerous tools and tech-
niques. DMs and LDMs are recent algorithms for image
generation that could potentially address these limitations,
thanks to their ability to generate diverse high-resolution
images with high semantic fidelity of text-conditioning, and
high computational efficiency. However, to the best of our
knowledge, no prior studies have used DMs for visual re-
construction.
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2.2. Encoding Models
To understand deep-learning models from a biological

perspective, neuroscientists have employed encoding mod-
els: a predictive model of brain activity is built out of
features extracted from different components of the deep-
learning models, followed by examination of the poten-
tial link between model representations and corresponding
brain processes [3, 8–10, 13, 18, 19, 21, 42, 43, 54, 55]. Be-
cause brains and deep-learning models share similar goals
(e.g., recognition of the world) and thus could implement
similar functions, the ability to establish connections be-
tween these two structures provides us with biological in-
terpretations of the architecture underlying deep-learning
models, otherwise viewed as black boxes. For example,
the activation patterns observed within early and late layers
of a CNN correspond to the neural activity patterns mea-
sured from early and late layers of visual cortex, suggest-
ing the existence of a hierarchical correspondence between
latent representations of a CNN and those present in the
brain [9, 10, 13, 19, 54, 55]. This approach has been ap-
plied primarily to vision science, but it has recently been
extended to other sensory modalities and higher functions
[3, 8, 18, 21, 42, 43].

Compared with biologically inspired architectures such
as CNNs, the correspondence between DMs and the brain
is less obvious. By examining the relationship between each
component and process of DMs and corresponding brain ac-
tivities, we were able to obtain biological interpretations of
DMs, for example in terms of how latent vectors, denois-
ing processes, conditioning operations, and U-net compo-
nents may correspond to our visual streams. To our knowl-
edge, no prior study has investigated the relationship be-
tween DMs and the brain.

Together, our overarching goal is to use DMs for high
resolution visual reconstruction and to use brain encoding
framework to better understand the underlying mechanisms
of DMs and its correspondence to the brain.

3. Methods
Figure 2 presents an overview of our methods.

3.1. Dataset
We used the Natural Scenes Dataset (NSD) for this

project [1]. Please visit the NSD website for more de-
tails 1. Briefly, NSD provides data acquired from a 7-Tesla
fMRI scanner over 30–40 sessions during which each sub-
ject viewed three repetitions of 10,000 images. We ana-
lyzed data for four of the eight subjects who completed all
imaging sessions (subj01, subj02, subj05, and subj07). The
images used in the NSD experiments were retrieved from
MS COCO and cropped to 425⇥ 425 (if needed). We used

1http://naturalscenesdataset.org/
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Figure 2. Overview of our methods. (Top) Schematic of LDM
used in this study. ✏ denotes an image encoder, D is a im-
age decoder, and ⌧ is a text encoder (CLIP). (Middle) Schematic
of decoding analysis. We decoded latent representations of the
presented image (z) and associated text c from fMRI signals
within early (blue) and higher (yellow) visual cortices, respec-
tively. These latent representations were used as input to produce a
reconstructed image Xzc. (Bottom) Schematic of encoding anal-
ysis. We built encoding models to predict fMRI signals from dif-
ferent components of LDM, including z, c, and zc.

27,750 trials from NSD for each subject (2,250 trials out of
the total 30,000 trials were not publicly released by NSD).
For a subset of those trials (N=2,770 trials), 982 images
were viewed by all four subjects. Those trials were used
as the test dataset, while the remaining trials (N=24,980)
were used as the training dataset.

For functional data, we used the preprocessed scans (res-
olution of 1.8 mm) provided by NSD. See Appendix A for
details of the preprocessing protocol. We used single-trial
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beta weights estimated from generalized linear models and
region of interests (ROIs) for early and higher (ventral) vi-
sual regions provided by NSD. For the test dataset, we used
the average of the three trials associated with each image.
For the training dataset, we used the three separate trials
without averaging.

3.2. Latent Diffusion Models
DMs are probabilistic generative models that restore a

sampled variable from Gaussian noise to a sample of the
learned data distribution via iterative denoising. Given
training data, the diffusion process destroys the structure of
the data by gradually adding Gaussian noise. The sample
at each time point is defined as xt =

p
↵tx0 +

p
1� ↵t✏t

where xt is a noisy version of input x0, t 2 {1, ..., T},
↵ is a hyperparameter, and ✏ is the Gaussian. The inverse
diffusion process is modeled by applying a neural network
f✓(xt, t) to the samples at each step to recover the origi-
nal input. The learning objective is f✓(x, t) t ✏t [11, 47].
U-Net is commonly used for neural networks f✓.

This method can be generalized to learning conditional
distributions by inserting auxiliary input c into the neural
network. If we set the latent representation of the text se-
quence to c, it can implement text-to-image models. Recent
studies have shown that, by using large language and image
models, DMs can create realistic, high-resolution images
from text inputs. Furthermore, when we start from source
image with input texts, we can generate new text conditional
images by editing the image. In this image-to-image trans-
lation, the degree of degradation from the original image is
controlled by a parameter that can be adjusted to preserve
either the semantic content or the appearance of the original
image.

DMs that operate in pixel space are computationally ex-
pensive. LDMs overcome this limitation by compressing
the input using an autoencoder (Figure 2, top). Specifi-
cally, the autoencoder is first trained with image data, and
the diffusion model is trained to generate its latent repre-
sentation z using a U-Net architecture. In doing so, it refers
to conditional inputs via cross-attention. This allows for
lightweight inference compared with pixel-based DMs, and
for very high-quality text-to-image and image-to-image im-
plementations.

In this study, we used an LDM called Stable Diffu-
sion, which was built on LDMs and trained on a very large
dataset. The model can generate and modify images based
on text input. Text input is projected to a fixed latent repre-
sentation by a pretrained text encoder (CLIP) [34]. We used
version 1.4 of the model. See Appendix A for details on the
training protocol.

We define z as the latent representation of the original
image compressed by the autoencoder, c as the latent rep-
resentation of texts (average of five text annotations asso-

ciated to each MS COCO image), and zc as the generated
latent representation of z modified by the model with c. We
used these representations in the decoding/encoding models
described below.

3.3. Decoding: reconstructing images from fMRI

We performed visual reconstruction from fMRI signals
using LDM in three simple steps as follows (Figure 2, mid-
dle). The only training required in our method is to con-
struct linear models that map fMRI signals to each LDM
component, and no training or fine-tuning of deep-learning
models is needed. We used the default parameters of image-
to-image and text-to-image codes provided by the authors of
LDM 2, including the parameters used for the DDIM sam-
pler. See Appendix A for details.

(i) First, we predicted a latent representation z of the
presented image X from fMRI signals within early visual
cortex. z was then processed by an decoder of autoen-
coder to produce a coarse decoded image Xz with a size
of 320⇥ 320, and then resized it to 512⇥ 512.

(ii) Xz was then processed by encoder of autoencoder,
then added noise through the diffusion process.

(iii) We decoded latent text representations c from fMRI
signals within higher (ventral) visual cortex. Noise-added
latent representations zT of the coarse image and decoded
c were used as input to the denoising U-Net to produce zc.
Finally, zc was used as input to the decoding module of
the autoencoder to produce a final reconstructed image Xzc

with a size of 512⇥ 512.
To construct models from fMRI to the components of

LDM, we used L2-regularized linear regression, and all
models were built on a per subject basis. Weights were
estimated from training data, and regularization parame-
ters were explored during the training using 5-fold cross-
validation. We resized original images from 425 ⇥ 425 to
320 ⇥ 320 but confirmed that resizing them to a larger size
(448⇥ 448) does not affect the quality of reconstruction.

As control analyses, we also generated images using
only z or c. To generate these control images, we simply
omitted c or z from step (iii) above, respectively.

The accuracy of image reconstruction was evaluated ob-
jectively (perceptual similarity metrics, PSMs) and subjec-
tively (human raters, N=6) by assessing whether the origi-
nal test images (N=982 images) could be identified from the
generated images. As a similarity metrics of PSMs, we used
early/middle/late layers of CLIP and CNN (AlexNet) [22].
Briefly, we conducted two-way identification experiments:
examined whether the image reconstructed from fMRI was
more similar to the corresponding original image than ran-
domly picked reconstructed image. See Appendix B for de-
tails and additional results.

2https://github.com/CompVis/stable-diffusion/blob/main/scripts/
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3.4. Encoding: Whole-brain Voxel-wise Modeling

Next, we tried to interpret the internal operations of
LDMs by mapping them to brain activity. For this purpose,
we constructed whole-brain voxel-wise encoding models
for the following four settings (see Figure 2 bottom and Ap-
pendix A for implementation details):

(i) We first built linear models to predict voxel activity
from the following three latent representations of the LDM
independently: z, c, and zc.

(ii) Although zc and z produce different images, they
result in similar prediction maps on the cortex (see 4.2.1).
Therefore, we incorporated them into a single model, and
further examined how they differ by mapping the unique
variance explained by each feature onto cortex [23]. To
control the balance between the appearance of the original
image and the semantic fidelity of the conditional text, we
varied the level of noise added to z. This analysis enabled
quantitative interpretation of the image-to-image process.

(iii) While LDMs are characterized as an iterative de-
noising process, the internal dynamics of the denoising pro-
cess are poorly understood. To gain some insight into this
process, we examined how zc changes through the denois-
ing process. To do so, we extracted zc from the early, mid-
dle, and late steps of the denoising. We then constructed
combined models with z as in the above analysis (ii), and
mapped their unique variance onto cortex.

(iv) Finally, to inspect the last black box associated with
LDMs, we extracted features from different layers of U-Net.
For different steps of the denoising, encoding models were
constructed independently with different U-Net layers: two
from the first stage, one from the bottleneck stage, and two
from the second stage. We then identified the layer with
highest accuracy for each voxel and for each step.

Model weights were estimated from training data using
L2-regularized linear regression, and subsequently applied
to test data (see Appendix A for details). For evaluation, we
used Pearson’s correlation coefficients between predicted
and measured fMRI signals. We computed statistical sig-
nificance (one-sided) by comparing the estimated correla-
tions to the null distribution of correlations between two
independent Gaussian random vectors of the same length
(N=982). The statistical threshold was set at P < 0.05 and
corrected for multiple comparisons using the FDR proce-
dure. We show results from a single random seed, but we
verified that different random seed produced nearly identi-
cal results (see Appendix C). We reduced all feature dimen-
sions to 6,400 by applying principal component analysis, by
estimating components within training data.

Figure 3. Presented (red box) and reconstructed images for a sin-
gle subject (subj01) using z, c, and zc.

4. Results
4.1. Decoding

Figure 3 shows the results of visual reconstruction for
one subject (subj01). We generated five images for each
test image and selected the generated images with high-
est PSMs. On the one hand, images reconstructed using
only z were visually consistent with the original images,
but failed to capture their semantic content. On the other
hand, images reconstructed using only c generated images
with high semantic fidelity but were visually inconsistent.
Finally, images reconstructed using zc could generate high-
resolution images with high semantic fidelity (see Appendix
B for more examples).

Figure 4 shows reconstructed images from all subjects
for the same image (all images were generated using zc.
Other examples are available in the Appendix B). Overall,
reconstruction quality was stable and accurate across sub-
jects.

We note that, the lack of agreement regarding specific
details of the reconstructed images may differences in per-
ceived experience across subjects, rather than failures of re-
construction. Alternatively it may simply reflect differences
in data quality among subjects. Indeed, subjects with high
(subj01) and low (subj07) decoding accuracy from fMRI
were subjects with high and low data quality metrics, re-
spectively (see Appendix B).

Figure 5 plots results for the quantitative evaluation. In
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Figure 4. Example results for all four subjects.
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Figure 5. Identification accuracy calculated using objective (left)
and subjective (right) criteria (pooled across four subjects; chance
level corresponds to 50%). Error bars indicate standard error of
the mean.

the objective evaluation, images reconstructed using zc are
generally associated with higher accuracy values across dif-
ferent metrics than images reconstructed using only z or c.
When only z was used, accuracy values were particularly
high for PSMs derived from early layers of CLIP and CNN.
On the other hand, when only c was used, accuracy values
were higher for PSMs derived from late layers. In the sub-
jective evaluation, accuracy values of images obtained from
c are higher than those obtained from z, while zc resulted
in the highest accuracy compared with the other two meth-
ods (P < 0.01 for all comparisons, two-sided signed-rank
test, FWE corrected). Together, these results suggest that
our method captures not only low-level visual appearance,
but also high-level semantic content of the original stimuli.

It is difficult to compare our results with those re-
ported by most previous studies, because they used different
datasets. The datasets used in previous studies contain far

fewer images, much less image complexity (typically indi-
vidual objects positioned in the center of the image), and
lack full-text annotations of the kind available from NSD.
Only one study to date [25] used NSD for visual reconstruc-
tion, and they reported accuracy values of 78 ± 4.5% for
one subject (subj01) using PSM based on Inception V3. It
is difficult to draw a direct comparison with this study, be-
cause it differed from ours in several respects (for example,
it used different training and test sample sizes, and differ-
ent image resolutions). Notwithstanding these differences,
their reported values fall within a similar range to ours for
the same subject (77% using CLIP, 83% using AlexNet,
and 76% using Inception V3). However, this prior study
relied on extensive model training and feature engineering
with many more hyper-parameters than those adopted in our
study, including the necessity to train complex generative
models, fine-tuning toward MS COCO, data augmentation,
and arbitrary thresholding of features. We did not use any
of the above techniques — rather, our simple pipeline only
requires the construction of two linear regression models
from fMRI activity to latent representations of LDM.

Furthermore, we observed a reduction in semantic fi-
delity when we used categorical information associated
with the images, rather than full-text annotations for c. We
also found an increase in semantic fidelity when we used se-
mantic maps instead of original images for z, though visual
similarity was decreased in this case (see Appendix B).

4.2. Encoding Model
4.2.1 Comparison among Latent Representations

Figure 6 shows prediction accuracy of the encoding models
for three types of latent representations associated with the
LDM: z, a latent representation of the original image; c,
a latent representation of image text annotation; and zc, a
noise-added latent representation of z after reverse diffusion
process with cross-attention to c.

Although all three components produced high prediction
performance at the back of the brain, visual cortex, they
showed stark contrast. Specifically, z produced high pre-
diction performance in the posterior part of visual cortex,
namely early visual cortex. It also showed significant pre-
diction values in the anterior part of visual cortex, namely
higher visual cortex, but smaller values in other regions. On
the other hand, c produced the highest prediction perfor-
mance in higher visual cortex. The model also showed high
prediction performance across a wide span of cortex. zc car-
ries a representation that is very similar to z, showing high
prediction performance for early visual cortex. Although
this is somewhat predictable given their intrinsic similarity,
it is nevertheless intriguing because these representations
correspond to visually different generated images. We also
observed that using zc with a reduced noise level injected
into z produces a more similar prediction map to the predic-
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Figure 6. Prediction performance (measured using Pearson’s correlation coefficients) for the voxel-wise encoding model applied to held-
out test images in a single subject (subj01), projected onto the inflated (top, lateral and medial views) and flattened cortical surface (bottom,
occipital areas are at the center), for both left and right hemispheres. Brain regions with significant accuracy are colored (all colored voxels
P < 0.05, FDR corrected).

tion map obtained from z, as expected (see Appendix C).
This similarity prompted us to conduct an additional analy-
sis to compare the unique variance explained by these two
models, detailed in the following section. See Appendix C
for results of all subjects.

4.2.2 Comparison across different noise levels

While the previous results showed that prediction accuracy
maps for z and zc present similar profiles, they do not tell us
how much unique variance is explained by each feature as
a function of different noise levels. To enhance our under-
standing of the above issues, we next constructed encoding
models that simultaneously incorporated both z and zc into
a single model, and studied the unique contribution of each
feature. We also varied the level of noise added to z for
generating zc.

Figure 7 shows that, when a small amount of noise was
added, z predicted voxel activity better than zc across cor-
tex. Interestingly, when we increased the level of noise, zc
predicted voxel activity within higher visual cortex better
than z, indicating that the semantic content of the image
was gradually emphasized.

This result is intriguing because, without analyses like
this, we can only observe randomly generated images, and
we cannot examine how the text-conditioned image-to-
image process is able to balance between semantic content
and original visual appearance.

4.2.3 Comparison across different diffusion stages

We next asked how the noise-added latent representation
changes over the iterative denoising process.

Figure 8 shows that, during the early stages of the de-
noising process, z signals dominated prediction of fMRI
signals. During the middle step of the denoising process,

Original Images
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Figure 7. Unique variance accounted for by zc compared with z
in one subject (subj01), obtained by splitting accuracy values from
the combined model. While fixing z, we used zc with varying
amounts of noise-level added to the latent representation of stimuli
from low-level (top) to high-level (bottom). All colored voxels
P < 0.05, FDR corrected.

zc predicted activity within higher visual cortex much bet-
ter than z, indicating that the bulk of the semantic content
emerges at this stage. These results show how LDM refines
and generates images from noise.
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Figure 8. Unique variance accounted for by zc compared with z
in one subject (subj01), obtained by splitting accuracy values from
the combined model. While fixing z, we used zc with different de-
noising stages from early (top) to late (bottom) steps. All colored
voxels P < 0.05, FDR corrected.

4.2.4 Comparison across different U-Net Layers

Finally, we asked what information is being processed at
each layer of U-Net.

Figure 9 shows the results of encoding models for differ-
ent steps of the denoising process (early, middle, late), and
for the different layers of U-Net. During the early phase of
the denoising process, the bottleneck layer of U-Net (col-
ored orange) produces the highest prediction performance
across cortex. However, as denoising progresses, the early
layer of U-Net (colored blue) predicts activity within early
visual cortex, and the bottleneck layer shifts toward superior
predictive power for higher visual cortex.

These results suggest that, at the beginning of the reverse
diffusion process, image information is compressed within
the bottleneck layer. As denoising progresses, a functional
dissociation among U-Net layers emerges within visual cor-
tex: i.e., the first layer tends to represent fine-scale details
in early visual areas, while the bottleneck layer corresponds
to higher-order information in more ventral, semantic areas.

Progress=20%

Progress=66%

Progress=100%

Figure 9. Selective engagement of different U-Net layers for dif-
ferent voxels across the brain. Colors represent the most predictive
U-Net layer for early (top) to late (bottom) denoising steps. All
colored voxels P < 0.05, FDR corrected.

5. Conclusions
We propose a novel visual reconstruction method using

LDMs. We show that our method can reconstruct high-
resolution images with high semantic fidelity from human
brain activity. Unlike previous studies of image reconstruc-
tion, our method does not require training or fine-tuning
of complex deep-learning models: it only requires simple
linear mappings from fMRI to latent representations within
LDMs.

We also provide a quantitative interpretation for the in-
ternal components of the LDM by building encoding mod-
els. For example, we demonstrate the emergence of seman-
tic content throughout the inverse diffusion process, we per-
form layer-wise characterization of U-Net, and we provide
a quantitative interpretation of image-to-image transforma-
tions with different noise levels. Although DMs are devel-
oping rapidly, their internal processes remain poorly under-
stood. This study is the first to provide a quantitative inter-
pretation from a biological perspective.
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Güçlütürk, Marcel van Gerven, and Umut Güçlü. Brain2pix:
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