1 Online Repository

2 METHODS

3 Study Approval

- 4 Darier disease, Hailey-Hailey disease, Grover's disease patients and healthy adults provided
- 5 informed consent for skin biopsies. Tissues were anonymized for analysis and collected under
- 6 IRB# HUM00087890 at University of Michigan.

7 Additional Gene Expression Datasets

- 8 Atopic Dermatitis and Psoriasis RNAseq dataset was downloaded from Gene Expression
- 9 Omnibus (GEO), accession number GSE121212. This dataset is originally described in (1).
- 10 Single-cell RNA-seg dataset used to generate keratinocyte differentiation genes sets is
- 11 available in GEO, accession number GSE179162.

12 RNA-Seq expression profiling of Darier, Hailey-Hailey and Grover's disease samples.

- 13 RNA was isolated from 10 um sections of formalin-fixed paraffin embedded blocks from 11
- Darier disease, 7 Hailey-Hailey disease, and 10 Grover's disease samples. RNA was isolated
- using the E.N.Z.A. FFPE RNA Kit (Omega Bio-tek). Samples were prepared using the Lexogen
- 16 3' QuantSeq mRNA-Seq Library Prep Kit FWD and sequences on the Illumina NovaSeq 6000
- 17 System. Quality control and adaptor trimming were performed on sequence reads form the
- 18 RNA-Seg data. STAR alignment was used to align the reads to the reference genome
- 19 (GRCh37), and HTSeg was used for gene quantification. To eliminate potential differences
- 20 caused by sex specific genes, Y chromosome genes and genes known to be differentially
- 21 expressed between males and females in skin were removed from further analysis (2). To
- 22 generate differential expression for Darier, Hailey-Hailey, and Grover's disease the DESeq2
- 23 Bioconductor R Package V1.34.0 was used.

24 Correlation Analysis between Darier disease, Hailey-Hailey disease, Grover's disease,

- 25 **Psoriasis and Atopic Dermatitis.**
- 26 Analysis was performed in R V4.1.1 (R Foundation for Statistical Computing). Batch correction
- was performed using ComBat-seq function under the SVA Bioconductor R package V3.36.0.0
- following published method (3). PCA was computed based on batch-adjusted raw counts using
- 29 R package pcaMethods V1.86.0. For comparisons between Darier Disease, Hailey-Hailey
- 30 Disease, Grover's disease, psoriasis, and atopic dermatitis the EdgeR Bioconductor R Package
- V3.36.0 was used to generate differential expression data from batch-adjusted raw counts and
- 32 calculate statistically significantly changed genes by ANOVA. Genes that had an FDR-adjusted
- 52 Calculate statistically significantly changed genes by ANOVA. Genes that had all i bix-adjuste
- p value < 0.05 and $|Log_2(Fold Change)| > 1$ in any one condition were used for all further
- comparison analysis. Spearman correlations were calculated using the batch-adjusted raw
- counts and the *cor* function in R build-in stats package. UMAP plots were created using the
- 36 Seurat package in R V4.1.1.

37

Functional Enrichment Analysis

- Functional enrichment analysis was performed using the clusterProfiler package in R V4.2.2
- and using Ingenuity Pathway Analysis (IPA) software. Pathway analysis was performed using
- 40 Gene Ontology Biologic Process and the Transcription Factor Targets pathways, and were
- analyzed using Gene Set Enrichment Analysis (GSEA)(4).

42 Immunofluorescence and image acquisition

- DD, HHD, GD and normal patient skin samples were fixed in 10% formalin, embedded in 43
- paraffin blocks and cut into 4µm thick sections. For immunostaining paraffin sections were 44
- baked at 60°C overnight and de-paraffinized with xylene. Samples were then rehydrated 45
- through a series of ethanol and PBS washes, and permeabilized in 0.5% Triton X-100 in PBS. 46
- Antigen Retrieval was performed by incubating the slides in 0.01 M citrate buffer at 95°C for 15 47
- minutes. Samples were blocked in blocking buffer (1% BSA, 2% normal goat serum in PBS) for 48
- 1 hour at 37°C. Samples were then incubated in primary antibody overnight at 4°C, followed by 49
- washes with PBS and incubation in secondary antibody for 1 hour at 37°C. Images were 50
- 51 acquired using an AxioVision Z1 system (Carl Zeiss) with an Apotome slide module, and
- AxioCam MRm digital camera and a 20x (0.8 NA Plan-Apochromat) objective. Image analysis 52
- was performed using ImageJ software. 53

Antibodies

54

- Antibodies used in this study include: rabbit anti-YAP1 (14074, Cell Signaling), rabbit anti-55
- MRTFA (PA599446, ThermoFisher Scientific), AlexaFluor 568-conjugated goat anti-rabbit 56
- secondary antibodies (ThermFisher Scientific). 57

58 **Statistics Analysis**

- 59 Permutation analysis for Venn Diagrams was performed to test the significance of the overlap.
- 10,000 permutations were conducted from non-replacement random sampling of 6,000 tokens. 60
- 61 An empirical p value is calculated by comparing the actual and the permutation results.
- For image analysis statistical analysis was performed using one-way ANOVA with Dunnett 62
- correction for multiple comparisons, with all disease samples compared only to control samples. 63
- 64 P < 0.05 was considered statistically significant, and data represent mean ± SEM.

65 **Data Availability**

66 The resulting RNA-seq data sets generated for this study will be available in GEO at the time of publication, and all code used to analyze the data will be available. 67

References

68 69

- Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, et al. Atopic 1. Dermatitis Is an IL-13-Dominant Disease with Greater Molecular Heterogeneity Compared to Psoriasis. J Invest Dermatol. 2019;139(7):1480-9.
- 73 2. Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its 74 consequent selection in human adults. BMC Biology. 2017;15(1):7.
- 75 3. Zhang Y, Parmigiani G, Johnson WE. ComBat-seg: batch effect adjustment for RNA-seg 76 count data. NAR Genom Bioinform. 2020;2(3):lgaa078.
- 77 4. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 78 79 2015;1(6):417-25.

70

71

72