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Abstract

Defensive symbionts in the host microbiome can confer protection from infection or reduce the
harms of being infected by a parasite. Defensive symbionts are therefore promising agents of
biocontrol that could be used to control or ameliorate the impact of infectious diseases. Previous
theory has shown how symbionts can evolve along the parasitism-mutualism continuum to confer
greater or lesser protection to their hosts, and in turn how hosts may coevolve with their
symbionts to potentially form a mutualistic relationship. However, the consequences of
introducing a defensive symbiont for parasite evolution and how the symbiont may coevolve with
the parasite have yet to be explored theoretically. Here, we investigate the ecological and
evolutionary implications of introducing a tolerance-conferring defensive symbiont into an
established host-parasite system. We show that while the defensive symbiont may initially have a
positive impact on the host population, parasite and symbiont evolution tend to have a net
negative effect on the host population in the long-term. This is because the introduction of the
defensive symbiont always selects for an increase in parasite virulence, and may cause
diversification into high- and low-virulence strains. Even if the symbiont experiences selection for
greater host protection, this simply increases selection for virulence in the parasite, resulting in a
net negative effect on the host population. Our results therefore suggest that tolerance-conferring
defensive symbionts may be poor biocontrol agents for population-level infectious disease control.
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1 Calculation of fitness functions and selection gradients
In this section, we will derive the fitness functions and selection gradients given in the main text.
We will show the full calculation for the mutualist, but the calculation for the parasite is similar.

Recall from the main text, the dynamics (1)-(4) that defines a resident population of mutualists
and parasites circulating through a host population. We re-write this here, writing the trait values
with a superscript “r” to denote they are resident traits:

dH

dt
= ν(N) − [b + βD(yr)(D + B) + βr

P (P + B)] H + γDD + γP P, (S1)

dD

dt
= βD(yr)H(D + B) − [b + γD + αD + βr

P (P + B)] D + γP B, (S2)

dP

dt
= βr

P H(P + B) − [b + γP + αP (βr
P ) + βD(yr)(D + B)] P + γDB, (S3)

dB

dt
= βD(yr)P (D + B) + βr

P D(P + B) − [b + γD + γP + αB(yr, βr
P )] B, (S4)

with all parameters and state variables as described in the main text. We assume that we introduce
a mutant mutualist with trait value ym into a resident population which has reached equilibrium.
We denote by X∗ for X ∈ {H, D, P, B, N} to be the steady states of the resident population.
Then the ODEs for the mutant mutualist, Dm, and those coinfected by the mutant mutualist and
resident parasite, Bm, is given by:

dDm

dt
= βD(ym)H∗(Dm + Bm) − [b + γD + αD + βr

P (P ∗ + B∗)] Dm + γP Bm, (S5)

dBm

dt
= βD(ym)P ∗(Dm + Bm) + βr

P Dm(P ∗ + B∗) − [b + γD + γP + αB(ym, βr
P )] Bm. (S6)

We will use the next generation method (Diekmann et al., 2010) in order to calculate an expression
which is sign equivalent to the fitness of the rare mutant.

We decompose the Jacobian matrix of first derivatives into two components, J = F + V , where
F describes the creation of new mutant infections and V contains all other terms:

J =
[
βD(ym)H∗ − [b + γD + αD + βr

P (P ∗ + B∗)] βD(ym)H∗ + γP

βD(ym)P ∗ + βr
P (P ∗ + B∗) βD(ym)P ∗ − [b + γD + γP + αB(ym, βr

P )]

]

= βD(ym)
[
H∗ H∗

P ∗ P ∗

]
+
[
− [b + γD + αD + βr

P (P ∗ + B∗)] γP

βr
P (P ∗ + B∗) − [b + γD + γP + αB(ym, βr

P )]

]
=: F + V.

This decomposition allows us to calculate the next generation matrix, NG = −FV −1. We can then
find our quantity of question by calculating the leading eigenvalue of this matrix:

NG = βD(ym)
det(V )

[
H∗ [b + γD + γP + αB(ym, βr

P ) + βr
P (P ∗ + B∗)] H∗ [b + γD + γP + αD + βr

P (P ∗ + B∗)]
P ∗ [b + γD + γP + αB(ym, βr

P ) + βr
P (P ∗ + B∗)] P ∗ [b + γD + γP + αD + βr

P (P ∗ + B∗)]

]
,

where

det(V ) = [b + γD + γP + αB(ym, βr
P )] [b + γD + αD + βr

P (P ∗ + B∗)] − γP βr
P (P ∗ + B∗).

This matrix has two eigenvalues, one which is zero and then the leading eigenvalue:

wM (ym|yr, βr
P ) = βD(ym)AM (ym|yr, βr

P )
BM (ym|yr, βr

P ) , (S7)
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where

AM (ym|yr, βr
P ) = H∗ [b + γD + γP + αB(ym, βr

P ) + βr
P (P ∗ + B∗)]

+ P ∗ [b + γD + γP + αD + βr
P (P ∗ + B∗)] , (S8)

BM (ym|yr, βr
P ) = det(V ). (S9)

If the fitness function is above 1, the mutant is able to invade into the population, while if this
value is below 1, it is not. Note also that if ym = yr, then wM (ym|yr, βr

P ) = 1 because there is no
fitness advantage or disadvantage for the mutant due to it being the same as the resident.

We now calculate the selection gradient, HM (y, βP ). This is defined as the first derivative of
the fitness function with respect to the mutant trait and evaluated at yr = ym = y and βP = βr

P .
We write

sM (y, βP ) = ∂wM

∂ym
(ym|yr, βr

P )
∣∣∣∣yr=ym=y,

βr
P =βP

= 1
BM (y|y, βP )

[dβD

dym
(ym)AM (ym|yr, βr

P ) + βD(ym)∂AM

∂ym
(ym|yrβr

P )

− βD(ym)AM (ym|yr, βr
P )

BM (ym|yr, βr
P )

∂BM

∂ym
(ym|yrβr

P )
]∣∣∣∣∣yr=ym=y,

βr
P =βP

= 1
BM (y|y, βP )

[dβD

dym
(ym)AM (ym|yr, βr

P ) + βD(ym)∂AM

∂ym
(ym|yrβr

P )

− wM (ym|yr, βr
P )∂BM

∂ym
(ym|yr, βr

P )
]∣∣∣∣yr=ym=y,

βr
P =βP

.

Finally, we calculate each of these derivatives that we require. Firstly, the derivative of βD:

dβD

dym
(ym) = d

dym

(
β̃M (1 − c(ym))

)
= β̃M

(
1 − dc

dym
(ym)

)
= β̃M

(
1 − c1c2 exp{c2x}

1 − exp{c2}

)
.

Next, we differentiate the AM function:

∂AM

∂ym
(ym|yr, βr

P ) = H∗ ∂αB(ym, βr
P )

∂ym

= H∗ ∂

∂ym
(αD + (1 − ym)αP (βr

P )))

= −H∗αP (βr
P ).

Finally, the derivative for the BM function:

∂BM

∂ym
(ym|yrβr

P ) = ∂αB

∂ym
(ym, βr

P ) [b + γD + αD + βr
P (P ∗ + B∗)]

= −αP (βr
P ) [b + γD + αD + βr

P (P ∗ + B∗)] .
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2 Parasite only system
Throughout the manuscript, we initialise our simulations assuming that the parasite has been circu-
lating on its own long enough to reach evolutionary convergence. Here, we describe the parasite-only
system, it’s fitness function and calculate the transmission value to which it converges.

We begin by defining the parasite-only system, where throughout this section we will indicate
state variables with a tilde (∼) in order to distinguish from the full system. The ODE system is
given by:

dH̃

dt
= ν(Ñ) −

[
b + β̃P P̃

]
+ γP P̃ , (S10)

dP̃

dt
=
[
β̃P H̃ − b − γP − αP (β̃P )

]
P̃ , (S11)

where all notation is the same as in the main text. This ODE system has two endemic steady
states, which are given by the solution of:

H̃∗ = b + γP + αP (β̃P )
β̃P

, (S12)

0 =
(
P̃ ∗
)2

− a − 2qH̃∗ − β̃P H̃∗ + γP

q
P̃ ∗ − H̃∗(a − b − qH̃∗)

q
. (S13)

We now write the fitness function and associated selection gradient for this parasite-only system
for a mutant strain with transmission β̃m

P introduced into a population containing a resident strain
with transmission β̃r

P as:

w̃(β̃m
P |β̃r

P ) = β̃m
P H̃∗(β̃r

P ) − b − γP − αP (β̃m
P ) (S14)

F̃(β̃P ) = ∂w̃

∂β̃m
P

(β̃m
P |β̃r

P )
∣∣∣∣∣
β̃m

P =β̃r
P =β̃P

= H̃∗(β̃P ) − dαP

dβ̃P

(β̃P ). (S15)

The value of β̃P that satisfies F̃(β̃P ) = 0 is called our singular strategy, and is calculated as:

β̃∗
P =

(
b + γP + ᾱP

(d − 1)ᾱP

)1/d

. (S16)

We can show that this is a continuously stable strategy (CSS) by demonstrating that it is both
evolutionary stable (ES) and convergence stable (CS). Evolutionary stability requires the second
derivative of w̃ with respect to the mutant strain being negative:

∂2w̃

∂(β̃m
P )2 (β̃m

P |β̃r
P ) = − d2αP

d(β̃m
P )2 (β̃m

P ). (S17)

Since the virulence of the parasite is an accelerating function, the second derivative of the virulence
function is positive and hence the singular strategy is evolutionary stable. For convergence stability,
we need to differentiate the fitness function once with respect to the mutant and once with respect
to the resident, and ensure that this is larger (S17):

∂2w̃

∂β̃m
P ∂β̃r

P

(β̃m
P |β̃r

P ) = ∂H̃

∂β̃r
P

(β̃r
P ). (S18)
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Note that at the singular strategy, we have H̃∗(β̃∗
P ) = α′

P (β̃∗
P ) (from (S15) equalling 0). Then

∂2w̃

∂β̃m
P ∂β̃r

P

(β̃m
P |β̃r

P )
∣∣∣∣∣
β̃m

P =β̃r
P =β̃∗

P

= ∂H̃

∂β̃r
P

(β̃r
P )
∣∣∣∣∣
β̃r

P =β̃∗
P

= α′
P (β̃∗

P ) − H̃∗(β̃∗
P )

β̃∗
P

= 0.

Therefore, the singular strategy is a CS and hence is a CSS.

3 Definition of strong convergence stability
In order to determine if any co-singular strategies are convergence stable, we use the definition
presented by Leimer (2009). Suppose we have fitness functions for the defensive symbiont and the
parasite defined by wD(ym|θr) and wP (βm

P |θr) respectively, where θr defines the resident traits,
and trait values with a superscript m denote the invading mutant trait. The expressions for each of
these are given in the main text (equations (6) and (7)). Suppose that we have a singular strategy,
which we write as θ∗ = (y∗, β∗

P ). Then this singular strategy is strong convergence stable if the
following three conditions hold:(

∂2wD

∂(ym)2 + ∂2wD

∂ym∂yr

)(
∂2wD

∂(βm
P )2 + ∂2wD

∂βm
P ∂βr

P

)
>

∂2wD

∂ym∂βr
P

∂2wP

∂βm
P ∂yr

, (S19)

∂2wD

∂(ym)2 + ∂2wD

∂ym∂yr
< 0, (S20)

∂2wD

∂(βm
P )2 + ∂2wD

∂βm
P ∂βr

P

< 0, (S21)

with all derivatives evaluated at the singular strategy.
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