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Supplementary Figures. 28 

 29 

Supplementary Fig. 1 | Abstract workflow. (a) Abstract workflow. Only when the corresponding tasks 30 

satisfy two conditions, i.e., (i) belonging to 2D data and (ii) the existence of a wide-field reference, will the 31 

RSM be included in the PANEL visualization. (b) Our framework for estimating different types of 32 

uncertainties. At the SR scale, our method is capable of mapping (i) data uncertainty of image reconstructions 33 

without referencing the ground-truth (Reconstruction-1 vs. Reconstruction-2); (ii) data uncertainty with leaked 34 

model uncertainty for deep-learning predictions without ground-truth (Prediction-1 vs. Prediction-2); (iii) 35 

model uncertainty of deep-learning predictions without ground-truth (Prediction-1 from Model-1 vs. 36 

Prediction-2 from Model-2); and (iv) full error of reconstructions/predictions with ground-truth 37 

(Reconstruction/Prediction vs. Ground-truth).  38 
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 39 

Supplementary Fig. 2 | Two background skip strategies for rFRC mapping. (a) Workflows (c.f., Fig. 1c) 40 

of the background thresholding methods. During the rolling operation of the rFRC mapping, the intensity of 41 

center pixels from each block is summed (blue summation sign). The FRC value is calculated and assigned 42 

only if this summed value of the center pixels is larger than (blue tick sign) the threshold ('∑ > T'); otherwise, 43 

the center pixel is set to zero (blue cross sign) ('∑ < T'). In this work, we provided two strategies for threshold 44 

determination. One is the user-defined hard threshold for the entire image ('15' as in this representative 45 

example). The other is the iterative wavelet transform method (yellow box), which automatically estimates 46 

the local threshold values. (b) rFRC maps using different background thresholds (c.f., Fig. 1c). (c) A 47 

representative SRRF data (left) (c.f., Supplementary Fig. 7c) for illustration of two strategies of background 48 

thresholding (middle for hard threshold and right for adaptive threshold). 49 
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 50 

Supplementary Fig. 3 | Color maps for map display and Otsu threshold for PANEL pinpointing. (a) The 51 

representative color-coded images and color indexes of jet (left), black jet (middle), and shifted jet (right) 52 

color maps. The image is adapted from Supplementary Fig. 7a. (b) Otsu threshold for PANEL highlighting. 53 

Left: The rFRC map of the SRRF dataset in Supplementary Fig. 7c, displayed in the sJet color map. Middle 54 

and right: The Full rFRC map (middle) and the rFRC map after the Otsu threshold (right), regions with low 55 

reliability in the SRRF reconstruction are pointed by green. 56 
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 57 

Supplementary Fig. 4 | The workflow of the RSM. 58 
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 59 

Supplementary Fig. 5 | Full data of 2D-SMLM simulations and image fusion of SMLM data using rFRC 60 

map. (a, b) The rFRC map versus the localization uncertainty of 2D-SMLM with high-density ('HD', a) and 61 

low-density ('LD', b) emitting fluorophores in each frame (c.f., Fig. 1c). The overall resolution distribution of 62 

the rFRC map (left) is close to the averaged localization uncertainty map (right). For visualization, we 63 

provided the averaged localization uncertainty ('Averaged loc. unc.') map at the right, which is the raw 64 

localization uncertainty map filtered with the Gaussian function. (c, d) The ground-truth structures (c), and 65 

one representative raw frame (d) (c.f., Fig. 1d). (e) The wide-field ground-truth image (WFGT) and wide-field 66 

images generated from the MLE reconstruction (WFMLE). (f-i) Image fusion of simulated 2D-SMLM data. (f) 67 

The ground-truth structures. (g) The reconstruction results of FALCON (left) and MLE (middle) algorithms, 68 

and the corresponding fused result of these two methods (right). The PSNR and SSIM values (reconstructions 69 

versus ground-truth) are labeled on the right bottom. (h) Enlarged regions enclosed by white boxes in (f) and 70 

(g). (i) rFRC maps of (g). Scale bars: (b, g) 500 nm; (e) 1 μm. 71 
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 72 

Supplementary Fig. 6 | 3D-SMLM simulations evaluated by rFRC map. (a) The merged maximum 73 

intensity projection (MIP) views of ground-truth structures (red channel, labeled as 'LD-GT' (top) or 'HD-GT' 74 

(bottom) for low-density or high-density emitting fluorophores), and the corresponding 3D-MLE 75 

reconstructions (green channel, labeled 'MLE'). (b) The rFRC maps of low-density (top) and high-density 76 

(bottom) 3D-MLE reconstructions. Insets show representative frames of low-density (top) and high-density 77 

(bottom) datasets. (c) Horizontal sections (at 0 nm z position) of 3D-MLE reconstructions (low-density at the 78 

top and high-density at the bottom). (d) rFRC maps of corresponding horizontal sections in (b). Scale bars: 1 79 

μm. 80 
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 81 

Supplementary Fig. 7 | Open-source 2D-SMLM and SRRF experimental datasets evaluations. (a) From 82 

left to right: MLE localization result of 500 high-density images of tubulins from the EPFL website (Methods); 83 

the rFRC map of the MLE; full merged RSM and rFRC map of the MLE; PANEL visualization. (b) From left 84 

to right: Corresponding wide-field image; MLE image convolved back to its original low-resolution scale; 85 

RSM of the MLE; FRC map of the MLE. (c) From left to right: Diffraction-limited TIRF image; SRRF 86 

reconstruction result of 100 fluctuation images (GFP-tagged microtubules in live HeLa cells, Methods); rFRC 87 

map of SRRF; PANEL visualization. Scale bar: 2 μm. 88 
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 89 

Supplementary Fig. 8 | A representative example of STORM fusion (COS-7 cells, heavy chain clathrin-90 

coated pits labeled with Alexa Fluor 647). (a) The rFRC map of ME-MLE (top), the superiority map (middle) 91 

for fusion, and the TIRF image (bottom) are shown on the left. The rFRC maps of the SE-Gaussian (top) and 92 

fusion (middle) results, and the fusion result ('Fused', bottom) are displayed on the right. We found that the 93 

ME-MLE method achieves superior performance in the regions containing a strong background and that the 94 

SE-Gaussian method obtains better reconstruction quality in the regions containing a weak background. (b) 95 

Magnified results for a single CCP of ME-MLE (top), SE-Gaussian (middle), and fusion ('Fused,' bottom) are 96 

shown on the left, and the corresponding rFRC maps are demonstrated on the right. The mean resolutions are 97 

marked on the top left of the rFRC maps. In addition to the stable performance of fusion in the whole field of 98 

view, as highlighted in (a), the rFRC map assists in fusing fine structures such as a single ring-shaped CCP, 99 

enabling higher mean resolution. Scale bars: (a) 5 μm; (b) 100 nm. 100 
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 101 

Supplementary Fig. 9 | Evaluating 3D-STORM experiments. (a) 3D-MLE reconstruction (COS-7 cells, α-102 

tubulin labeled with Alexa Fluor 647). (b) 3D rFRC map of (a). (c) PANEL after the Otsu threshold of (b). (d) 103 

Corresponding magnified horizontal sections of the 3D-MLE (left) and rFRC (right) volume of the white 104 

boxes in (a). (e) The curve of the rFRC values along with the axial positions. (f) A maximum intensity 105 

projection (MIP) view of the TIRF (COS-7 cells, labeled with Alexa Fluor 647-phalloidin). (g) Depth color-106 

coded view of 3D-MLE reconstruction. (h, i) Horizontal section of 3D-MLE reconstruction (h) at the -50 nm 107 

z-position and the corresponding rFRC map (i). (j, k) Horizontal section of 3D-MLE reconstruction (j) at the 108 

+300 nm z-position and the corresponding rFRC map (k). Scale bars: (a, e) 5 μm; (d) 2 μm. 109 
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 110 

Supplementary Fig. 10 | Full visualization of ANNA-PALM experiment (c.f., Fig. 4a-4e). (a-c) Sparse 111 

MLE reconstructions (a), ANNA-PALM results (b) from even frames (25 frames, top) and odd frames (25 112 

frames, bottom), and the merged ANNA-PALM results (green channel) with full dense MLE reconstruction 113 

(red channel) (c). (d) Full MLE reconstruction. (e) The rFRC maps of sparse MLE reconstructions. (f) TIRF 114 

image. (g) TIRF image generated from ANNA-PALM reconstruction. (h) RSM. (i) PANEL visualization. 115 

Scale bar: 2 μm. 116 
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 117 

Supplementary Fig. 11 | Visualizing the RSM estimation workflow of the CARE predicted data (c.f., Fig. 118 

4f-4i). (a) The process of TIRF image generation from the CARE prediction, i.e., rescaled the intensity (CARE 119 

× 1.76 + 0.17) and convoluted the resulting image with the estimated resolution scaling function (RSF). (b) 120 

RSM generation, i.e., the absolute difference between the TIRF image generated from CARE prediction 121 

(TIRFCARE) and the ground-truth TIRF (TIRFGT) image. 122 
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 123 

Supplementary Fig. 12 | Full Noise2Noise experiment (c.f., Fig. 4j-4m). (a) Result (left top) after 124 

Noise2Noise ('N2N') and the noisy input (right bottom, 'Noise1'). (b) The Noise2Noise result from the white 125 

box in (a). (c) The reference image was obtained by averaging 50 noisy images with identical content. (d) 126 

Merged image of the PANEL (green channel) and Noise2Noise (gray channel) results. (e) rFRC map of (b). 127 

pix.: pixel. 128 
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  129 

Supplementary Fig. 13 | Neural network architectures used for different image restoration tasks.  130 
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 131 

Supplementary Fig. 14 | Overview of the network architecture, training parameter configuration, and 132 

data used for different applications. From left to right: Task configuration; input image; topological structure 133 

of the network; and ground truth. The rows with ImageJ/Fiji icons ('microscope') indicate that we 134 

reconstructed the image using the published open-source models with the corresponding ImageJ/Fiji plugins. 135 

The rows with TensorFlow icons ('TF') indicate that we predicted the image using the corresponding model 136 

(trained by ourselves, except the last row 'DFGAN-SIM' employing the published open-source models) with 137 

the TensorFlow framework. 138 



17 

rFRC & PANEL | Supplementary Information 

Supplementary Notes. 139 

Supplementary Note 1 | The stability and resolvability of rFRC map. 140 

Supplementary Note 1.1 | The stability. 141 

To avoid overconfident and unstable determination of the resolutions from small image blocks, we used the 142 

3σ curve1 as criterion in this work, i.e., three standard deviations above the expected random noise fluctuations 143 

as the threshold, instead of the popular-used 1/7 hard threshold2-5. This 3σ curve will adaptively change 144 

according to the input image block size, and thus it is more stable for local resolution estimation 145 

(Supplementary Fig. 15a). To test that, we created images with different block sizes (Supplementary Fig. 146 

15b). In 1/7 hard threshold case, we found that the results were unstable at block size smaller than 256-pixel. 147 

Similarly, the 3σ curve from the 32-pixel block did not yield a stable resolution. However, with the larger 148 

block sizes (64-, 128, and 256-pixel), the 3σ criterion was stable and remained unchanged around the 149 

theoretical resolution. Furthermore, although a smaller block size (e.g., 32-pixel) may lead to more refined 150 

mapping, the overall distributions of these rFRC resolution maps (using different block sizes) are close to each 151 

other (Supplementary Fig. 15c). Therefore, to balance the mapping scale and its estimation stability, we chose 152 

a block size of 64-pixel as default in this work.  153 

Supplementary Note 1.2 | The resolvability. 154 

With a 64 × 64 block size window, overlapped image content may induce crosstalk on the resulting map. To 155 

test it and try the maximum resolvability, we simulated structures containing pairs of lines with gradually 156 

increasing spacing (Supplementary Fig. 16), and added different noise levels to these paired lines. After that, 157 

we applied the rFRC mapping on the resulting images and calculated the FRC resolution distributions of pixels 158 

on the left (yellow) and right lines (green) (Supplementary Fig. 16). In the 2-pixel case, the crosstalk between 159 

two lines is too significant for the rFRC mapping to distinguish the difference, and thus the overall 160 

distributions of FRC resolutions (yellow and green curves) are identical for different noise level. In the 4-pixel 161 

case, we observed the distributions of FRC are just separatable. Paired lines became more separable as 162 

overlaps decreased in 8-pixel and 16-pixel cases and were distinct in 32-pixel and 64-pixel cases. Images must 163 

satisfy the Nyquist sampling criteria to achieve maximal resolution, so their point spread function (PSF) 164 

should cover at least 3-pixel. Therefore, the separation of rFRC of paired lines 4-pixel apart means the 165 

minimum detectable scale of rFRC map is up to its limit. By involving the rolling operation, we have addressed 166 

a major limitation of the previous FRC map3, which is challenging to correlate the block-wise map to the SR 167 

image content (Supplementary Fig. 15c, 15d, 17).  168 
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 169 

Supplementary Fig. 15 | The stability of rFRC map. (a) The FRC curve (black), 3σ threshold curve (blue), 170 

and 1/7 threshold curve (red) for a 64 × 64 pixels image (solid) and a 512 × 512 pixels image (dashed). For 171 

an image with a large size (512 × 512 pixels), the 1/7 threshold attains a similar result to the 3σ curve criterion 172 

(green circle). However, for a small image (64 × 64 pixels), the 1/7 threshold is smaller than all correlation 173 

values in the FRC curve, failing to yield the cutoff frequency. (b) The uncertainty of FRC calculation using 174 

different block sizes by 1/7 threshold curve (left) and 3σ threshold curve (right). We downsampled the 2D-175 

STORM captured microtubule image (c.f., Fig. 2f, 10 nm pixel size, 4096-pixel number) with 16, 32, 64, and 176 

128 times to create different image sizes and convoluted the resulting images with a 120 nm PSF. After that, 177 

Poisson and 5% Gaussian noise were injected into the image. This procedure was repeated 20 times 178 

independently and the FRC calculations were performed with different criteria. (c) rFRC maps using different 179 

block sizes (c.f., Fig. 1c). Although the smaller block size (e.g., 32 × 32 pixels) may enable finer mapping, the 180 

overall distributions of these rFRC resolution maps using different block sizes are close to each other. On the 181 

other hand, the overly small block size may lead to an overconfident resolution value and larger uncertainty. 182 

Therefore, to balance the compromise between mapping scale and estimation stability, we chose a block size 183 

of 64 × 64 pixels as default in this work. (d) FRC maps using different block sizes. Scale bar: 500 nm. 184 



19 

rFRC & PANEL | Supplementary Information 

 185 
Supplementary Fig. 16 | The resolvability of rFRC map. We simulated structures that contained pairs of 186 

lines with spacing gradually increases, i.e., 2, 4, 8, 16, 32, 64 pixels (pointed by red arrows), and convoluted 187 

them by a PSF with a 4-pixel FWHM (pixel size 10 nm). To test the maximum resolvability of rFRC, we 188 

included different noise levels on the two lines. Specifically, we added 10% and 50% Gaussian noise on the 189 

left and right lines, respectively. After that, we applied rFRC mapping on the resulting images (left panel) and 190 

calculated the FRC value distributions (right panel) of pixels on the left (yellow) and right lines (green).  191 
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 192 

Supplementary Fig. 17 | rFRC maps versus FRC maps from different modalities. From left to right: 193 

Imaging data, rFRC map, and FRC map. (a, b) 2D-SMLM simulations with high-density ('HD', a) and low-194 

density ('LD', b) emitting fluorophores in each frame (c.f., Fig. 1c). (c) 2D-SMLM simulation with 195 

inhomogeneous illumination (c.f., Fig. 1d). (d, e) 2D-SMLM experiments with high-density ('HD', d) (c.f., 196 

Supplementary Fig. 7a) and low-density ('LD', e) (c.f., Fig. 2f) emitting fluorophores in each frame. (f) SRRF 197 

experiment (c.f., Supplementary Fig. 7c). (g) RL deconvolution experiment (c.f., Supplementary Fig. 19a). 198 

(h) Hessian-SIM experiment (c.f., Supplementary Fig. 18b). (i) FPM simulation (c.f., Supplementary Fig. 199 

21c). (j) STED experiment (c.f., Supplementary Fig. 22a). The FRC map is based on the 1/7 fixed threshold, 200 

which may generate unstable calculations. Hence, an inverse distance weight function is involved in 201 

interpolating values in all FOVs, while the FRC resolution might not be obtained. This strategy and the 202 

calculation on background areas may generate strong false negatives in the resulting FRC map. Scale bars: (a, 203 

b) 500 nm; (c, h) 1 μm; (d, f) 2 μm; (e, g, j) 5 μm; (i) 50 μm. 204 
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Supplementary Note 2 | SIM applications. 205 

In structured illumination microscopy (SIM), frequency information is unmixed and stitched from noisy data 206 

to achieve super-resolution (SR). As a result, its reconstruction is essentially an ill-posed inverse problem, in 207 

which the conventional Wiener reconstruction (Wiener-SIM) will amplify the noise, leading to significant 208 

fluctuations in high-frequency components. To moderate this issue, several regularizations were proposed to 209 

constrain the reconstruction6. For instance, the Hessian-SIM used the Hessian matrix continuity to eliminate 210 

random and non-continuous artifacts6. Note that the differences between these methods are usually at a fine 211 

scale, and thus an evaluation on the corresponding level is essential. Here our rFRC provides a prerequisite 212 

for assessing these methods objectively. 213 

In experiments, we applied the Hessian denoising algorithm6 on the Wiener-SIM reconstruction7, 214 

(Supplementary Fig. 18a) to obtain the Hessian-SIM images (Methods, Supplementary Fig. 18b). Then, 215 

we performed the rFRC map to differentiate such subtle differences in the fidelity of conventional Wiener-216 

SIM7 versus Hessian-SIM6 (rFRC value, 1.36 versus 1.24) (Supplementary Fig. 18c), and in contrast, the 217 

RSM detected identical qualities (RSE value, 0.27 versus 0.27) (Supplementary Fig. 18e). It is found that 218 

only the rFRC value can reflect the difference between Wiener-SIM and Hessian-SIM. We also found that the 219 

local qualities in SIM are correlated to the emission intensity of the fluorescent signals (Supplementary Fig. 220 

18d), in which the raw images of low SNRs are susceptible to artifacts. The unreliable regions pointed by 221 

PANEL (Supplementary Fig. 18f) are correlated to the regions under weak illumination of TIRF. Notably, 222 

the fixed pattern artifacts of SIM caused by biased parameter estimations or configurations (model bias)8 223 

cannot be detected by our rFRC method. 224 
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 225 

Supplementary Fig. 18 | rFRC detects the difference between Wiener-SIM and Hessian-SIM. (a) 226 

Representative images of live human umbilical vein endothelial cells (HUVECs) labeled with LifeAct-EGFP 227 

under Wiener-SIM (top) and TIRF (bottom) imaging. (b) Hessian-SIM result. (c) rFRC map of Hessian-SIM. 228 

The rFRC, RSP, and RSE values of Wiener-SIM (magenta) and Hessian-SIM (cyan) are shown on the bottom 229 

right. Scale bar: 1 μm. 230 
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Supplementary Note 3 | Deconvolution applications. 231 

Supplementary Note 3.1 | Determining the number of iterations by rFRC. 232 

Richardson-Lucy (RL) deconvolution9, 10 has been actively studied for many reasons, including its potential 233 

to improve the resolution and contrast of raw images. Nevertheless, the traditional RL algorithm risks 234 

amplifying the noise when performing excessive iterations, which extremely limits its applications. Although 235 

the noise-insulated low-frequency components may stand stable, the maximum likelihood estimation fits the 236 

noise-dominated high-frequency ones to recover the high spatial frequencies, which will lead to wide 237 

fluctuations. The common usage requires a post hoc visual inspection to determine the best number of 238 

iterations. Here, to ascertain the rFRC value readouts guiding this determination for the number of RL 239 

iterations, we applied RL to process the TIRF image (Supplementary Fig. 19a) and then calculated its 240 

corresponding rFRC value of each iteration (Supplementary Fig. 19b, right panel of Supplementary Fig. 241 

19e). Interestingly, it is noticeable that rFRC values presented a quadratic distribution with the minimum value 242 

appearing after 80 iterations. It is similar to the peak signal-to-noise ratio distribution (PSNR, left panel of 243 

Supplementary Fig. 19e), in which the TIRF-SIM (Methods) image is used as ground truth. In contrast, the 244 

curve of the resolution-scaled Pearson coefficient (RSP)3 failed to recapitulate this distribution (middle panel 245 

of Supplementary Fig. 19e). As demonstrated in Supplementary Fig. 19d, the RL deconvolution with 200 246 

iterations produced snowflake-like artifacts, as indicated by the white arrows, which can be confirmed as 247 

nonexistent by the referenced TIRF-SIM image. A comprehensive comparison demonstrated that 80-iteration 248 

RL optimally enhanced the image contrast with the slightest noise-amplification-induced artifacts. The 249 

inverted illumination intensity map (Supplementary Fig. 19c) is proportional to the rFRC map 250 

(Supplementary Fig. 19b), indicating that the local quality in the results of RL deconvolution is highly 251 

correlated with the SNR. 252 



24 

rFRC & PANEL | Supplementary Information 

 253 

Supplementary Fig. 19 | Determining deconvolution times by rFRC. (a) Representative results of fixed 254 

liver sinusoidal endothelial cells (LSECs) labeled with DiI under RL deconvolution (top) and TIRF (bottom) 255 

imaging. (b) rFRC map of RL deconvolution result. (c) TIRF image convoluted with a large Gaussian kernel 256 

and coded with an inverted sJet colormap. (d) Magnified views of the white box in (a). The original TIRF 257 

image, RL deconvolution results with 80 and 200 iterations, and TIRF-SIM results are shown in the top left, 258 

top right, bottom left, and bottom right, respectively. (g) Curves of the PSNR (versus TIRF-SIM), RSP (versus 259 

TIRF), and rFRC values over iterations. (a) 5 μm; (d) 100 nm; 260 
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Supplementary Note 3.2 | Reducing artifacts by rFRC-based adaptive low-pass filter. 261 

The FRC can determine the reliable cutoff frequencies (COFs) of the images, indicating that the frequency 262 

components are more prominent than the ones corrupted with noise. Because the rFRC can calculate the local 263 

COF in different areas of the image, we adaptively low-pass filtered various block-box areas within the entire 264 

image: 265 

  , ,( )x y x yI OTF FF F ,                            (31) 266 

where Ix,y represents the subset image of the input image, whose center pixel is at the spatial position (x, y). 267 

OTF(Fx,y) is the optical transfer function (OTF) with the COF Fx,y, in which the outer COF is set as 0, and the 268 

inner COF is 1. In RL deconvolution, the reconstructed image quality is highly related to the corresponding 269 

local SNR; hence, the reconstruction result usually has a spatially variant COF. A global FRC filter may not 270 

achieve the optimal result (Supplementary Fig. 20d, SSIM = 0.32, PSNR = 19.30); in contrast, it can be seen 271 

that our designed adaptive rFRC filter yielded a better reconstruction (Supplementary Fig. 20e, SSIM = 0.42, 272 

PSNR = 21.90). 273 

 274 

Supplementary Fig. 20 | Adaptive low-pass filter for RL deconvolution result. (a) The simulated wide-275 

field image. The ground-truth image (f) is convoluted by a PSF (FWHM = 240 nm), integrated with Poisson 276 

and 10% Gaussian noise. (b) Image in (a) after RL deconvolution with 500 iterations. (c) The adaptive filter 277 

workflow. The block size of the filter is set as 64 × 64 pixels, and the overlap between adjacent blocks is set 278 

as 4 pixels. (d) Image in (c) after the global estimated cutoff frequency filter. (e) Image (a) after the adaptive 279 

local filter. (f) The ground-truth structures of (a). WF: wide-field; GT: ground truth. Scale bar: 2 μm. 280 
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Supplementary Note 4 | FPM applications. 281 

Fourier ptychographic microscopy (FPM)11 achieves high-resolution by iteratively stitching together a number 282 

of low-resolution images in Fourier space, and it is a coherent imaging modality through a combination of 283 

synthetic aperture and phase retrieval concepts. In specific reconstruction process, it updates the objective 284 

function between the spatial and Fourier domains iteratively with intensity or pupil constraints. In this case, 285 

the noise-contaminated high-frequency components can significantly induce the quality degradation during 286 

its spectrum extension. In this experiment, we extended our rFRC applications to FPM for assessing its 287 

reconstruction qualities. The United States Air Force (USAF) resolution target was used as the ground-truth 288 

sample (Supplementary Fig. 21a), and we simulated the FPM imaging process (Methods) to create the low-289 

resolution result (Supplementary Fig. 21b) and its corresponding high-resolution FPM reconstruction 290 

(Supplementary Fig. 21c). In Supplementary Fig. 21d, it can be seen that the RSM without filtering is prone 291 

to small intensity fluctuations belonging to false negative (FP, cyan arrows). In contrast, the rFRC map 292 

(Supplementary Fig. 21e) accurately represents the quality of FPM reconstruction, pinpointing all the regions 293 

of true negative (TN, magenta arrows in Supplementary Fig. 21f). 294 

 295 

Supplementary Fig. 21 | USAF target simulation of FPM evaluated by rFRC and PANEL. (a) Simulated 296 

ground-truth. (b) Wide-field image of (a). (c) Corresponding FPM reconstruction. (d) RSM of FPM. (e) rFRC 297 

map of FPM. (f) Merged image of PANEL (green channel) and FPM (gray channel) results. FP: false positive; 298 

TN: true negative. Scale bars: 50 μm. 299 



27 

rFRC & PANEL | Supplementary Information 

Supplementary Note 5 | STED applications. 300 

In addition to detecting the reconstruction uncertainties, the rFRC map can provide a quantitative resolution 301 

metric. Although the original FRC map3 was used to evaluate the resolution, it is prone to false negatives 302 

induced by the background. For example, the mean resolution of the STED12 estimated by the previous FRC 303 

map was given as ~146 nm (Supplementary Fig. 22b), which might be an underestimation due to the false 304 

negatives caused by the background. In contrast, our rFRC estimated the system resolution as ~92 nm 305 

(Supplementary Fig. 22a), which is more reasonable. In addition, we provide the 'sJet' color map for 306 

visualizing the resolution distribution in higher contrast than that of the previously used 'SQUIRREL-FRC’ 307 

color map (Supplementary Fig. 22b, 22c). 308 

More importantly, the FRC map is based on the 1/7 fixed threshold3, while the FRC value might not be 309 

obtained in some regions, and an inverse distance weight function is involved in interpolating values in all 310 

FOVs. This strategy may generate false negatives in the resulting FRC map, as indicated by the yellow arrow 311 

in Supplementary Fig. 7b. Therefore, this FRC map could not reflect the fine artifacts in the MLE 312 

reconstruction. In contrast, our rFRC map used the 3σ curve to determine the cutoff frequency with applying 313 

a background threshold filter to remove the background FRC value, which effectively reduced possible false 314 

negatives. As a result, the proposed rFRC map could favorably achieve challenging SR scale quality mapping, 315 

as demonstrated in Supplementary Fig. 7a and Supplementary Fig. 17. Nevertheless, we still provided both 316 

the 1/7 hard threshold and 3σ-curve-based resolution mapping features in the PANELJ Fiji/ImageJ plugin for 317 

further potential applications. 318 

 319 

Supplementary Fig. 22 | False-negative induced by the background. SiR-tubulin-labeled microtubules 320 

seen under gSTED13 (a); FRC map with 64-pixel block size coded with the SQUIRREL-FRC color map (b); 321 

rFRC map coded with the sJet color map (c). Scale bar: 5 μm. 322 
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Supplementary Note 6 | Comparisons of rFRC, RSM, and SSIM. 323 

First, we intend to demonstrate the reliability of the proposed assessment. As seen in Supplementary Fig. 23, 324 

a series of filaments with different distances were convoluted with a wide-field PSF (NA=1.4). We gradually 325 

increased the noise level in the raw image (along the yellow arrow, Supplementary Fig. 23b) and showed the 326 

results after RL deconvolution (Supplementary Fig. 23c). Compared to the ground truth, significant artifacts 327 

appeared in the white dashed box in Supplementary Fig. 23c, which were successfully detected by our rFRC 328 

map (Supplementary Fig. 23d) but not the RSM (Supplementary Fig. 23i). Under the identical 329 

configurations of rFRC mapping, we can see these spatial methods failed to highlight such unreliable regions, 330 

in which we showed the structural similarity (SSIM)14 map (Supplementary Fig. 23e) and the subtraction 331 

(Supplementary Fig. 23f). Beyond that, it is also worth noting that the rFRC maps formed by Reconstruction1 332 

and Reconstruction2 (Supplementary Fig. 23d) or Reconstruction1 and Ground Truth (Supplementary Fig. 333 

23g) matched perfectly, indicating that our method can evaluate the reconstructed image quality without the 334 

ground truth.  335 

Second, our rFRC map can also be used as a generalized metric to quantify the difference between the 336 

reconstruction and ground truth, and overcomes the natural defect of SSIM. In the SSIM map (Supplementary 337 

Fig. 23h), we can see the existence of strong false negatives, making the true negatives difficult to dissect. 338 

The region inside the yellow box (Supplementary Fig. 23b) was set as noise-free, thus there was no difference 339 

between the two independent reconstructions (Supplementary Fig. 23d-23f). Here, the reconstruction within 340 

this region (Supplementary Fig. 23c) was almost identical to the ground truth (Supplementary Fig. 23a). 341 

Interestingly, both the inverted SSIM map and RSM (Supplementary Fig. 23h and 23i) still provided small 342 

values, indicating a false negative. In contrast, the rFRC map between Reconstruction1 and Ground Truth 343 

(Supplementary Fig. 23g) remains empty for this region, which is fairly more reasonable.  344 
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  345 

Supplementary Fig. 23 | Synthesizing noise of different amplitudes to evaluate the performance of the 346 

rFRC, RSM, and SSIM. (a) Ground-truth sample. (b) Wide-field image. (c) RL deconvolution result. (d) 347 

rFRC map from two reconstructions (Reconstruction1 vs Reconstruction2). (e) Inverted SSIM map from two 348 

reconstructions (Reconstruction1 vs Reconstruction2). (f) Spatial subtraction results from two reconstructions 349 

(Reconstruction1 vs Reconstruction2). (g) FRC map from reconstruction and ground truth (Reconstruction1 350 

vs Ground Truth). (g) Inverted SSIM map from reconstruction and ground truth (Reconstruction1 vs Ground 351 

Truth). (i) RSM of (c). Scale bar: 500 nm. 352 
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Supplementary Note 7 | The uncertainties in learning-based applications. 353 

Supplementary Note 7.1 | The leaked model uncertainty detection. 354 

In theory, as a model-independent method, the rFRC using two captures cannot directly detect the model 355 

uncertainty. However, in practice, as a purely data-driven approach, the deep learning model has no stationary 356 

form in weights that acquire only after learning from the training data. As discussed in ref15, the model 357 

uncertainty and data uncertainty may be not mutually exclusive. To concisely demonstrate this mechanism, 358 

we synthesized four simple types of structures before sampling them to a sparse form16 (Methods, 359 

Supplementary Fig. 24), and the structures with or without sparse sampling were used as the model input or 360 

ground truth. The rectangular shapes were used as the training dataset, and the square, triangular, and circular 361 

shapes were used to test the U-net predictions (Methods, Supplementary Fig. 13). Because it is hard to 362 

disentangle deep-learning artifacts due to mode uncertainty or data uncertainty in actual experiments, we 363 

intentionally simulated the univocal shapes to explore this problem16. Since the squares can be regarded as a 364 

subset of rectangles, using the sparse squares/rectangles as input, the network was free from model uncertainty 365 

and thus predicted the corresponding shapes accurately (Supplementary Fig. 24b, 24c). In contrast, when 366 

presenting the network with the out-of-distribution shapes (triangular or circular), the predicted results still 367 

approximated the corresponding structures with the learned rectangular shapes16, primarily caused by the 368 

model uncertainty (Supplementary Fig. 24b, 24c).  369 

To study how the model uncertainty leaked into the data uncertainty, we sampled identical structures twice 370 

to generate two predictions, denoted as Prediction1 and Prediction2 in Supplementary Fig. 24c. Confirming 371 

our assertion, the average intersection over union (IoU, also known as the Jaccard index) values between 372 

Prediction1 and Prediction2 shared a distribution identical to that between the Ground-truth and Prediction1 373 

(Supplementary Fig. 24d and 24e). Moreover, the pattern of the mean rFRC values was exact opposite to 374 

those of the IoU values (Supplementary Fig. 24f). The predictions of the square/triangular shapes gave small 375 

rFRC metrics (1.56/1.65), and that of the triangular/circular shapes led to much larger rFRC metrics (4.19 and 376 

4.89). Based on above proof-of-principle simulations, we can find the only probable reason for the rFRC 377 

metrics increasing, is the model uncertainty leaking into the measured data uncertainty. Therefore, using the 378 

rFRC metric on the two individual predictions, we can detect both the data and the leaked model uncertainty 379 

of learning-based approaches without knowing the ground truth. 380 
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 381 

Supplementary Fig. 24 | Simulation of univocal shapes uncovers that the model uncertainty leaks to the 382 

data uncertainty. Rectangles (left) are used as the training dataset, and the other geometrical shapes (squares, 383 

circles, and triangles) denote the test dataset (from left to right). (a) Representative sparsely sampled input of 384 

corresponding geometry ('Input'). (b) Merged images using predicted images and the related ground-truth 385 

images (ground-truth: red channel; prediction 1: green channel). (c) Merged images using two predicted 386 

images (prediction 1: cyan channel; prediction 2: magenta channel). The corresponding input images of 387 

'Prediction1' and 'Prediction2' are sampled independently. (d) Average IoU values from the prediction versus 388 

the ground truth (median values from left to right: 0.97, 0.99, 0.89, 0.91). (e) Average IoU values between two 389 

predictions (median values from left to right: 0.97, 0.98, 0.87, 0.91). (f) Average rFRC values between two 390 

predictions (median values from left to right: 2.05, 1.86, 4.94, 4.60). 391 
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Supplementary Note 7.2 | A strategy for assessing both model and data uncertainties. 392 

Since exact Bayesian inference is computationally intractable for neural networks (Bayesian neural networks, 393 

BNNs)17, many feasible approximations have been proposed, including the Monte Carlo dropout18 (MC 394 

dropout), variational Bayesian methods19, and deep ensemble20. Although these approximations allow the 395 

BNNs to function at some levels, they still rely on crucial assumptions. Compared to the conventional NNs, 396 

distribution forms of network predictions and weights need more complicated parameters, and most 397 

approximations need modifications to the network structures and training processes. These modifications may 398 

compromise the performance of NNs and were inconvenient in most application cases. Thus, the BNNs may 399 

not be a practical choice for uncertainty assessment when considering these imperfections. 400 

In traditional optical imaging, the model uncertainty assessments rely on specific model calibration 401 

procedures. However, as a purely data-driven approach, the deep learning approach has no stationary form in 402 

weights which only learns the representations of training data. In another word, the predictions of the out-of-403 

distribution input data (images) would be more sensitive (with more predicted fluctuations) to the potential 404 

influences, such as model weights changes. Like the deep ensemble approach20, it conceptually utilized an 405 

ensemble of models for quantifying predictive uncertainty with respect to the model parameters (model 406 

uncertainty). Inspired by this, we also introduce an explicit framework to assess both model and data 407 

uncertainties. First, we independently trained two models on the same dataset (with different random 408 

initializations and optimization processes) to reflect the model uncertainty, and the rFRC mapping was used 409 

to represent the model uncertainty. This approach resembles the frequentist approach to estimating uncertainty, 410 

which is simple to implement, flexible to parallelize, and no hyperparameter tuning required. Second, we 411 

sampled the input data (images) twice to evaluate the data uncertainty, and we then applied the rFRC to assess 412 

the data uncertainty as did in the optical modalities.  413 

Using a proof-of-principle experiment under the same configuration as in Supplementary Fig. 24, we 414 

verified the possibility of using this strategy to extend our rFRC for assessing both data uncertainty and model 415 

uncertainty (Supplementary Fig. 25). They are first quantified using the IoU metric against the ground truth 416 

as references. For model uncertainty, we trained 2 networks independently and then fed them with the same 417 

sparsely sampled data to obtain Prediction1 and Prediction2. To explore the generality, we also trained 8 418 

networks independently for obtaining 8 predictions, in which the patterns of the IoU (between Predcition1 419 

and Prediction2) and the average of 8 predictions are consistent with the IoU (between the predictions and 420 

ground truth) (Supplementary Fig. 25b). Next, for data uncertainty, we sampled the same data twice or eight 421 
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times and followed the same evaluation procedure mentioned. Interestingly, we found the predictive 422 

differences of multiple models are rather small (right panel of Supplementary Fig. 25b, IoU (2) and (8)), 423 

reflecting that, most model uncertainty was leaked to the data uncertainty in this case. Overall, according to 424 

these results (Supplementary Fig. 25), we might use this strategy to evaluate data uncertainty and model 425 

uncertainty.  426 
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 427 

Supplementary Fig. 25 | Data and model uncertainty quantification of sparse sampling simulated 428 

demonstration. Rectangles are used as the training dataset, and other geometrical shapes (squares, triangles, 429 

and circles) are used as a test dataset (from top to bottom). (a) From left to right: Input (representative sparsely 430 

sampled input of the corresponding geometry); Prediction1 + Prediction2 (merged image of two predictions 431 

when two neural networks are trained independently); Prediction1 + Prediction2 (merged image of two 432 

predictions when two input images are sampled independently); GT + Prediction (merged image of PANEL 433 

in green channel and the predicted result in red channel); Ground truth (before sparse sampling). (b) Data 434 

uncertainty (top) and model uncertainty (bottom) quantification using the intersection over union (IoU) as an 435 

index. IoU (2): IoU between 2 predictions; IoU (8): IoU between 8 predictions; IoU (2, GT): IoU between 1 436 

prediction and the ground truth; IoU (8, GT): IoU between 8 predictions and the ground truth. 437 
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Supplementary Note 8 | Single-frame strategies for rFRC mapping. 438 

Supplementary Note 8.1 | Single-frame rFRC for optical imaging applications. 439 

The FRC calculation needs statistically independent image pairs sharing exact details but different noise 440 

realizations. In some optical imaging applications, such as SMLM21, 22, SRRF23, and SOFI24, these modalities 441 

can produce statistically independent images by dividing the input image sequence into two subsets and 442 

reconstructing them independently. Other modalities can even sample twice directly to create the necessary 443 

image pair4. However, some modalities, require multiple inseparable measurements to generate a single piece 444 

of SR content, resulting in difficulty in obtaining statistically independent image subsets. 445 

Following the examples of Sami Koho et al.5, we provided the single-frame rFRC as a supplement 446 

(Supplementary Fig. 26a). Considering each camera pixel being sampled independently, we divided a single 447 

frame into four subsets to create two image pairs with identical details but different noises. These two pairs 448 

were formed according to the pixels at (even, even) and (odd, odd) or (even, odd) and (odd, even) row/column 449 

indexes, as shown in Step 1 in Supplementary Fig. 26a. This operation yields a single-pixel shift in both x 450 

and y directions in the image pairs and this spatial shift results in a 2 /i sr Ne  frequency phase modulation during 451 

FRC calculation. 2 2
0 0s x y  is the total length of the shift, and r is the radius in the FRC calculation. As 452 

the calibration procedure described by Sami Koho et al.5, we correct this bias by the following equation: 453 

1
sftf c r b

r
a e d

 


 
,                                (13) 454 

where rtf and rsf represent the two-frame and one-frame FRC cutoff frequencies (COFs), respectively. The 4 455 

parameters a, b, c and d are all experimentally fitted from the data (a = 0.9599, b = 0.9798, c = 13.9044, d = 456 

0.5515)5. In addition, we calculate the FRC values of two image pairs and average them to deal with special 457 

spectral-domain symmetries that arise when the details in an image are majorly oriented in a single direction. 458 

As the lateral dimensions of the four sub-images being identical and half the size of the original image, we 459 

resize the resulting rFRC map to the original image size with interpolation for better visualization. 460 

Supplementary Note 8.2 | Single-frame rFRC for learning-based imaging. 461 

Deep-learning reconstruction techniques differ from the conventional optical imaging methods in which the 462 

adjacent pixels in the output results from deep neural networks (DNNs) may share similar noise characteristics. 463 

Therefore, the above proposed single-frame strategy for the rFRC used in the optical imaging method is 464 

unsuitable for examining DNN reconstructions. Inspired by DeepFool25 and other works26, we also create a 465 



36 

rFRC & PANEL | Supplementary Information 

strategy to perform single-frame rFRC calculations for DNNs. DeepFool added small and invisible 466 

perturbations to the input image, and the corresponding classification result of the DNNs was far from the 467 

truth. Similarly, we add two independent Gaussian noises to the original input image for artificially creating 468 

two frames as the input pair (Supplementary Fig. 26b). Then, after the DNNs reconstruct these two input 469 

images individually, the resulting two output images are used to calculate the rFRC map following the same 470 

procedure. When the independent Gaussian noise is added into the input image, these small perturbations may 471 

profoundly change the DNN reconstructions. Remarkably, the more significant difference exists between these 472 

two reconstructions, the more the reconstructions will deviate from the real object. It also agrees with the data 473 

uncertainty concept proposed by Cameron Buckner for BNNs27, in which the more considerable the variation 474 

induced by this perturbation, the worse the intrinsic error. 475 

 Test on learning-based SIM: In principle, 2D-SIM achieves SR by taking nine images of a wide-field 476 

microscope; thus, it provides the ideal pairs of low-resolution (LR) and SR images to train learning-based 477 

networks, such as the TIRF2SIM28 and DFGAN-SIM29 algorithms. Because SIM only modestly increases the 478 

spatial resolution (~two-fold), it may represent an ideal model for deep-learning algorithms to transform wide-479 

field images into SR-SIM images. Despite their excellent visual effects, we wonder about the accuracy of the 480 

network prediction. By applying the single-frame rFRC calculation strategy, we evaluated spatial frequency 481 

extension by the TIRF2SIM algorithm (Supplementary Fig. 27a-27d)28. While the deep network deduced 482 

simple CCPs from an LR image with high accuracy, the PANEL map highlighted these erroneous regions 483 

(green regions, Supplementary Fig. 27d). For example, one large postulated CCP (the bottom arrow in 484 

Supplementary Fig. 27b) was two adjoined CCPs under TIRF-SIM (the bottom arrow in Supplementary 485 

Fig. 27c). Another algorithm, DFGAN-SIM, also predicted the simple microtubule filaments (under the 486 

grazing incidence illumination, GI)30 with high fidelity. However, our rFRC revealed relatively increased 487 

uncertainties at the intersections (Supplementary Fig. 27f-27g). In contrast, when DFGAN-SIM was used to 488 

postulate intricate mitochondrial cristae structures from the raw wide-field images, the predicted image was 489 

different from the ground truth in many aspects, despite the overall visual resemblance (Supplementary Fig. 490 

27k-27o). It is clear that the segmented rFRC map again highlighted these structural similarities and 491 

dissimilarities, underscoring its application in quantifying local uncertainties in SR images postulated by any 492 

learning-based method.  493 

Then, we tested the single-frame rFRC maps in images corrupted with noises of different amplitudes 494 

(Supplementary Fig. 28). Small noise amplitudes cannot disturb the network predictions to detect the holistic 495 

view of uncertainty (black areas in 1% ~ 7% from Supplementary Fig. 28). Once the noise amplitude is 496 
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capable of probing the overall uncertainty distribution of the predictions (9% from Supplementary Fig. 28), 497 

we stop increasing the noise amplitude and choose this noise level as a proper amplitude to generate two 498 

frames for our rFRC mapping. 499 
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 500 

Supplementary Fig. 26 | The rFRC calculation from a single frame. (a) The strategy for optical super-501 

resolution. (b) The strategy for learning-based super-resolution. ANN: Artificial neural network. 502 
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 503 
Supplementary Fig. 27 | Learning-based SIM evaluation. (a) TIRF2SIM result of CCPs (gene-edited 504 

SUM159 cells expressing AP2-eGFP). The network was trained on CCP structures ('CCPs'), and the input of 505 

which is a single-frame TIRF image. (b) Corresponding TIRF-SIM image. (c) Input TIRF image. (d) Merged 506 

image of the PANEL (green channel) and TIRF2SIM (gray channel) results. (e) Corresponding magnified 507 

views of the white box in (a). (f) DFGAN-SIM result of microtubules (enconsin-mEmerald in COS-7 cells). 508 

The network was trained on different microtubule structures ('MTs'), in which the input is 9 frames of raw 509 

data. (g) Corresponding GI-SIM image. (h) Averaged input GI image. (i) Merged image of the PANEL (green 510 

channel) and DFGAN-SIM (gray channel) results. (j) Corresponding magnified views of the white box in (f). 511 

(f) DFGAN-SIM results of mitochondrial cristae (MitoTracker Green in COS-7 cells). The network was 512 

trained on microtubule structures, and its input is nine frames of raw data. (g) Corresponding 2D-SIM image. 513 

(h) Averaged input WF image. (i) Merged image of the PANEL (green channel) and DFGAN-SIM (gray 514 

channel) results. (j) Corresponding magnified views of the white box in (f). Scale bars: (a, f, k) 2 μm; (e, j, o) 515 

500 nm. 516 
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 517 

Supplementary Fig. 28 | Illustration of rFRC maps with different noise amplitudes added (c.f., 518 

Supplementary Fig. 27f-27j). The rFRC maps except for the image at the right bottom. The corresponding 519 

percentage sign represents the amplitude (variance) of noise (1% equal to '0.01 × maximum intensity of 520 

image'). Right bottom: Merged image of the PANEL (green) and DFGAN-SIM (gray) result. Scale bars: 2 μm. 521 
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Supplementary Note 9 | Limitations. 522 

In this part, we discussed the possible caveats of the rFRC and RSM maps, revealing the holistic view of our 523 

quantification, including its inherent limitations. Inspired by the Bayesian neural network15, we defined two 524 

major types of uncertainty: the data uncertainty and the model uncertainty. The data uncertainty is mainly 525 

induced by the combined effects of noise/sampling. The model uncertainty is primarily caused by the existing 526 

distance between the established model and its real-world counterpart (or networks' ignorance of the out-of-527 

distribution data). However, based on the underlying theory of the corresponding models, the model-related 528 

bias can be detected and reduced by careful system calibration8, 31, 32 in optical imaging, or suppressed by a 529 

specifically designed strategy33 and enough training data15 in learning-based applications. On the other hand, 530 

data uncertainty is fundamentally model-independent, inevitable, and difficult to remove by system calibration 531 

(or adding more training datasets in learning-based scope).  532 

In optical imaging applications, our model-independent rFRC can measure the data uncertainty to reflect 533 

the data error, and is limited to uncover the model uncertainty-induced reconstruction quality deterioration. 534 

For example, the PSF mismatch (theoretical PSF versus real PSF) induced by instrument imperfections and 535 

the sample-induced aberrations will introduce the biased estimation in SMLM34, which can be compensated 536 

for by careful system calibration or the in situ point spread function retrieval (INSPR)34. Using a straight line 537 

as an example, if we localize it with the mismatched PSF, the reconstruction will be biased toward structural 538 

distortion. This model uncertainty is visible as seen in Supplementary Fig. 29 (structural distortion, the 539 

original straight line to a tilted line), which could not be detected by the our rFRC. 540 

In learning-based applications, as a purely data-driven approach that learns representations of training 541 

data, the model uncertainty and data uncertainty will not be mutually exclusive15. Our framework has shown 542 

the possibility of detecting both model (part of leaked model uncertainty) and data uncertainties, as 543 

demonstrated in Fig. 3 and Supplementary Fig. 24. Alternatively, we estimated the data and model 544 

uncertainty in learning-based applications by data sampling twice and network training twice, respectively. 545 

By applying the rFRC map to the twin predictions from two inputs (obtained from data sampling twice) and 546 

two models (obtained from network training twice), we can effectively obtain both the data and model 547 

uncertainties. 548 
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   549 

Supplementary Fig. 29 | Unbiased and biased estimations of SMLM imaging. The straight-line SMLM 550 

example enables visualizing unbiased and biased estimations. The real object is a straight line, and the PSF 551 

model is approximated as a Gaussian function. At a depth of 0 μm, such PSF model approximation is close 552 

enough to the real world (unbiased estimation) model reconstructing the straight-line structure. However, at a 553 

depth of 50 μm, due to the index mismatch and sample-induced aberrations, the real-world PSF model will 554 

deviate from the point-source Gaussian function. Therefore, the reconstruction (still using the Gaussian 555 

function) will distort the straight-line structure to a tilted line (biased estimation). In this case, such model 556 

uncertainties cannot be directly detected by the rFRC map. 557 

Supplementary Note 8.2 | Limitations of the two-frame rFRC map. 558 

Limitation 1: The normal rFRC method requires two statistically independent images with exact details. The 559 

single-frame rFRC procedure can moderate these requirements. 560 

Limitation 2: If the errors are fixed patterns induced by the biased reconstruction model, they will be ignored 561 

in the rFRC map. For example, the rFRC using two independent captures cannot reveal errors due to the 562 

absence of the identical component in two measurements simultaneously. This limit is complemented by the 563 

RSM method to some extent. Besides, in learning-based applications, the model uncertainty can be uncovered 564 

by mapping two predictions from the two independently trained models. 565 

Limitation 3: The rFRC can assess local qualities up to (≥) the corresponding SR scale. If the errors are 566 

smaller than the SR scale, such as the snowflake-like artifacts, they will be ignored in the rFRC map. 567 

Supplementary Note 8.3 | Limitations of the single-frame rFRC. 568 

For optical imaging. 569 

Limitation 1: The diagonal of the pixel in the corresponding image should satisfy the Nyquist sampling 570 



43 

rFRC & PANEL | Supplementary Information 

criterion, in which it requires a pixel size that is 2 times smaller, i.e., / 2 2pixel resolution . Compared 571 

to the two-frame rFRC, the single-frame approach is usually unstable. 572 

Limitations 2 and 3: Similar to those of the two-frame rFRC. 573 

For deep-learning approaches. 574 

Limitation 1: Special care should be taken when determining the proper additive noise amplitude for the input 575 

image. An irrelevant small or large magnitude may lead to false positives or negatives. Appropriate noise 576 

magnitude should be chosen according to their specific situation. 577 

Limitations 2 and 3: The same as for the two-frame rFRC. 578 

Supplementary Note 8.4 | Limitations of the modified RSM. 579 

Limitation 1: The RSM converts the SR image to its low-resolution scale; thus, it can detect only low-580 

resolution errors. In contrast, errors at the SR scale (small-magnitude error components) estimated by the RSM 581 

may be false negatives, and using the rFRC map and segmentation may reduce the problem. 582 

Limitation 2: The RSM map is the absolute residual image between the IL and IHS. This map is highly 583 

corrupted by the intensity and illumination, leading to incorrect quantifications. This issue can be relieved by 584 

image segmentation. 585 

Limitation 3: The RSM requires a high-SNR wide-field low-resolution image as a reference. 586 

Limitation 4: The spatially invariant 2D Gaussian kernel convolution assumption may not apply to any optical 587 

system, not only introducing false negatives, but also limiting its application to 3D or non-Gaussian 588 

convolution data (e.g., denoising applications). Thresholding and segmentation can be used to mitigate this 589 

limitation. 590 

In summary, we used a hard threshold of 0.5 in the RSM to detect only significant errors. The removal of 591 

minor errors reduces the number of potential false negatives posed by Limitations 1, 2, and 4. In addition, we 592 

apply the complemented rFRC map, which compensates for Limitation 1 of RSM. 593 
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Supplementary Tables. 594 

Supplementary Table 1 | Parameters of geometrical structure simulations.  595 

For a rectangle, dimension1 is the height, and dimension2 is the width. For a square, dimension1 is the length 596 

of each side. For a triangle, dimension1 is the base, and dimension2 is the height. For a circle, dimension1 is 597 

the radius. 598 

Geometry Dimension1 Dimension2 Number 

Rectangle 5~40 pixel 5~40 pixel 3~5 

Square 20~50 pixel \ 3~5 

Triangle 35~50 pixel 50~100 pixel 3~5 

Circle 10~50 pixel \ 3~6 
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Supplementary Table 2 | Details on network architecture, loss function, and training procedure.  599 

PSF SR: the 240 nm PSF to 120 nm PSF image transformation. 600 

Parameters 
Sparse sampling 

(Supplementary Fig. 24) 

Noise2Noise 

(Fig. 4j-4m) 

PSF super-resolution 

(Fig. 3) 

Training patch size 256 × 256 256 × 256 128 × 128 

No. of epochs 300 100 100 

Batch size 8 32 32 

No. of images 5000 16000 25 

Learning rate 10-4 10-4 10-4 

Topology U-net1 U-net1 U-net1 

Parameters 4.18 × 107 4.18 × 107 4.18 × 107 

Loss function MAE MAE MAE 

Optimizer Adam Adam Adam 
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