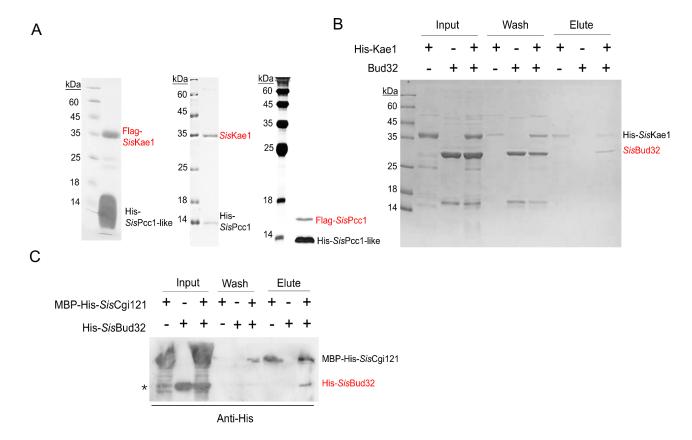
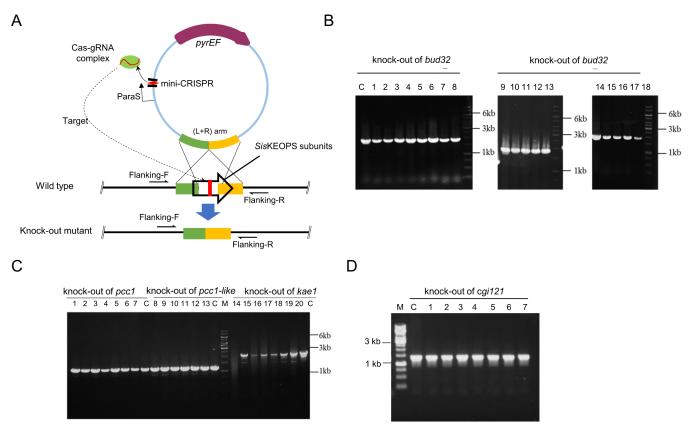
Supplementary information for


The archaeal KEOPS complex possesses a functional Gon7 homolog and has an essential function independent of cellular t⁶A modification level

Pengju Wu, Qi Gan, Xuemei Zhang, Yunfeng Yang, Yuanxi Xiao, Qunxin She, Jinfeng Ni, Qihong Huang[#], Yulong Shen[#]

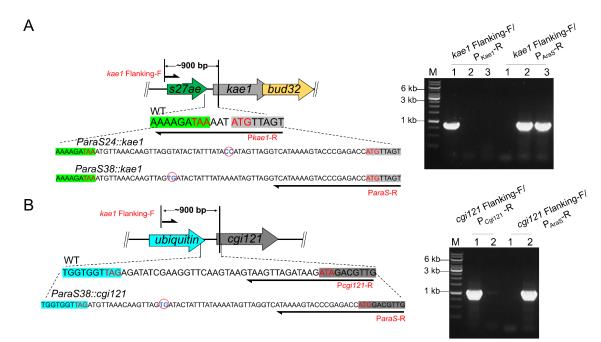
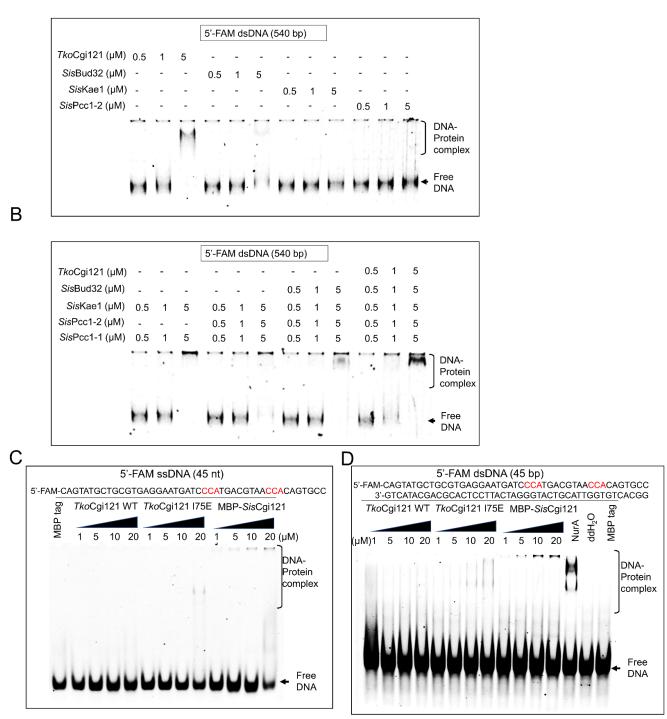

CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial

Technology, Microbial Technology Institute, Shandong University, 266237, Qingdao, China

[#]Correspondence: yulgshen@sdu.edu.cn, huangqihong@sdu.edu.cn

Figure S1. Pair-wise interaction analysis of aKEOPS subunits by pull down. (A) Assay using proteins expressed and purified from *E. coli*. The interactions between *Sis*Kae1 and *Sis*Pcc1-like, *Sis*Kae1 and *Sis*Pcc1, and *Sis*Pcc1 and *Sis*Pcc1-like were verified by the ability to pull down the target proteins (red) with the His-tagged proteins co-expressed. The final eluted samples from Ni-NTA beads were analyzed by SDS-PAGE. (B) *In vitro* pull down assay using purified His-*Sis*Kae1 as a bait and non-tagged *Sis*Bud32 as a prey. The samples were analyzed by SDS-PAGE and Coomassie blue staining. (C) *In vitro* pull down assay using MBP-His-*Sis*Cgi121 as a bait and His-*Sis*Bud32 with amylose resin. The samples were analyzed by Western blotting. In (B) and (C), all the proteins were expressed in *E. coli* individually and purified by affinity chromatography. The asterisk indicates a non-specific band in the MBP-His-SisCgi121 sample that cannot bind to amylose resin.

Figure S2. PCR analysis of the colonies obtained in the *Sis***KEOPS gene knock-out experiments. (A)** Schematic of the gene knock-out strategy. (B) Screening for *bud32* knock-out colonies. (C) Screening for *pcc1, pcc1-like,* and *kae1* knock-out colonies (D) Screening for *cgi121* knock-out colonies. M, molecular size marker. C, control (E233S). The numbers indicate colonies picked from the plates after transformation.

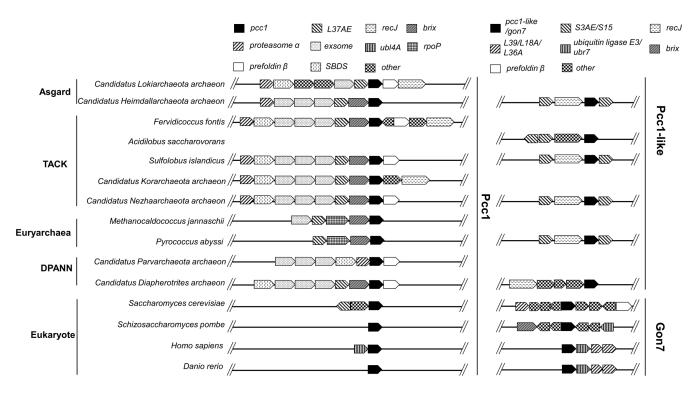

Figure S3. Confirmation of protein expression of TmTsaB/C/D/E in the overexpression strains of E233S and verification of the insertion of *TmTsaB/C/D/E* in TsaKI. (A) Western blotting analysis of strains over expressing each of TmTsaB/TsaC/TsaD/TsaE with C terminal His-tag (left) using the shuttle vector pSeGP. About 2.5×10^8 cells were collected. Purified His-tagged Bud32 was used as a positive control. Expected molecular mass of each protein is shown on right. (B) Schematic for the primers at the knock-in locus and the expected PCR products. The numbers in red indicated PCR products of their corresponding numbers in (B). (C) Analysis of the PCR products using primers at the α -amylose (*SiRe_1098*) and the β -mannanase (*SiRe_2238*) loci. Lanes 1, E233S; 2, E233S/*TmTsaBEC::amya*; 3, TsaKI/ *Paras28::kae1-bud32*; 5, TsaKI/*Paras38::kae1-bud32*. 6, TsaKI/*Paras38::cgi121*.

Figure S4. PCR verification of the promoter replacement of the KEOPS genes in TsaKI. (**A**) Analysis of PCR products using primers at the loci of *kae1* promoters (right). The schematic for the promoter replacement of *kae1-bud32* is shown on the left. The start and stop codons of *kae1* (or *cgi121* in D) and its upstream gene are indicated in red. The two nucleotides in red circular are mutations of the wild type arabinose promoters. 1, TsaKI; 2, TsaKI/*Paras24::kae1-bud32*; 3, TsaKI/*Paras38::kae1-bud32*. (**B**) Analysis of the PCR products using primers at the loci of *kae1-bud32* promoters (right). The schematic for the promoter replacement is shown on the left. 1, TsaKI; 2, TsaKI/*Paras38::cgi121*. M, marker.

Figure S5. Analysis of the DNA binding ability of archaeal KEOPS. (A) Binding of individual subunit for dsDNA. (B) Binding of combinations of the subunits for dsDNA. FAM-labeled dsDNA (10 nM) was incubated with samples of the indicated subunits (0.5, 1, 5 μM) at 37C° for 30 min. (C) *Tko*Cgi121 (WT), the CCA-3' RNA binding site mutant *Tko*Cgi121 (I75E), and *Sis*Cgi121 for ssDNA binding. Purified Cgi121 (1, 5, 10, 20 μM) was incubated in a reaction mixture containing 10 nM of FAM-labeled ssDNA (45 nt, with two CCA motifs colored in red) at 37C° for 45 min. *Sis*SSB (5 μM) was used as a positive control and MBP-tagged *Sis*Pcc1 (20 μM) was used as negative control. (D) *Tko*Cgi121 (WT), *Tko*Cgi121 (I75E), and *Sis*Cgi121 for short dsDNA binding. Purified Cgi121 (1, 5, 10, 20 μM) was used as negative control. (D) *Tko*Cgi121 (WT), *Tko*Cgi121 (I75E), and *Sis*Cgi121 for short dsDNA binding. Purified Cgi121 (1, 5, 10, 20 μM) was incubated in a reaction mixture containing 10 nM of FAM-labeled dsDNA (45 bp, with two CCA motifs colored in red) at 37C° for 45 min. *Sis*NurA (5 μM) was used as a positive control and MBP-tagged *Sis*Pcc1 (20 μM) was used as negative control. The samples were loaded in native PAGE gels. The gels were scanned using Amersham ImageQuant 800 after electrophoresis. The detailed reaction conditions are described in the Materials and Methods.

Figure S6. Genome context analysis of *pcc1*, *pcc1-like*, and *gon7* in archaea and eukaryotes. Representative species possessing one *pcc1* and two *pcc1* paralogs are shown for each superphylum of archaea together with several eukaryotic species. The *pcc1-like* occurred possibly via gene duplication of *pcc1* and was separated together with *rec1* during evolution.

Table S1. Strains used in this study

Strain	Properties	Source or reference
S. islandicus E2338	S. islandicus REY15A $\Delta pyrEF \Delta lacS$	Peng <i>et al.</i> , 2009, 2012
E233S/Paras24::kae1-bud32	kae1-bud32 promoter replaced with ParaS24 in E233S	this study
E233S/Paras38::kae1-bud32	kae1-bud32 promoter replaced with Paras38 in E233S	this study
E233S/Paras24::cgi121	cgi121 promoter replaced with $P_{araS}24$ in E233S	this study
E233S/amya::TmTsaB/TsaE/TsaC	<i>TmTsaBEC</i> knocked in <i>amya</i> (<i>sire_1098</i>) in E233S	this study
TsaKI	<i>TmTsaD</i> knocked in <i>mannanase</i> (<i>sire_2238</i>) in E233S/ <i>amya</i> :: <i>TmTsaBEC</i>	this study
TsaKI/P _{araS} 38::kae1-bud32	kae1-bud32 promoter replaced with Paras38 in TsaKI	this study
E233S/Paras38::cgi121	cgi121 promoter replaced with Paras38 in TsaKI	this study

Table S2. Vectors used in this study.

Vectors	Properties or usages	Source or reference
pGE	Sulfolobus-E. coli shuttle vector containing mini-CRISPR and pyrEF for CRISPR-Cas based gene editing	Li <i>et al.</i> , 2016
pGE- <i>kae1</i> mg-KD	knock down of <i>kae1</i> with multi-gRNA	this study
pGE- <i>bud32</i> mg-KD	knock down of <i>bud32</i> with multi-gRNA	this study
pGE-pcc1sg-KD	knock down of <i>pcc1</i> with single-gRNA	this study
pGE-pcc1-likesg-KD	knock down of <i>pcc1-like</i> with single-gRNA	this study
pGE- <i>kae1-</i> KO	knock out of kael with single-gRNA	this study
pGE- <i>bud32</i> -KO	knock out of <i>bud32</i> with single-gRNA	this study
pGE- <i>kae1-bud32-</i> KO	knock out of kae1-bud32 with multi-gRNA	this study
pGE-cgil2l-KO	knock out of cgi121 with single-gRNA	this study
pGE- <i>pcc1</i> -KO	knock out of <i>pcc1</i> with single-gRNA	this study
pGE- <i>pcc1-like</i> -KO	knock out of <i>pcc1-like</i> with single-gRNA	this study
pGE-cgi121M52E	construction of cgi121 mutant M52E with single-gRNA	this study
pGE-cgi121I64E	construction of mutant cgi121 mutant I64E with single-gRNA	this study
pGE-TmTsaBDEC-KI	tsaBDEC knock in at amya locus with single-gRNA	this study
pGE- <i>TmTsaD</i> -KI	TmtsaD knock in at mannanase locus with single-gRNA	this study
pSeSD	<i>Sulfolobus-E. coli</i> shuttle vector containing <i>araS</i> -SD promoter and MCS for proteins expression in E233S	Peng <i>et al.</i> , 2012
pSeSD-His-SisKae1	expression of C-terminal 6×His tagged SisKae1	this study
pSeSD-His-SisBud32	expression of C-terminal 6×His tagged SisBud32	this study
pSeSD-His-SisBud32D134A	expression of C-terminal 6×His tagged SisBud32D134A	this study
pSeSD-His-SisCgi121	expression of N-terminal 6×His tagged SisCgi121	this study
pSeSD-His-SisPcc1	expression of C-terminal 6×His tagged SisPcc1	this study
pSeSD-His-SisPcc1-like	expression of C-terminal 6×His tagged SisPcc1-like expression	this study
pSeSD-Siskae1-(His)bud32	expression of <i>Siskae1-bud32</i> operon with bud32 being tagged with C-terminal 6×His	this study
pSeSD-2ParaS	containing two araS promoter for protein expression	this study
pSeSD-2ParaS-SisKae1/His-SisBud32	Co-expression of SisKae1 and C-terminal 6×His tagged SisBud32	this study
pSeSD-2ParaS-His-SisKae1/His-SisBud32	Co-expression of C-terminal 6×His tagged SisKae1 and C- terminal 6×His tagged SisBud32	this study
pSeSD-2ParaS-His-SisCgi121/His-SisBud32	N-terminal 6×His tagged <i>Sis</i> Cgi121 and C-terminal 6×His tagged <i>Sis</i> Bud32 coexpression vector	this study

pSeGP	araS-SD replaced with PgdhA in pSeSD	this study
pSeGP-His-TmTsaB	constitutive expression of <i>Tm</i> TsaB	this study
pSeGP-His-TmTsaC	constitutive expression of <i>Tm</i> TsaC	this study
pSeGP-His-TmTsaD	constitutive expression of TmTsaD	this study
pSeGP-His- <i>Tm</i> TsaE	constitutive expression of <i>Tm</i> TsaE	this study
pET22b-His-SisCgi121	expression of the N-terminal 6×His tagged SisCgi121	this study
pET22b-His-SisCgi121	expression of C-terminal 6×His tagged SisCgi121	this study
pET15b-SisKae1	expression of no tagged SisKae1	this study
pET15b-SisBud32	expression of no tagged SisBud32	this study
pET15b-His-SisBud32	expression of N-terminal 6×His tagged SisBud32	this study
pRSFDuet1-His-SisKae1	expression of N-terminal 6×His tagged SisKae1	this study
pRSFDuet1-Flag-SisBud32	N-terminal Flag tagged SisBud32 expression vector	this study
pRSFDuet1-His-SisPcc1	N-terminal 6×His tagged SisPcc1 expression vector	this study
pRSFDuet1-His-SisPcc1-like	N-terminal 6×His tagged SisPcc1-like expression vector	this study
pRSFDuet1-His-SsoCgi121	expression of N-terminal 6×His tagged S. solfataricus Cgi121	this study
pRSFDuet1-His-TkoCgi121	expression of N-terminal 6×His tagged T. kodakarensis Cgi121	this study
pRSFDuet1-His-TkoCgi121I75E	expression of N-terminal 6×His tagged TkoCgi121(I75E)	this study
pRSFDuet1-His-SisPcc1/SisKae1	co-expression of N-terminal 6×His tagged SisPcc1 and no tagged SisKae1	this study
pRS Duet1-His-SisPcc1-like/Flag-SisKae1	co-expression of the N-terminal 6×His tagged <i>Sis</i> Pcc1-like and N-terminal Flag tagged <i>Sis</i> Kae1	this study
pRSFDuet1-Flag-SisPcc1/His-SisPcc1-like	co-expression of the N-terminal Flag tagged SisPcc1 and N-	this study
pMALc2X-MBP-His-SisCgi121	terminal 6×His tagged <i>Sis</i> Pcc1-like co-expression of the N-terminal MBP and C-terminal 6×His tagged <i>Sis</i> Cgi121	this study
pMALc2X-MBP-His- <i>Sis</i> Pcc1	co-expression of N-terminal MBP and C-terminal 6×His tagged SisPcc1	this study

Table S3. Oligonucleotide and promoter DNA sequences used in this study.

Oligonucleotides	Sequences (5'to3')
kael-KO-Spacer	GGCGGAAATACAATCATAACTACCTTCTATAAAGGGAGGT
bud32-KO-Spacer	GCGGTGATCTAACAACTAACAATCTCATCCTAAGTTCTATA
kae1-bud32-KO-	ACTATGAAAGGACAATATTAGAGGCTAAGATAATTTATAC
Spacer1	
kae1-bud32-KO-	GGCGGAAATACAATCATAACTACCTTCTATAAAGGGAGGT
Spacer2 <i>kae1-bud32-</i> KO-	AGGAATATCTACCTCGTCTACTCTCCATCTAGGTCTTAT
Spacer3	AGGAAIAICIACICICGICIACICICCAICIAGGICIIAI
cgi121-KO-Spacer	ACTATAATACAACTAGAAATAAGATAAAGAGTTCAACTAT
pcc1-KO-Spacer	ATAAAAACGAATTACAGGATATAATATATGATTCGATAAT
pcc1-like-KO-Spacer	ATTCAAACCAAGGTTGAAGGCAAAGAGTTAGAGATTGTAA
kae1-KD-Spacer1	TCAGAATGTATACTTTCTAAAGATCTTAGAAATATATGAA
kae1-KD-Spacer2	ATATCGTTATTATAGAACTTAGGATGAGATTGTTAGTTG
kae1-KD-Spacer3	CACTGCAGGTACATTCACATCGTTTTTAAGCGCAGTATAA
bud32-KD-Spacer1	GGTCTTTGGCCTCAGTTGTTAAATACCCTATTTCAATATG
bud32-KD-Spacer2	CTACTGCTATATAATTAATATCATTTATACTAATATTAGC
bud32-KD-Spacer3	TATCCCTTTCGTTTGCCAATATGTAGGGTGGTTGATCTTT
pcc1-KD-Spacer	GGGATTTCTTAATTTTACATATTTAGTATCTATCTTTTC
pcc1-like-KD-Spacer	TCGTTTGGCTTTGTAATTCTCATCTTTATTACAATCTCTA
kae1-bud32-PE-Spacer	AAGAAAAGATAAAATATGTTAGTACTGGGTATCGAATCTA
cgi121-PE-Spacer	TATCTAACTTACTTGAACCTTCGATATCTCTAACCA
<i>cgi121</i> M52E/I64E-	TACTTCTCCTATTACCATATGAACAAATAAAGGATGCATT
Spacer 1098-KI-Spacer	TTATTCTCAAGCTCTATTGGTAGCCATTTGAGAAATTCTA
2238-KI-Spacer	ATGCACCATCAGCACCGTAAACTAACGCTCCCCTCAGTAT
Paras24	ATGTTAAACAAGTTAGGTATACTATTTATACCATAGTTAGGTCATAAAAGTACCCGAGACC
Paras38	ATGTTAAACAAGTTAGTGATACTATTTATAAAATAGTTAGGTCATAAAAGTACCCGAGACC
P_{gdhA} (with 30bp $gdhA$	(-556)AACACTAATGAGAAAGTCCGGGAAAACGAATTTATATTG <mark>ATG</mark> GAAGAAGTTCT
leader)	TAGTTCGAGTCTGCAT (+30) *
5'-FAM labled ssDNA	CAGTATGCTGCGTGAGGAATGATCCCATGACGTAACCACAGTGCC
kae1-qPCR-F	CTCGGAGTAGGAATAGCAAAAGATCA
kae1-qPCR-R	CGTTTTAGTAGATCTCCAGGCTTCAT
bud32-qPCR-F	GAGGCTAAGATAATTTATACTGCGCTT
bud32-qPCR-R	CCTTAACTATCTCCCCTTCTATATATTC

cgi121-qPCR-F	GTCAAGTCTTACCTATCGTACCGTTT
cgi121-qPCR-R	CGGTAATAGGAGAAGTAAGAAAAACATAG
pcc1-qPCR-F	GTGAAGATAGAGATTTCAATTTATCCAGATAAT
pcc1-qPCR-R	CCTAGCTCTTGTAATTGATGGTGCA
<i>pcc1-like-</i> qPCR-F	TTACCAGAAGGAATGTCAATTCAAACCA
<i>pcc1-like</i> -qPCR-R	TTATAGCATCAAATGACGATTGAAGTGC
<i>1715-</i> qPCR-F	TAACGGTGTCAGAGATAACCTACAC
1715-qPCR-R	TGTTATGTCCTTTACTCTTATACCTACC
<i>tbp</i> -qPCR-F	CAACAGTTACGTTAGAGCAAAGTTTGG
<i>tbp</i> -qPCR-R	GTAACCTTGGGCTGTTCTAATCTGA

* The numbers in the brackets indicate the position of the last nucleotide at the upstream (-) or downstream (+) of the start codon (in red).

Reference

- Peng N., Xia, Q., Chen, Z., Liang, Y.X., and She, Q. (2009). An upstream activation element exerting differential transcriptional activation on an archaeal promoter. Mol Microbiol 74, 928-939.
- Peng, N., Deng, L., Mei, Y., Jiang, D., Hu, Y., Awayez, M., Liang, Y., She, Q. (2012). A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol, 78(16), 5630-5637. doi:10.1128/AEM.00855-12
- Li, Y., Pan, S., Zhang, Y., Ren, M., Feng, M., Peng, N., Chen, L., Liang, Y.X., and She, Q. (2016). Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Res 44, e34.