Ion mobility mass spectrometry and molecular dynamics simulations unravel the conformational stability and coordination dynamics of human metallothionein-2 species

Manuel David Peris-Diazab, Alexey Barkhanskiyb, Ellen Liggettb, Perdita Barranb*, Artur Krężela*

Ion mobility mass spectrometry (IM-MS) unraveled different conformational stability in Zn\textsubscript{4}−-metallothionein-2. We introduced a new molecular dynamics simulations approach that permitted the exploration of all conformational space confirming the experimental data, and revealed that not only the Zn−S bonds but also α−β domain interaction modulates protein unfolding.

Mammalian metallothioneins (MTs) constitute small (~6-7 kDa) cysteine-rich proteins with a primarily biological role in Zn2+ and Cu2+ metabolism.5,6 At least a dozen MTs isoforms (MT1-MT4) and multiple subisoforms have been found, which differ in metal-binding properties, tissue, and cellular localization.4,5 MTs have proved to be highly challenging objects to study using traditional biophysical techniques due to the lack of secondary structures, aromatic amino acids, and the spectroscopic silence of Zn2+.6 To date, only one X-ray structure has been solved for rat hepatic mixed Cd\textsubscript{2}Zn\textsubscript{2}MT2 species6 The protein adopts a dumbbell shape with two metal-thiolate clusters named α- and β-domains containing a Cd\textsubscript{2}Cys\textsubscript{11} and Cd\textsubscript{2}Zn\textsubscript{2}Cys\textsubscript{9} cluster, respectively. Despite Cd2+ and Zn2+ capabilities to form an M\textsubscript{7}MT2 (where M represents a metal ion), there is a divergence of behavior in the thermodynamic and kinetic properties between these two divalent metal ions, which is not without biological consequences.7 The seven Cd2+ ions bind cooperatively in Cd\textsubscript{7}MT in a domain fashion with three to five orders of magnitude tighter than Zn2+.2 In contrast to cadmium, zinc MT2 presents three classes of affinities towards their seven Zn2+ ions. Four Zn2+ are bound with Keq ~10-12 M-1, another two with Keq ~10-10-10-11 M, while the seventh is weakly bound with Keq of ~10-8 M.8 As a consequence of this fact, MT2 exists as multiple Zn\textsubscript{4}−MT2 species under cellular conditions where free Zn2+ concentration varies from 10-11 to 10-8 M.9,10 The characterization of isolated MT fractions from several tissues and cell lines supported the role of Zn\textsubscript{4}−MT2 species as a zinc buffering system.10-12 The heterogeneity of these species impedes their study by high-resolution structural techniques like cryo-EM, X-ray crystallography, or NMR. Ion mobility-mass spectrometry (IM-MS) has proven well-suited to interrogate heterogeneous protein systems and characterize their conformation and dynamics.13-15 However, the resolution of the IM device may not be enough to separate closely related protein conformation. In some cases, gas-phase activation of protein ions via collisional activation also referred to Collision Induced Unfolding (CIU)16, can be used to probe subtle structural differences between similar conformations and study protein ion stability and dynamics. Recently, high-resolution cyclic IM-MS based on traveling wave technology was introduced, allowing for tandem IM workflows.17-19 Despite the structural information that can be derived from IM-MS experiments, it is unable to define protein structure at the atomic level. Recent efforts focused on the integration of molecular dynamics (MD) with IM-MS, assigning gas-phase structures from in silico methods.20-24 Unfortunately, usually only a few metastable states are explored since biological processes such as protein unfolding or conformational changes are on time scales far beyond those accessible by classical MD simulations. To access other conformational states, as those sampled during CIU, most of the works have used a thermal unfolding approach. While some reports have shown that thermal unfolding can reproduce many general features observed during a CIU experiment20,24-25 a recent report has suggested a low reproducibility and lack of conformational sampling.23

In order to investigate the conformational properties of Zn\textsubscript{4}−MT2 species and shed more light on how these species resemble at the microscopic level, IM-MS, CIU, and MD simulations were integrated.
The nESI mass spectra of apoMT2 in the presence of TCEP (termed as “red”) presents a charge state distribution (CSD) spanning only three charge states 3 ≤ z ≤ 5, with apoMT25+red and apoMT26+red the most dominant (Fig. 1a). Reconstituted Zn\textsubscript{2}MT2 protein exhibits a CSD shift toward lower charge state with the Zn\textsubscript{2}MT25+red ions predominant (Fig. 1b), suggesting in solution-phase conformational changes altering solvent accessible surface area (SASA). The apoMT25+red and Zn\textsubscript{2}MT25+red ions displayed a similar collision cross section (CCS) (Fig. 1c-d), hereby not representing the SASA changes. The CCS for apoMT25+red present a broad CCS distribution, and upon Zn2+ binding, a single and compact Zn\textsubscript{2}MT25+red and Zn\textsubscript{2}MT26+red conformer is observed (Fig. 1f). IM-MS revealed that 5+ ions undergo a conformational change capturing the CSD shift observed in the mass-to-charge spectrum (Fig. 1e-f). Partially Zn2+-loaded MT2 species were obtained via titration in the presence of TCEP, and native IM-MS under different collisional activation (CA) conditions were recorded (Fig. 2). Metal-coupled folding effects can be observed upon Zn2+ binding to apoMT25+red: prior to CA, Zn\textsubscript{2}MT25+red ions populate a CCS ~ 1000 Å2 cf. ~ 1300 Å2 for apoMT25+red (Fig. 2a). As the collision energy is increased, the CCS shifts to ~ 1150 Å2 in all of the Zn\textsubscript{2}MT2 complexes. Similar results were obtained under 50 or 200 mM ammonium acetate (Fig. 2f). Unpredictable, fitting the native mass spectra to simulated isotopic distributions revealed the partial retention of protons within the Zn2+ clusters. Lacking a reducing agent during spraying generates signals shifted to lower m/z (Fig. S2). Mass spectra simulations estimated the formation of 7-8 disulfides for all Zn\textsubscript{4}MT25+ox and 2 disulfides for Zn\textsubscript{7}MT25+ox (Table S1). As a consequence, while some portion of the ions unfolds to ~ 1150 Å2, as in the case of reduced complexes, most of the ions are trapped at ~ 1000 Å2. To compare the gas-phase stabilities of Zn\textsubscript{4}MT25+ ions, the CCS along the CE assayed were fitted to estimate the CIU50 values to indicate the energy required to activate 50% of the ions to its next conformation.26 A similar CIU\textsubscript{50} ~ 90 eV was calculated for Zn\textsubscript{4}MT25+ox and Zn\textsubscript{7}MT25+ox ions (Fig. S4). A gradual increase to CIU\textsubscript{50} ~ 110 eV was then determined for Zn\textsubscript{6}MT25+ox and Zn\textsubscript{7}MT25+ox. Our previous study provided the location of Zn2+ in all Zn\textsubscript{2}MT2 species.26 In Zn\textsubscript{2}MT2, two Zn2+ are bound in each α- and β-domain forming Zn\textsubscript{2}Cys\textsubscript{6} clusters. The fifth Zn2+ binds to the δ-domain forming an α\textsubscript{Zn}Cys\textsubscript{5} cluster. The sixth Zn2+ satiates the α-domain forming an α\textsubscript{Zn}Cys\textsubscript{5} cluster, and the seventh Zn2+ forms the α\textsubscript{Zn}Cys\textsubscript{5} cluster. CIU did not detect structural changes between Zn\textsubscript{2}Cys\textsubscript{6} and Zn\textsubscript{2}Cys\textsubscript{5} clusters but determined elevated structural stability upon the formation of the Zn\textsubscript{2}Cys\textsubscript{5} cluster. Taken together, our results elucidated a plausible structural explanation for why the seventh Zn2+ ion binds with a K\textsubscript{d} of ~10−8 M to MT2 and provided a link between structural and Zn2+ buffering properties.8 To get further...
Fig. 3. Collision cross sections (CCS) profiles for the quadrupole-selected apoMT25+ and Zn\textsubscript{a}MT25+ species under different collisional activation energies (a). Snapshots of the desolvation process at different simulation times for an aqueous nanodroplet containing Zn\textsubscript{a}MT2 and Na+ as charge carrier (b) and analysis of CCS (c), salt-bridges (d) and h-bonds (e) as a function of desolvation time. CCS-Temperature plots obtained from thermal unfolding simulations (f). CCS-Force plots derived from SMD simulations (g) and representative snapshots for the conformations from each protein species labeled as in the CCS histograms (h). Yellow and blue spheres represent Zn2+ and Na+, respectively, and the solvent molecules’ oxygen atoms are shown in red. The protein backbone is shown in magenta or grey for simulation of the ESI or CIU process, respectively.

structural insights into the existing conformational families, we employed multistage IM-MS using a cyclic IM-MS instrument. Upon activation of isolated compact conformer α, we observe an unfolding profile that leads largely to a conformation γ, through β intermediate conformation and a minor extended δ conformation (Fig. 2a-c). The great potential of tandem IM is that it allows not only to examine unfolding mechanisms but also to evaluate of the thermodynamic and kinetic stability of unfolded conformations.18 Isolation of the conformer γ (Fig. 2d) and subsequent CIU activation leads to an unfolding profile with no new features (Fig. 2e). We do not evidence a sign of interconversion to a compact conformation (Fig. 2f). These results suggest that exists a relatively high transition energy barrier between these states, and propose a plausible irreversible unfolding mechanism that yields to a thermodynamically stable conformation that can be of relevant interest under cellular stress conditions. To understand the experimental results from a microscopic point of view, we then performed gas-phase MD simulations (Fig. 3a). We first focused on examining how the Zn\textsubscript{a},MT2 protein complexes are transferred from the solution into the gas-phase (Fig. S5-S10, 3b). Proteins were placed in aqueous nanodroplets with an excess of charge to 16+ using Na+ as a charge carrier rather than H+. As the simulation evolves, the solvent gradually evaporates, and Na+ ions are ejected until a charge decrease to 5+. Droplet shrinkage is accompanied by a decrease in the CCS from ~ 1200 to 1000 Å2 until the structure collapse to a more compact conformation with CCS ~ 950 Å2 without altering the Zn–S bonds (Fig. S5-S10, 3c). In this process, salt bridges do not appear to modulate the transition from solution to gas-phase27, but the collapse of the structure is highlighted by an increased number of h-bonds from ~20 to ~40 (Fig. 3d-e). Such results are in excellent agreement with our experimental native IM-MS data (max error < 5 %) and shed light on the gas-phase desolvation and protein structure at the atomic level. We then attempt to simulate the CIU of electrosprayed protein complexes. First, a thermal unfolding protocol was performed on representative structures obtained from gas-phase MD desolvation simulations (Fig. 3f). All of the protein ions have narrower ∆CCS than recorded experimental CIU data (Fig. 3a): apoMT25+red has a ∆CCS of 400 Å2 vs. ∆CCS 300 Å2 for simulations, and Zn\textsubscript{a}MT25+red have a ∆CCS of 200-
250 Å² vs. ΔCCS 70-150 Å² for simulated proteins. SA identified multiple conformations for apoMT25+, a compact conformation ~
1000 Å², and a semi-extended ~ 1200 Å², although the extended one
with CCS ~ 1300 Å² was not sampled (Fig. 3f). Similarly, the compact
and semi-extended conformers were present in αZnβZn2+MT25+ and
αZnβZn2+MT25+ with histograms displaying a bimodal distribution,
and once again, the extended conformation was not detected. As the
Zn2+ loading increases, the conformational heterogeneity measured
as the CCS (ΔCCS) decreases, indicating that Zn2+ promotes protein
folding. Consequently, simulations for Zn5MT24+ and higher Zn3+-
loaded states only sampled the compact conformations. Extending
the simulation times from 10 to 100 ns did not influence the
conformational sampling. Therefore, thermal unfolding failed to
overcome the energetic restraints imposed by the Zn–S bonds and
was not able to sample extended conformations obtained upon
collisional activation. As the radius of gyration (Rg) correlated well
with the CCS values, we used an enhanced sampling algorithm
named steered MD (SMD) simulations to accelerate the transitions
between different states by using Rg as a collective variable (CV). The
force-CCS profiles obtained by SMD simulations clearly distinguished
the compact α and semi-extended conformation β but also sampled
the extended conformation γ in all cases, and reproduce well their
the ΔCCS (Fig. 3g, S11-S17). Comparable CCS distributions were
obtained when using the end-to-end N-C terminus distance as a CV
(Fig. S18-S24). We observed that protein unfolding proceeds via
destabilizing the interdomain α-β interactions (Fig. 3h). To date, no
single report has characterized the structure and protein
conformations for physiologically relevant zinc MT2 species. Here
IM-MS aided by MD simulations present a comprehensive structural
characterization of these protein complexes. Collectively, our study
provides a plausible link between structural and Zn2+ buffering
properties and sheds light on the mode of functioning of these small
yet critical cellular proteins. In addition, as thermal unfolding has
been shown not only here but also in other studies that may lack
conformational sampling, we report an alternative MD framework to
simulate CIU experiments.

This research was supported by the National Science Centre of
Poland (NCN) under the Opus grant no. 2018/31/B/NZ1/00567 (to
A.K.), Preludium no. 2018/31/N/ST4/01909 and Etiuda no.
2020/36/T/ST4/00404 (to. M.D.P.D). We acknowledge the support of
EPSRC through the strategic equipment award EP/T019328/1, the
European Research Council for funding the MS SPIDOC H2020-
FETOPEN-1-2016-2017-801406 and Waters Corporation for their
continued support of mass spectrometry research within the Michael
Barber Centre for Collaborative Mass Spectrometry.

Conflicts of interest

There are no conflicts to declare.

Notes and references

5. E. Artells, O. Palacios, M. Capdevila and S. Atrian, Metallomics
2013, 5, 1397–1410.
10128.
10921.
1062.
15. I. Michaelevski, M. Eisenstein, M. Sharon, Anal. Chem. 2010,
82, 9484–9491.
1552.
2505–2512.
22. A. D. Rolland, L. S. Biberic and J. S. Prell, J. Am. Soc. Mass
Spectrom. 2022, 33, 369–381.
10.1021/jacs.2c09573.
16501.
125, 3803–3814.