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Fig. S1: BNP-FLIM robustness with respect to photon counts per pixel and lifetime differences. Three overlapping lifetime
maps with different lifetimes were generated over a region of 5×20 pixels (pixel size of 0.39 µm) and analyzed by the BNP-
FLIM algorithm. Columns from left to right, respectively, represent cross sections of the resulting lifetime maps with 10, 20
and 50 photons per pixel. All the data sets contain three lifetimes involving two lifetimes of 1 ns and 4.5 ns similar across
all the generated data. The third lifetime varies: row (a) 1.3 ns; row (b) 1.8 ns; and row (c) 2.5 ns. The dashed curves, blue
area and the magenta curves, respectively, show ground truths, 95% confidence interval of the sampled lifetime maps and
the median of the sampled lifetime maps.
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Fig. S2: Resulting histograms of the number of non-zero binary weights (loads) and the corresponding lifetimes from analyses
of the simulated data shown in Fig. 3. Red dashed lines represent ground truths. We retain the same convention hereafter.

3



a

b

c

d

e

f

Λ
(μ

m
-3
)

Λ
(μ

m
-3
)

Λ
(μ

m
-3
)

Fig. S 3: In vivo data sets each containing a single lifetime component. (a) Data acquired using pHrodo fluorophores
with lifetime of 0.8 ns labeling lysosomes. (b) Data acquired using TMRM fluorophores with lifetime of 2.8 ns labeling
mitochondria. (c) Data acquired using Lyso-red fluorophores with lifetime of 4.5 ns labeling endosomes. These data sets
(as well as other data sets acquired over large areas) were processed using the BNP-FLIM algorithm by splitting the entire
region into multiple subregions and processing each subregion independently. The corresponding resulting lifetime maps are
represented in panels d-f. Scale bars are 2 µm
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Fig. S4: Resulting lifetime histograms from analyses of data with single lifetimes in Fig. 3a-c.
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Fig. S5: Error maps given as the absolute relative differences of the discerned and ground truth lifetime maps shown in
Fig. 4. (a) Error map corresponding to the lifetime map of pHrodo fluorophores with average error of ≈ 3%. (b) Error map
corresponding to the lifetime map of TMRM fluorophores with average error of ≈ 8%. (c) Error map corresponding to the
lifetime map of Lyso-red with average error of ≈ 6%.
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Fig. S6: Resulting histograms of the number of non-zero binary weights (loads) and the corresponding lifetimes from analyses
of the in vivo data using mixture of three lifetime maps shown in Fig. 4.
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Fig. S7: Resulting histograms of the number of non-zero binary weights (loads) and the corresponding lifetimes from analyses
of the simulated data using mixture of three lifetime maps shown in Fig. 5.
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Supplementary Note 1: Model Description

Supplementary Note 1.1: Likelihood

In this section, we present the mathematical model of Bayesian nonparametric FLIM (BNP-FLIM) in more detail. To do so,
we start from the likelihood. The likelihood of BNP-FLIM is given by the product of the likelihoods of individual photon
arrival times (∆tik) and pulses (W i

k) as follows

P
(

∆t,W
∣∣ϑ) =

∏
i

∏
k

P
(
∆tik

∣∣ϑ)P (W i
k

∣∣ϑ) , (S1)

where overlines denote the entire sets of arrival times and pulses. Moreover, ϑ = (τ1:M ,Λ1:M , ν1:M , b1:M ) represents the
set of unknown parameters we wish to infer: lifetimes, lifetime maps, means of Gaussian Process priors (GP), and binary
weights. The likelihood for the kth pulse in the ith pixel leading to a photon observation or not (empty or non-empty pulse)
is provided in the main text eq. 2 as

P
(
W i
k|ϑ
)

= Bernoulli
(
W i
k; 1− πi0

)
, (S2)

where πi0 is the probability of no photon detection from the ith pixel. In what follows, we will derive the likelihood model
for the arrival times.

nT Δtik
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Fig. S8: Laser pulses and the arrival time likelihood. The green spikes and red dashed lines, respectively, represent the laser
pulses and their centers. The black dashed lines show a fluorophore excitation time (text), photon emission time (tems), and
photon detection time (tdet). Here, n, T,∆text and ∆i

k denote the number of pulses after which the photon emission takes
place, the inter-pulse period, the time that the fluorophore spent in in the excited state, and the reported photon arrival
time with respect to the immediate previous pulse. Moreover, ∆1 + ∆2 = ∆IRF denote the instrument response function due
to the delay in the detector in reporting the photon detection and the difference of the excitation time and the center of the
pulse.

To derive the likelihood model for the arrival times, we start from the following expression obtained considering Fig. S8

∆tik = ∆text + (∆1 + ∆2)− nT = ∆text + ∆tIRF − nT. (S3)

The above equation indicates that the observed photon arrival time (measurement) is the sum of three random variables:
time the fluorophore spend in the excited state; IRF time; and the number to pulses over which the fluorophore stays excited
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(also see eq. 12 in the main text). Consequently, the likelihood of a recorded photon arrival time, ∆tik, is given by the
convolution of the probability distribution of these random variables as follows

P
(
∆tik|λm

)
=

[
P
(
∆tiIRF,k

∣∣ τIRF, σ
2
IRF) ∗ P

(
∆tiext,k|λm

) ]
∗ P (n|N) , (S4)

where

P (n|N) = Categorical0:N ([A0, ..., AN ]) (S5)

P
(
∆tiIRF,k

∣∣ τIRF, σ
2
IRF) = Normal(∆tiIRF,k; τIRF, σ

2
IRF) (S6)

P
(
∆tiext,k|λm

)
= Exponential(∆tiext,k;λm). (S7)

(S8)

Here, τIRF, σ
2
IRF,m, λm and N , respectively, denote the mean and variance of the IRF normal distribution, indicating the

photon from the kth pulse within the ith pixel is from what species, the inverse of fluorophore lifetime, and the maximum
number of pulses to be considered. Moreover, An represent the probability of the photon originating from the nth previous
pulse derived in [1]. Calculating the convolutions, we obtain the following likelihood model for the photon arrival time [1]

P
(
∆tik|λm

)
=

[
N∑
n=0

erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)

× λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))]
. (S9)

Here, we continue by considering the probability πim of detecting a photon from the mth species in the ith pixel given by
eq. 4 in the main text. Therefore, the species m giving rise to a detected photon from a non-empty pulse can be sampled
from a categorical distribution as follows

m|Λ1:M , b1:M ∼ Categorical1:M
(
πi1, ..., π

i
M

)
. (S10)

Now, we can use eq. S10 to marginalize fluorophore species in the likelihood eq. S9 as follows

P
(
∆tik|ϑ

)
=

M∑
m=1

P (m|Λ1:M , b1:M )P
(
∆tik|λm

)
=

[ M∑
m=1

πimP
(
∆tik|λm

) ]

=

[ M∑
m=1

πim

N∑
n=0

P (∆tik + nT |λm)P (n|N)

]

=

[
M∑
m=1

πim

N∑
n=0

erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)

× λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))]
. (S11)

The resulting marginal likelihood above does not depend on the fluorophore species m and we employ it to develop our
framework.

Supplementary Note 1.2: Priors and Posterior

After obtaining the likelihood, we proceed to build the object of most interest the posterior. The posterior is proportional
to the product of the likelihood eq. S1 and prior distributions over the unknown parameters ϑ. The entire model including
the priors are summarized in the following. The posterior is given as

P
(
ϑ
∣∣W,∆t

)
∝ P

(
∆t
∣∣ϑ,W)P (W ∣∣ϑ)P (τ1:M )P (Λ1:M |ν1:M , b1:M )P (ν1:M )P (b1:M ) , (S12)
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where

W i
k ∼Bernoulli

(
1− πi0

)
(S13)

λm ∼Gamma (αλ, βλ) (S14)

Λm ∼GP
(
νm,K

(
~X, ~X ′

))
(S15)

νm ∼Normal (0, σν) (S16)

bm ∼Bernoulli

(
bm;

1

1 + M−1
γ

)
, (S17)

where γ is the expected number of species, αλ, βλ and σν are hyper-parameters of gamma prior and sigma of prior on νm.
Moreover, we used λm = 1/τm and employ this parameter instead of τm from hereon. αλ, βλ and σν are hyper-parameters
of gamma prior and sigma of prior on νm. The covariance matrix of the GP is given by

K
(
~X, ~X ′

)
= σ2

GP exp

−1

2

(
~X − ~X ′

L

)2
 , (S18)

where σGP and L are positive parameters. Finally, we have the likelihood

P
(
∆tik

∣∣ϑ) =

[
M∑
m=1

πim

N∑
n=0

erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)

× λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))]W i
k

. (S19)

Fig. S9: Graphical Model. Grey and blue circles and the diamond, respectively, indicate observations, unknown parameters
and variables that are detrministically calculated form other parameters. k, i and m, respectively, count pulses, confocal
regions and species. W i

k and ∆tik reports if a pulse was empty or not and the micro-time of a photon from the kth pulse in
ith confocal region, in turn. P i0m represents the probability of the species m not being excited during the ith pulse. ρm, τm
and bm are, respectively, the concentration, lifetime and associated load of the mth species. νm is the parameter of the GP
prior. Further, to facilitate computations, we need to work within a limited but large number of lifetimes M .

Supplementary Note 2: Model Inference

After deriving the posterior, in this section, we will provide the inverse strategy to infer the unknown parameters. Each
parameter is deduced using the corresponding target distribution by sampling it either directly or using Metropolis-Hasting
(MH) scheme.

11



Supplementary Note 2.1: Sampling λm

The target distribution of λ1:M is given by

λ1:M ∼ P
(
λ1:M |∆t,W ,Λ1:M , ν1:M , b1:M

)
(S20)

∝ P
(

∆t|ϑ
)
P (λ1:M ) (S21)

=

[∏
i

∏
k

P
(
∆tik

∣∣ϑ)]∏
m

P (λm) (S22)

=

[∏
i

∏
k

[ M∑
m=1

πim

N∑
n=0

λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))

× erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)]W i
k

][∏
m

Gamma(λm;αλ, βλ)

]
, (S23)

where the superscript i is the index of pixels. The above expression does not have a closed form and therefore, Metropolis-
Hastings (MH) algorithm [2,3] is used to sample λ1:M . The proposed lifetimes, λpropm , are taken from a gamma distribution

λ1:M ∼ Gamma

(
αprop
λ ,

λold1:M

αprop
λ

)
, (S24)

and the MH acceptance ratio is given by

A =
P
(
λprop1:M |∆t,W

)
Gamma

(
λold1:M ;αprop

λ ,
λprop
1:M

αprop
λ

)
P
(
λold1:M |∆t,W

)
Gamma

(
λprop1:M ;αprop

λ ,
λold
1:M

αprop
λ

) . (S25)

Supplementary Note 2.2: Sampling Λm

The target distribution of Λ1:M is given by

Λ1:M ∼ P
(

Λ1:M |∆t,W , λ1:M , ν1:M , b1:M

)
(S26)

∝ P
(

∆t,W |λ1:M ,Λ1:M , b1:M

)
P (Λ1:M |ν1:M , b1:M ) , (S27)

where

P
(

∆t,W |λ1:M ,Λ1:M , b1:M

)
= P

(
∆t|ϑ

)
P
(
W |Λ1:M , b1:M

)
=

[∏
i

∏
k

P
(
∆tik

∣∣ϑ) (1− πi0)W i
k
(
πi0
)1−W i

k

]
, (S28)

where πi0 is given by eq. 6 in the main text. We take GP priors on the species concentrations, given in eq. S15.
While GP priors allow negative values, molecular concentrations and thus lifetime maps (Λ1:M ) are positive quantities

and thus we use the following substitution to assure that the proposed values are always non-negative

Λm = exp(χm) (S29)

where χm takes both negative and positive values. We learn χ1:M employing the GP method and then find the concentrations

using eq. S29. The likelihood of χ1:M , P
(

∆t,W |λ1:M , χ1:M , b1:M

)
, is obtained by replacing Λ1:M with exp(χ1:M ) in eq. S28.

The resulting likelihood is non-conjugate to the GP prior and hence the posterior does not have a closed form. As such, the
posterior cannot be directly sampled and we need to adopt either the MH or the elliptical slice sampling [4] techniques to
make inference about χ1:M . After conducting some test experiments with synthetic data, we decided to opt for the elliptical
slice sampling with the following steps:

12



Step 1:
Select a random lifetime m

Step 2:
Select a random number u ∈ [0, 1]

Step 3:
Set θmin = 0 and θmax = 2π and
select a random number θ ∈ [θmin, θmax]

Step 4:
Select a random set of parameters from the prior on the mth lifetime χ∗m ∼ GP(νm,K)

Step 5:
Propose a new lifetime map as follows

χ′m = χm cos θ + χ∗m sin θ (S30)

Step 6: Calculate the ratio of the likelihoods for the current and proposed maps

A =
P
(

∆t,W |λ1:M , χ′1:M , b1:M
)

P
(

∆t,W |λ1:M , χ1:M , b1:M

) , (S31)

where the prime denotes the set of χ-maps where the mth map is given by the map generated above while the rest stay the
same.

Step 7:
Accept the proposal if A > u. Otherwise, set
θmin = θ if θ < 0, else
θmax = θ if θ > 0, and
Select at random θ ∈ [θmin, θmax]

Step 8
Go to step 4 and repeat until accepting a proposal.

Supplementary Note 2.3: sampling νm

We take a normal distribution as prior on the mean of GP priors, ν1:M , and learn them. The full conditional posterior of
ν1:M is

P (ν1:M |χ1:M ) ∝ P (χ1:M |ν1:M )P (ν1:M )

= GP (χ1:M ; ν1:M ,K)N
(
ν1:M , 0, σ

2
ν

)
(S32)

where σ2
ν is the variance of the normal prior. The values of ν1:M are modified using the MH method where the acceptance

ratio is

A =
GP (χ1:M ; ν′1:M ,K)N

(
ν′1:M , 0, σ

2
ν

)
GP (χ1:M ; ν1:M ,K)N (ν1:M , 0, σ2

ν)
, (S33)

where prime indicate the proposed values obtained using a random walk.
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Supplementary Note 2.4: Sampling bm

The full target distribution of binary weights is

b1:M ∼ P
(
b1:M

∣∣∣∣∆t,W , λ1:M ,Λ1:M , ν1:M

)
∝ P

(
∆t|ϑ

)
P
(
W |Λ1:M , b1:M

)
P (b1:M )

=

[∏
i

∏
k

[ M∑
m=1

πim

N∑
n=0

λm
2

exp

(
λm
2

(
2(τIRF −∆tik − nT ) + λmσ

2
IRF

))

× erfc

(
τIRF −∆tik − nT + λmσ

2
IRF

σIRF

√
2

)]W i
k (

1− πi0
)W i

k
(
πi0
)1−W i

k

]

×

[∏
m

Bernoulli

(
bm;

1

1 + M−1
γ

)]
, (S34)

where the likelihood and prior are given by eq. S28 and eq. S17, respectively. Here, since an infinite number of lifetimes is
computationally formidable, we rather use a large but limited number of lifetimes M within the model. Moreover, the prior

parameter 1/
(

1 + M−1
γ

)
is obtained by marginalization over the beta-Bernoulli process [5–7].

To sample the loads associated to the M present lifetimes in the model, we randomly pick two of them to update while
the remaining loads stay fixed. Now, there are four possibilities associated to the two selected loads

B1 = [0, 0]

B2 = [1, 0]

B3 = [0, 1]

B4 = [1, 1], (S35)

where Bl represents the lth possible combination of loads. The loads can then be directly sampled from a categorical
distribution as follows

b1:M ∼ Categorical1:4

(
P
(
B1|...

)
G

, ...,
P
(
B4|...

)
G

)
(S36)

where P
(
Bl|...

)
denotes the posterior given in eq. S34 for the case where the two selected loads take the lth values and

G =

4∑
l=1

P
(
Bl|...

)
. (S37)
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Supplementary Note 3: Table of Parameter Values used for Data Analysis

Parameter αλ βλ αpropλ σGP L σν
Unit - ns - µm µm µm

Fig. 2 1 5 2,000 1 1 50
Fig. 3 1 5 2,000 1 0.4 50
Fig. 4 1 5 2,000 1 0.4 50
Fig. 5 1 5 2,000 1 0.5 50

SI Fig. 1 1 5 2,000 1 1 50
SI Fig. 2-6 1 5 2,000 1 0.4 50
SI Fig. 7 1 5 2,000 1 0.5 50

Table S1: Table of the the parameter values used for the analysis of the data.
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