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ABSTRACT

The spectacular recent advances in protein and protein complex structure prediction hold promise
for reconstructing interactomes at large scale and residue resolution. Beyond determining the 3D
arrangement of interacting partners, modeling approaches should be able to unravel the impact of
sequence variations on the strength of the association. In this work, we report on Deep Local Analysis
(DLA), a novel and efficient deep learning framework that relies on a strikingly simple deconstruction
of protein interfaces into small locally oriented residue-centered cubes and on 3D convolutions
recognizing patterns within cubes. Merely based on the two cubes associated with the wild-type
and the mutant residues, DLA accurately estimates the binding affinity change for the associated
complexes. It achieves a Pearson correlation coefficient of 0.81 on more than 2 000 mutations, and its
generalization capability to unseen complexes is higher than the state-of-the-art methods. We show
that taking into account the evolutionary constraints on residues contributes to predictions. We also
discuss the influence of conformational variability on performance. Beyond the predictive power on
the effects of mutations, DLA is a general framework for transferring the knowledge gained from
the available non-redundant set of complex protein structures to various tasks. For instance, given a
single partially masked cube, it recovers the identity and physico-chemical class of the central residue.
Given an ensemble of cubes representing an interface, it predicts the function of the complex. Source
code and models are available at http://gitlab.lcqb.upmc.fr/DLA/DLA.git.

1 Introduction

The ever-growing number of sequenced individual genomes and the possibility of obtaining high-resolution 3D structural
coverage of the corresponding proteomes [46, 36] opens up exciting avenues for personalized medicine. Assessing
the impact of sequence variations, particularly missense mutations, between individuals on how proteins interact with
each other can shed light on disease susceptibility and severity [51, 35, 68, 10] and help decipher gene-disease-drug
associations for developing therapeutic treatments [24, 49, 65, 55, 30, 67]. Of particular interest are the surface
regions of proteins directly involved in the interactions, as this is where most disease-related missense mutations
occur. [74, 13, 12, 22, 33]. At the same time, rapid advances in deep learning techniques for biology, especially for
biomolecules, are creating opportunities to revisit the way we look at protein complexes and represent them.
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The impact of a mutation on the strength of the association between two protein partners can be measured by the
difference in binding free energy

∆∆GBind = ∆GMU
Bind −∆GWT

Bind, (1)

where ∆GMU
Bind and ∆GWT

Bind are the binding free energies, or binding affinities, of the mutated and wild-type complexes,
respectively. Significant efforts have been expended over the past decade to produce, collect and curate binding
affinity measurements for wild-type and mutated complexes (Table S 1) [31, 41, 63, 32, 72, 47]. Nevertheless, the
handful of experimental techniques yielding accurate estimates of ∆GBind remain laborious, expensive and time-
consuming [70]. To overcome this limitation, several efficient computational methods have been developed (Table
S 2) [60, 78, 76, 73, 42, 20, 59, 3, 75, 54, 23]. Most of them exploit local environments around the mutation site to
directly predict ∆∆GBind values. The advantage of this strategy is twofold. First, it avoids the accumulation of errors
on the ∆GWT

Bind and ∆GMU
Bind quantities that would result in large approximations in ∆∆GBind. Second, it avoids the

unnecessary calculation of properties not modified by the mutation, e.g., the chemical composition of the non-interacting
surface and the 3D geometry of the interface contact distribution. Indeed, these properties, while contributing strongly
to the binding affinity [57, 70], are not, or only slightly, sensitive to point mutations located at the interface. The
state-of-the-art methods sometimes achieve very high prediction accuracy, but their ability to generalize to diverse
complexes can be improved [20].

Representation learning powered by deep neural networks has opened up extraordinary opportunities to develop
all-purpose models transferring knowledge across systems and tasks. After a major breakthrough in natural language
processing [14, 71], the concept has been transferred to proteins through protein language models (pLMs) [58, 17, 4, 26].
pLMs learn the fundamental properties and mechanisms of natural protein diversity by reconstructing some masked
or the next amino acid(s), given their sequence context, at scale. They exhibit exciting potential for a broad range
of protein-related problems [40, 62, 43, 44, 56, 78]. Beyond sequence information, self-supervised learning-based
approaches have leveraged the protein and protein complex 3D structures available in the Protein Data Bank (PDB) [5]
for fixed-backbone protein design [2, 28, 11], for predicting protein stability [6, 77], and for assessing the impact of
mutations on protein-protein interactions [42]. In particular, in [42], a graph neural network is trained to reconstruct
disturbed wild-type and mutated complex structures represented as graphs. A gradient-boosting trees algorithm then
exploits the learned representations to predict mutation-induced ∆∆GBind values. Although this approach showed
promising results, it sequentially employs two different machine learning components trained independently, limiting
its versatility and applicability to other tasks.

Here, we report on Deep Local Analysis(DLA)-Mutation, the first end-to-end deep learning architecture estimating
mutation-induced ∆∆GBind from patterns in local interfacial 3D environments learnt through self-supervision (Fig.
1). It builds on the DLA framework we previously introduced for assessing the quality of protein complex conforma-
tions [48]. DLA applies 3D convolutions to locally oriented residue-centred cubes encapsulating atomic-resolution
geometrical and physico-chemical information [52] (Fig. 1A). In this work, we expanded this framework by combining
self-supervised representation learning of 3D local interfacial environments (Fig. 1B) with supervised learning of
∆∆Gbind exploiting both structural and evolutionary information (Fig. 1C). DLA-Mutation only takes as input two
cubes, corresponding to the environments around the wild-type and mutated residues, respectively, and directly estimates
∆∆Gbind. Beyond prediction, we used the learned representations to investigate the extent to which the environment of
an interfacial residue is specific to its type and physico-chemical properties (Fig. 1D). DLA-mutation code and models
are freely available to the community at http://gitlab.lcqb.upmc.fr/DLA/DLA.git.

2 Methods

2.1 Protein–protein interface representation

We represent a protein-protein interface as a set of locally oriented cubic volumetric maps centered around each
interfacial residue (Fig. 1A). The local atomic coordinates of the input structure are first transformed to a density
function, where each atom is one-hot encoded in a vector of 167 dimensions [52]. Then, the density is projected on
a 3D grid comprising 24× 24× 24 voxels of side 0.8Å. The map is oriented by defining a local frame based on the
common chemical scaffold of amino acid residues in proteins [52] (see Supplementary Information for more details).
This representation is invariant to the global orientation of the structure while preserving information about the atoms
and residues relative orientations.

For the self-supervised representation learning, we trained DLA to recognize which amino acid would fit in a
given local 3D environment extracted from a protein-protein interface. Our aim in doing so is to capture intrinsic
patterns underlying the atomic arrangements found in local interfacial regions. Formally, the machine predicts the
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Figure 1: DLA data representations and architectures. A. A representation of a protein interface (green and yellow
residues from each partner) as an ensemble of cubes (IC). Each cube (rk ∈ IC) is centred and oriented around an
interfacial residue. In the example cube on the right, the atoms displayed in yellow and magenta sticks are enclosed in a
5 Å-radius sphere centred on a randomly chosen atom from the central residue. B. Architecture of the self-supervised
model, named ssDLA. The input cube is the same as in panel A. The atoms that were in transparent sticks are now
replaced by an empty space. Carbon atoms are colored in green, oxygen in red, nitrogen in blue, and sulfur in yellow.
The training task is to recover the identity of the residue lying at the center of the partially masked input cube. C.
Siamese architecture of the supervised model DLA-Mutation predicting mutation-induced binding affinity changes. The
two parallel branches with shared weights apply 3D convolutions to the local 3D environments around the wild-type
and mutated residues and compute two embedding vectors. Auxiliary features are concatenated to the vector resulting
from subtracting these two embedding vectors. D. Two-layer dense classifier taking as input the embedding vectors
computed by the pre-trained ssDLA (panel B) and outputting a probability vector whose dimension is the number of
classes.

probability P (y|env) of the amino acid type y, for y ∈ {A,C,D, ...,W, Y }, conditioned on the interfacial local
chemical environment env given as input. In practice, we process the input cube before giving it to DLA by masking a
sphere of radius rcÅ centered on an atom from the central residue (Fig. S 4 and Fig. 1A). Masking a fixed volume
prevents introducing amino acid-specific shape or size biases. We experimented with different values of rc (3 and 5Å)
and different choices for the atom (Cα, Cβ , random). We found that a sphere of radius of 5Å with a randomly chosen
center yielded both good performance and expressive embedding vectors.

For the supervised prediction of ∆∆Gbind, we combined the embedding vectors of the volumetric maps with five
pre-computed auxiliary features (Fig. 1C), among which four describe the wild-type residue, namely its conservation
level Tjet determined by the Joint Evolutionary Trees method [18], its physico-chemical properties to be found at
interfaces (PC), its protruding character, as measured by its circular variance (CV) [45, 7], and the structural region
(SR) where it is located: protein interior (INT), the non-interacting surface (SUR), or, if it is part of the interface,
the support (S or SUP), the core (C or COR), or the rim (R or RIM) as defined in [39]. We previously demonstrated
the usefulness of these properties for predicting and analysing protein interfaces with other macromolecules (protein,
DNA/RNA) [48, 9, 57, 37]. The fifth feature is a numerical score computed by GEMME [38] that reflects the impact of
the point mutation on the function of the protein chain where it occurs, considered as a monomer. GEMME combines
the conservation levels Tjet with amino acid frequencies and the minimum evolutionary distance between the protein
sequence and an homologous protein displaying the mutation. See Supplementary Information for more details.
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2.2 DLA architectures

Our DLA framework is relatively simple, generic and versatile. Its main core architecture comprises a projector, three
3D convolutional layers, an average pooling layer, and a fully connected subnetwork (Fig. 1B-C). The purpose of
the projector is to reduce the dimension of each input cube voxel’s feature vector from 167 to 20. We apply batch
normalization after each 3D convolution. The average pooling layer exploits scale separability by preserving essential
information of the input during coarsening of the underlying grid. To avoid overfitting, we applied 40%, 20%, and 10%
dropout regularization to the input, the first and the second layers, respectively, of the fully connected subnetwork.

For the self-supervised task (Fig. 1B), the fully connected subnetwork contains three successive layers (sizes 200,
20 and 20) and the last activation function (Softmax) outputs a probability vector of size 20 representing the 20 amino
acids. The categorical cross-entropy loss function measures the difference between the probability distribution of the
predicted output and a one-hot vector encoding the true amino acid type of the central residue. We refer to this version
of DLA to build the pre-trained model as self supervised-DLA or ssDLA.

For the supervised ∆∆Gbind prediction (Fig. 1C), we used the core DLA framework to build a Siamese architecture
constituted by two branches with shared weights. The network processes two input cubes corresponding to the wild-
type and mutated residues. The average pooling layer is followed by two fully connected layers of size 200 and 20,
respectively, within each branch. We then merge the two branches by subtracting the computed embedding vector and
concatenate the auxiliary features (described above) to the resulting vector. The last fully-connected layer displays a
linear activation function and outputs one value. The loss is the mean squared error. We refer to this architecture as
DLA-Mutation.

2.3 Databases

We computed the ground-truth ∆∆Gbind values from SKEMPI v2.0 [31], the most complete source for experimentally
measured binding affinities of wild-type and mutated protein complexes. We restricted our experiments to the data
produced by the most reliable experimental techniques, namely Isothermal Titration Calorimetry (ITC), Surface Plasmon
Resonance (SPR), Spectroscopy (SP), Fluorescence (FL), and Stopped-Flow Fluorimetry (SF), as done in [70]. We
selected a subset of 2 003 mutations associated with 142 complexes, referred to as S2003 in the following. To provide
ssDLA and DLA-Mutation with input protein-protein complex 3D structures, we created and processed two databases,
namely PDBInter and S2003-3D. PDBInter is a non-redundant set of 5 055 experimental structures curated from the
PDB. S2003-3D contains 3D models generated using the "backrub" protocol implemented in Rosetta [64]. We refer
to each generated conformation as a backrub model. We generated 30 backrub models for each wild-type or mutated
complex. This amount was shown to be sufficient for estimating free energies in [3]. See Supplementary Information
for more details.

2.4 Training and evaluation of ssDLA and DLA-Mutation

We trained and validated ssDLA on the PDBInter database. The protein complexes in the train set do not share any
family level similarity with the 142 complexes from S2003, according to the SCOPe hierarchy. We generated 247 662
input samples (interfacial cubes) from the train set and 34 174 from the validation set. Amino acids are not equally
distributed in these sets; leucine is the most frequent one, while cysteine is the rarest (Fig. S 3). To compensate for
such imbalance and with the aim of penalizing more those errors that are made for the less frequent amino acids, we
assigned a weight to the loss of each amino acid type that is inversely proportional to its frequency of occurrence (Table
S 4). We trained ssDLA for 50 epochs with the Adam optimiser in TensorFlow [1] at a learning rate of 0.0001 (Fig.
S 5A). We explored different hyperparameter values by varying the learning rate, applying different normalisation
schemes, changing the compensation weights, etc. We retained the hyperparameters leading to the best performance on
the validation set. The trained ssDLA model extracts embedding vector ek of size 200 (Fig. 1B) for a given cube.

We used S2003 to train and test DLA-Mutation. We set the learning rate at 0.001 and we initialized the weights of the
network with those of the pre-trained ssDLA model. We first evaluated DLA-Mutation through a 10-fold cross validation
performed at the mutation level. This evaluation procedure, which is widely used in the literature [20, 59, 60, 73, 78],
considers each sample independently when splitting the data between train and test sets (mutation-based split). However,
this assumption is problematic since the same complex or even the same wild-type residue may be seen during both the
training and the testing phases. These cases are expected to be "easy" to deal with. For a more challenging and realistic
assessment, we held out 32 complexes displaying 391 mutations for the testing phase, and trained DLA-Mutation on
the rest of the dataset (complex-based split).

For the comparison with iSEE, we used the same train and test procedure as that reported in [20] (Table S 2), using
the wild-type and mutant 3D models produced by HADDOCK [69] and available from [20]. For the comparison with
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Table 1: Different experimental setups for ∆∆Gbind prediction with DLA-Mutation.

Train/Test #(mutations) Weight Auxiliary PCC RMSE
split level Train Test initialization features (kcalmol )
mutation 2003 - pre-training All 0.812 -

complex 1612 391
pre-training

SR 0.686 1.31
SR-Tjet 0.712 1.32

SR-GEMME 0.726 1.27
All 0.735 1.23

random SR 0.602 1.44
All 0.657 1.37

complex and 945 112 pre-training All 0.481 1.14
<30% seq. id.

complex 1102* 487* pre-training All 0.423 1.31

* The input 3D models, generated by HADDOCK [69], were taken from [20].

the other predictors, we defined the test set from the intersection between S2003 and the benchmark set used in [20]. It
amounted to 112 mutations from 17 complexes. We defined a new training set comprising 945 mutations from S2003
coming from complexes sharing less than 30% sequence identity with those from this test set. In the case of GraphPPI
[42] and TopNetTree [73], the comparison remains qualitative due to the lack of software package from GraphPPI
and the function-specific model for TopNetTree that is trained only on antibody-antigen complexes from the AB-Bind
database [63].

2.5 Mapping the embeddings to residue and interface properties

We trained a fully-connected network comprised of only 1 hidden layer of size 20 to map the embeddings computed by
ssDLA to residue- and interface-based properties. The input layer is of size 200 and the Softmax activation function of
the output layer computes a probability vector whose size is the number of classes. We used categorical cross-entropy
as the loss function. In the first experiment we mapped an input embedding vector (ek, size 200, see Fig. 1D),
representing a local 3D interfacial environment, to an output amino acid physico-chemical class, among the seven
defined in [38] (Table S 3). We directly gave the embedding vector computed by ssDLA for a given input cube to the
classifier. In the second experiment, we mapped an input embedding vector averaged over an entire interface to an
output interaction functional class, among antibody-antigen (AB/AG), protease-inhibitor (Pr/PI) and T-cell receptor -
major histocompatibility complex (TCR/pMHC), as annotated in the SKEMPI v2.0 database. For training purposes, we
redundancy-reduced the set of 142 complexes from S2003 based on a 30% sequence identity cutoff. See Supplementary
Information for details.

3 Results

The DLA framework deconstructs a protein-protein interface to predict mutation-induced changes in binding affinity and
solve residue- or interface-based downstream tasks (Fig. 1). It extracts embedding vectors from locally oriented cubes
surrounding wild-type or mutant interfacial residues and combines them with auxiliary features, including structural
regions or evolutionary information.

3.1 DLA-Mutation accurately predicts ∆∆Gbind

DLA-Mutation achieved an overall very good agreement with ∆∆Gbind experimental measurements (Fig. 2). It
reached a Pearson correlation coefficient (PCC) of 0.812 over 2 003 single-point mutations (Fig. 2A), following a
mutation-based 10-fold cross validation (see Methods). Moreover, it showed high generalization capability to unseen
complexes, achieving a PCC of 0.735 and a root mean squared error (RMSE) of 1.23 kcal/mol (Fig. 2B and Table 1),
following a complex-based train and test split procedure (see Methods).

3.2 Evolutionary information and pre-training matter

To build the DLA-Mutation model, we fine-tuned the weights of the pre-trained ssDLA model (Fig. 1B) to predict
∆∆Gbind values in a supervised fashion (Fig. 1C). For each mutation, we combined information coming from the
local 3D environments of the wild-type and mutant residues extracted from 3D models of the corresponding complexes
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(S2003-3D database, see Methods and Fig. S 1) with information about the structural region of the wild-type residue
(Fig. 1C, SR), as well as other geometrical (CV), physico-chemical (PC), and evolutionary (GEMME, Tjet) descriptors.
We performed an ablation study to assess the contribution of these descriptors and of the pre-training step (Fig. S 7 and
Table 1).

In the baseline configuration, the only auxiliary feature we used was SR. We have previously shown that this
information contributes significantly to the performance of the DLA framework [48]. In addition to this, we also
considered evolutionary information, using either GEMME scores (SR-GEMME) or Tjet conservation levels (SR-Tjet).
We found that the wild-type residue’s buriedness (CV) and interface propensity (PC) contributed very little to the
accuracy of the predictions (Fig. S 7A-D and Table 1, compare All with SR-Tjet and SR-GEMME). Removing them is
essentially harmless. By contrast, evolutionary information does significantly contribute to the model’s performance,
as attested by the rather low PCC (0.648) obtained when using only SR (Fig. S 7B and Table 1). By design, the
mutation-specific GEMME score is correlated to the position-specific conservation level Tjet [38], and thus the two
descriptors are redundant to some extent. Nevertheless, we observed that the former was more informative than the
latter (Fig. S 7, compare panels C and D). Finally, pre-training the architecture through self-supervision with ssDLA
clearly improved the predictions (Fig. S 7, compare panels A-B with panels E-F, and Table 1). The gain in PCC is of
0.08 compared to initialising DLA-Mutation weights randomly.

3.3 Comparison with state-of-the-art predictors

We further assessed DLA-Mutation generalisation capabilities with respect to iSEE [20], a recently developed machine
learning-based method (Fig. 2C-D). Similarly to DLA-Mutation, iSEE directly estimates ∆∆GBind values exploiting
structural information coming from the wild-type and mutant complex 3D structures, as well as evolutionary information.
We found that DLA-Mutation generalised better than iSEE from SKEMPI version 1 to version 2 (Fig. 2C-D).
Specifically, when trained on SKEMPI v1.0 , it reached a PCC of 0.423 on 487 mutations coming from 56 unseen
complexes from SKEMPI v2.0 (Fig. 2C). The correlation obtained with iSEE was much lower, around 0.25 (Fig.
2D). In this experiment, the train and test conditions were exactly the same for the two methods, with the same input
HADDOCK-generated 3D models [20]. We then extended the comparison to three other ∆∆Gbind predictors, namely
mCSM [53], FoldX [23] and BindProfX [75] (Fig. 3). mCSM directly estimates ∆∆GBind values by exploiting the 3D
structure of the wild-type complex and descriptors of the substituting amino acid within a machine learning framework.
FoldX estimates free energies of binding ∆GBind of the wild-type and mutant complexes using a physics-based energy
function and then computes their difference. BindProfX combines FoldX with evolutionary interface profiles built
from structural homologs. DLA-Mutation outperforms all of the predictors on a set of 112 mutations coming from 17
complexes sharing less than 30% sequence identity with those seen during training (Fig. 3). Finally, we considered two
recent deep learning-based approaches, namely GraphPPI [42] and TopNetTree [73]. The reported performance for
these tools are similar to those we obtained for DLA-Mutation (Table S 2). They both experience a drop in performance
from the mutation-based cross validation to the blind test on unseen complexes. Contrary to DLA-Mutation, they do not
predict ∆∆GBind in an end-to-end fashion. Moreover, they take the full complex structure as input, instead of local
environments.

3.4 DLA-Mutation performs better on core and rim residues and is robust to size and sequence identity
changes

The location of a mutation in a protein interface might be a relevant indicator for the confidence in the estimation. We
investigated this issue by describing an interface as three concentric layers of residues, the support (internal layer), the
core (the second layer) and the rim (the third and most external layer) [39]. DLA-Mutation better deals with mutations
taking place in the core and rim, with PCCs as high as 0.737 and 0.798, respectively (Fig. 4A, compare gold and blue
dots with red dots). The mutations in the core are also the most frequent ones. By contrast, very few mutations are
located outside of the interface and the associated range of experimental ∆∆GBind values is very narrow, making
it difficult to distinguish them (Fig. 4A, pink and green dots). In addition, the prediction accuracy seems to depend
on the function of the complex, with the protease-inhibitor class displaying the highest number of complexes and the
highest accuracy (Fig. 4B). However, this observation may be interpreted in the light of the nature of the substitutions.
Indeed, the protease-inhibitor complexes display a wide variety of substitutions, while the other classes mostly display
substitutions to alanine. Overall the predictions are more accurate when the mutant amino acid is not alanine (PCC of
0.790 versus 0.34). The amino acid size change itself is not a determining factor (Fig. 4C). DLA-Mutation performs
consistently well on small-to-large, large-to-small and size-neutral substitutions, with a slight preference for the latter
(PCC = 0.793). Finally, the predictions are robust to variations in the sequence identity between the test and train
complexes (Fig. 4D).
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Figure 2: Performance of DLA-Mutation and comparison with iSEE. A-B. DLA-Mutation scores versus experimen-
tal ∆∆Gbind values on S2003 dataset. A. Mutation-based 10-fold cross validation procedure over all 2003 mutations
(see Methods). The model relies on fine-tuned weights, starting from those of the pre-trained ssDLA, and exploits all
auxiliary features. B. Test set of 391 mutations coming from 32 complexes that were not seen during training and were
randomly selected from the S2003 dataset. C-D. DLA-Mutation (green) and iSEE (blue) scores versus experimental
∆∆Gbind values for the test set of 487 mutations from 56 complexes (S487 dataset). The input 3D models and training
and evaluation procedure were directly taken from [20]. C. DLA-Mutation D. iSEE.
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Figure 3: Comparison between DLA-Mutation and other ∆∆GBind predictors. We report values for 112 mutations
coming from 17 protein complexes not seen during the training or optimisation of any of the predictors. A. DLA-
Mutation was trained on 945 mutations from S2003 coming from complexes sharing less than 30% sequence identity
with those from this test set. We used fine-tuning of the weights and all auxiliary features. B-E. The scores reported for
FoldX (B), BindProfX (C), iSEE (D) and mCSM (E) were taken directly from [20].

3.5 Can an interfacial residue be learnt from its environment?

ssDLA’s ability to recover the identity of the central residue in the input cube can inform us about the extent to which
an interfacial residue’s 3D environment is specific to its amino acid type or physico-chemical properties. To investigate
this possibility, we analysed the probability vectors computed by ssDLA when given a partially masked cube as input
(Fig. 5A). To avoid any amino acid-specific bias, we masked a volume of constant shape and size, namely a sphere of
radius 5Å, in all training samples (see Methods and Fig. S 4). ssDLA successfully and consistently recognised the
amino acids containing an aromatic ring (F, Y, W, H) and most of the charged and polar ones (E, K, R, and to a lesser
extent Q and D), as well as methionine (M), cysteine (C), glycine (G), and proline (P), whatever their structural region
(Fig. 5A). By contrast, the location of alanine (A), isoleucine (I) and leucine (L) influenced their detection. While they
were ranked in the top 3 in the support and the core, they were almost never recognised in the rim. Inversely, the polar
asparagine (N) was recognised when located in the rim or the core, but not the support. The model often confused the
hydroxyl-containing serine (S) and threonine (T) on the one hand, and the hydrophobic I and L on the other hand.

These tendencies cannot be deduced from the relative frequencies of occurrence of the different amino acids in the
three interface structural regions (Fig. S 3). For instance, ssDLA behaves very differently with N and Q (Fig. 5A),
although they display the same relative abundances and the same structural regions preferences (Fig. S 3). Hence,
the poor recovery rate for N suggests that the environments for this amino acid are more ambiguous or diverse than
those observed for Q. Likewise, ssDLA tendency to over-populate the rim with aspartate (D) does not reflect its
overwhelming presence in this region. We hypothesise that D serves as a « bin » class predicted when the environment
is underdetermined. Such underdetermination or ambiguity is more likely to happen in the rim, where the residues are
more exposed and thus the cube contains more empty space. A previous study reported different trends for a similar
task and similar data representation [2]. In particular, the model from [2] could identify G and P with very high success,
whereas it confused F, Y and W. These results may reflect a bias toward recognising amino acid-specific sizes and
shapes, due to masking only the side chain of the central residue. Moreover, the model was trained and evaluated on
monomeric proteins.

3.6 Predicting residue- and interface-based properties

To evaluate the embedding vectors computed by the pre-trained ssDLA, we tested whether they could be mapped
to per-residue and per-interaction physico-chemical and functional properties. To do so, we added a 2-layer fully
connected network on top of ssDLA’s architecture (Fig. 1D), and we trained it to perform two downstream tasks (see
Methods) The first task consisted in assigning amino acid physico-chemical classes to the input cubes. The amino acid
classification we chose previously proved relevant for predicting the functional impact of mutations [38]. It distinguishes
the aromatic amino acids (ARO: F, W, Y, H), the hydroxyl-containing ones plus alanine (CAST: C, A, S, T), the aliphatic
hydrophobic ones (PHOB: I, L, M, V), the positively charged ones (POS: K, R), the polar and negatively charged ones
(POL-N: N, Q, D, E), glycine (GLY), and proline (PRO) (Table S 3). The per-class tendencies are consistent with those
observed for the pre-training task (Fig. 5, compare the two panels). Specifically, the best performances are observed
for the aromatic (ARO) and positively charged (POS) classes, with more than 70% recall, while the CAST class is
the most difficult to identify. Conformational sampling influences the results. We observed improved performances
when dealing with 3D models compared to experimental structures (Fig. S 10). We may hypothesize that the backbone
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Figure 4: Influence of different residue-based and complex-based properties on DLA-Mutation accuracy. The
predicted and experimental values are reported for 391 mutations coming from 32 complexes not seen during training
(randomly selected from S2003 dataset). We used weight fine-tuning and all auxiliary features. The overall PCC is
0.720 (Table 1). The dots are colored with respect to the structural region where the mutated residue lies (A), the
complex’s biological function (B), the amino acid size change upon mutation (C) and the minimum sequence identity
shared with any training complex (D). We calculated the change of amino acid size as a volume difference (δV ) between
wild-type and mutant following [25]. A mutation was classified as size-neutral if |δV | < 10Å

3
, as small-to-large if

δV > 10Å
3
, and as large-to-small if δV < −10Å

3
.
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Figure 5: Performance of ssDLA model. A. The predictive power of ssDLA model is evaluated on the validation set
of PDBInter. The three logos represent the propensities of each amino acid to be predicted (having maximum score in
the output layer), depending on the true amino acid (x-axis) and on its structural region (see Methods. Amino acids are
colored based on seven similarity classes: ARO (F, W, Y, H) in green, CAST (C, A, S, T) in black, PHOB (I, L, M, V)
in red, POS (K, R) in purple, POL-N (N, Q, D, E) in blue, GLY (G) in gray and PRO (P) in orange (see Methods). B.
Confusion matrix for the prediction of the 7 amino acid classes using embedding vectors generated by ssDLA. The
percentage values and the colors indicate recall. The model is trained and tested on the interfacial residues of X-ray
crystal structures of S2003. See Fig. S 6 for the performance of ssDLA when only 4 channels corresponding to the four
amino acid-independent chemical elements (O, C, N and S) are considered to define the cubic volumetric maps.

rearrangements and side-chain repacking performed by the backrub protocol lead to a better fit between the central
amino acid and its environment (compare panels A and B). Averaging the embedding vectors over 30 models allows
extracting with an even higher precision the intrinsic properties of the central amino acid (compare panels B and C).
The second task was to predict the function of a protein-protein interaction. The embedding vectors proved useful
to distinguish the protease-inhibitor assemblies (recall = 83.33%) from the two other functional classes (Fig. S 11).
The classifier tends to confuse the antibody-antigens with T-cell receptor-major histocompatibility complexes. This
behaviour is expected, owing to the structural similarity shared between T-cell receptors and antibodies.

4 Discussion

Fundamental questions about protein-protein interactions require knowledge acquisition and transfer from protein-
protein interfaces with deep learning approaches. In this work, we proposed a simple conceptual framework based
on a small cube defined around an interfacial residue to deconstruct and decrypting protein-protein interactions. Our
approach leverages the non-redundant set of experimentally resolved protein complex structures to assess the impact
of mutations on protein-protein binding affinity, among other applications. It derives and contrasts representations of
the local geometrical and physico-chemical environments around the mutation site in wild-type and mutated forms
with a Siamese architecture. It complements the information embedded in these environments with evolutionary
information from sequences related to the protein carrying the mutation. Compared to other state-of-the-art predictors,
DLA-Mutation generalizes better to unseen complexes.

Despite the improvement over the state-of-the-art, the DLA-Mutation generalization capability from the first to the
second version of SKEMPI remains limited. This result likely reflects differences in the protocols employed to produce,
collect and manually curate the data between the older version, released in 2012, and the new one, released seven
years later. More generally, ∆∆Gbind measurements may contain errors, e.g., coming from systematic bias. Moreover,
in SKEMPI v2.0, we observed that for some mutations, distinct values of mutant binding affinity were measured by
different laboratories or using different experimental techniques [31].
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Beyond predictive power, we have shown that the learned representations can help to better understand protein
interfaces. Depending on the amino acid and the location at the interface, the 3D environment may be more or less
ambiguous and diverse. We designed a constant volume masking procedure to avoid amino acid-specific size and shape
biases. Nevertheless, the spherical mask of radius 5Å may not always cover the whole central residue, raising the
question of whether the network relies on the amino acid-specific types of the remaining atoms in such cases. To test
this, we removed any amino acid-specific information by reducing the 167 feature channels encoding the atom types to
4, corresponding to the four chemical elements C, N, O, and S. Even with four channels, ssDLA successfully recognized
and distinguished the large aromatic amino acids F, W, and Y, as well as the long positively, charged R and K, whatever
the structural region (Fig. S 6). Besides reducing the number of channels, we also slightly lowered the weight of D in
the calculation of the loss during training (Table S 4). This small change shifted the tendency of ssDLA to predict D for
E, especially in the rim region (Fig. S 6). Such instability highlights the under-determination of the environments in this
region. One direction of improvement for the ssDLA model would be to expand the set of training samples. Here, we
limited the training to a "compacted" version of the ensemble of complex structures available in the PDB. Considering
more structures could help the model learn residue-specific pattern variations and improve prediction performance.

The resolution and accuracy of the 3D structures given to DLA-Mutation may influence its performance. Here,
we chose to generate 3D models with a high level of precision using the Rosetta backrub protocol, and we explicitly
accounted for conformational variability. We showed that averaging over a few tens of conformations improved the
discrimination of amino acid classes compared to relying on only one conformation. Future work will more thoroughly
investigate the contribution of conformational sampling and the quality of the prediction of mutation-induced binding
affinity changes. Alleviating the need for precise models and substantial sampling would improve the scalability of
the approach. Another direction for improvement concern the treatment of substitutions to alanine. We found that
DLA-Mutation had difficulties in accurately estimating the effects of such mutations and distinguishing them. This
trend is not homogeneous across complexes, as illustrated by the good predictions obtained for complexes 3M62,
1CHO and 1JCK (S 12). We also showed that the environments around alanine are ambiguous, making it difficult
for DLA to recover the amino acid identity. Overall, these results suggest that DLA-Mutation would benefit from a
simplified version of the architecture for performing computational alanine scans, which relies only on X-ray crystal
structure. Combining DLA-Mutation with alanine scans performed on the wild-type complex would open the way to
systematically assess mutational outcomes on protein-protein interactions at a proteome-wide scale.
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Supplementary Information

Table S 1: Benchmark datasets of changes of binding affinity upon mutation

Name Number of Number of Type of Source
complexes mutations point mutations Database

ZEMu [15] 65 1240 single+multiple SKEMPI1
S1102 [20] 57 1102 single SKEMPI1
S487 [20] 56 487 single SKEMPI2
S645 [54] 29 645 single AB-Bind
S787 [73] 24 787 single AB-Bind
S4947 [73] - 4947 single SKEMPI2
S4169 [59] 319 4169 single SKEMPI2
S8338† [59] 319 8338 single SKEMPI2
S1721 [60] 147 1721 single+multiple SKEMPI2
S1402 [75] 114 1402 single+multiple SKEMPI1
M1707 [76] 120 1707 multiple SKEMPI2
S2003 142 2003 single SKEMPI2

† S8338 is generated from S4169. It doubles the number of samples by assigning reverse mutation energy changes to the negative
values of its original energy values in order to increase the robustness of the predictive method.

Definition of the interfacial residues

We define interfacial residues as those displaying a change in solvent accessibility between the free (isolated) protein
and the complex [39]. We used NACCESS [29] with a probe radius of 1.4Å to compute residue solvent accessibility.

Building the cubic volumetric map

To build the cubic volumetric map, the atomic coordinates of the input structure are first transformed to a density
function [52]. The density d at a point v⃗ is computed as

d(v⃗) =
∑

i≤Natoms

exp
[
−

( v⃗ − a⃗i
σ

)2]
ti, (2)

where a⃗i is the position of the ith atom, σ is the width of the Gaussian kernel set to 1Å, and ti is a vector of 167
channels corresponding to residue-specific atom types, or 4 channels corresponding to the four amino acid-independent
chemical elements (O, C, N and S) (see [52] for a detailed list). The hydrogen atoms are discarded. Then, the density is
projected on a 3D grid comprising 24× 24× 24 voxels of side 0.8Å. The map is oriented by defining a local frame
based on the common chemical scaffold of amino acid residues in proteins [52]. More precisely, for the nth residue, the
(x⃗, y⃗, z⃗) directions and the origin of the cube are defined by the position of the atom Nn, and the directions of Cn−1

and Cαn with respect to Nn. The X-axis is parallel to the vector pointing from Cn−1 to Nn. The Y-axis, perpendicular
to the X-axis, is defined in such a way that Cαn lies in the half-plane Oxy with y > 0. The Z-axis is defined as the
vector product X × Y . The origin of the cube is determined in such a way that Nn is located at position (6.1Å, 6.6Å,
9.6Å). This choice ensures that all the atoms of the central residue fit in the cube. More details can be found in [52].
This representation is invariant to the global orientation of the structure while preserving information about the atoms
and residues relative orientations.
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Table S 2: Different approaches for the prediction of changes of binding affinity upon mutation.

Approach Type Information ∆∆Gbind Train Test PCC RMSE
directly set set (kcalmol )

FLEX [3] Physics Structure - - ZEMu 0.63 -
BindProfX [75] Physics+Statistics Structure+Sequence ✓ - S1402 0.691 -

iSEE [20] ML Structure+Sequence ✓ S1102 - 0.80* 1.41
S1102 S487 0.25 1.32

mCSM-AB [54] ML Structure ✓ S645 - 0.53 -

mCSM-PPI2 [59] ML Structure ✓ S4169 - 0.76* 1.19
S8338 - 0.82* 1.18

mmCSM-PPI [60] ML Structure ✓ S1721 - 0.87* 1.41
S1721† S1721† 0.70 2.06

TopNetTree

[73]

ML Structure ✓

S4947 - 0.82* 1.11
S4169 - 0.79* 1.13
S8338 - 0.85* 1.11
S645 - 0.65* 1.57

S4947 S787 0.53 1.45

MuPIPR
[78]

ML Sequence ✓
S1102 - 0.85* 1.23
S1400 - 0.88* 1.32
S1102 S487 0.25 1.36

GraphPPI

[42]

ML Structure ✓

S645 - 0.67* -
M1707 - 0.88* -
S645 - 0.53§ -

M1707 - 0.76§ -
S645 - 0.48¶ 1.74

M1707 - 0.73¶ 2.26

* Mutation-based cross validation, in which a complex (or even the same mutation position of that complex) can be found in different
folds. § Leave-one-complex-out cross validation. ¶ Leave-one-structure-out cross validation. † A subset of 1126 mutations used
for training/CV and a subset of 595 mutations held out as non-redundant blind test at mutation level. ML: Machine learning, PCC:
Pearson Correlation Coefficient, RMSE: Root Mean Squared Error.

Auxiliary features

For predicting ∆∆Gbind, we combined the embedding vectors of the volumetric maps with five pre-computed auxiliary
features (Fig. 1C), among which four describe the wild-type residue:

• a one-hot vector encoding the protein structural region to which it belongs, either the interior (INT), the surface
(SUR), or, if it is part of the interface, the support (S or SUP), the core (C or COR), or the rim (R or RIM),
as defined in [39]. We directly took the annotations available in the SKEMPI database [31] (see below for
a description of the database). We previously demonstrated the usefulness of the S-C-R classification for
predicting and analysing protein interfaces with other macromolecules (protein, DNA/RNA) [48, 9, 57, 37].

• its physico-chemical properties (PC, a float value) to be found at interfaces, scaled between 0 and 1 [50].

• its circular variance (CV, a float value) [45, 7] with a sphere radius of 12 Å on the protein structure. For each
protein atom, CV measures the density of protein atoms around it within a sphere. The CV of a given residue
is obtained by averaging values over its atoms and indicates its degree of burial in the protein. CV values range
from 0 to 1 and protruding residues have a value close to 0.

• its conservation level Tjet (a float value) determined by the Joint Evolutionary Trees (JET) method [18]. JET
estimates evolutionary conservation by explicitly accounting for the topology of the phylogenetic tree relating
the query protein to its homologs.

We used the JET2 package [37] to compute PC, CV and Tjet. We previously showed the usefulness of these properties
for detecting protein-protein interfaces and inferring their functions [37]. The fifth feature is specific of the mutation,
that is
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• a numerical score (a float value) estimating the functional impact of point mutations from multiple sequence
alignments computed for single (monomeric) proteins by GEMME [38]. To do this estimation, GEMME
combines the conservation levels Tjet with amino acid frequencies and the minimum evolutionary distance
between the protein sequence and an homologous protein presenting the mutation.

We built the input multiple sequence alignments for JET and GEMME by performing five iterations of the profile
HMM homology search tool Jackhmmer [34, 16] against the UniRef100 database of non-redundant proteins [66] using
the EVcouplings framework [27]. We used the default bitscore threshold of 0.5 bit per residue.

Experimental values for ∆∆Gbind

We used SKEMPI v2.0 [31], the most complete source for experimentally measured binding affinities of wild-type
and mutated protein complexes. It includes the smaller databases AB-Bind, PROXiMATE, and dbMPIKT [21]. In
total, it reports measurements for over 7 000 single and multiple point mutations coming from 345 protein complexes,
including antibody-antigen (AB/AG) and protease-inhibitor (Pr/PI) assemblies, and assemblies formed between major
histocompatibility complex proteins and T-cell receptors (pMHC-TCR). For each entry, corresponding to a single or
multiple mutation, the database provides the PDB structure of the wild-type complex, the names of the partners, the
binding affinities of the wild-type and mutated complexes, some related experimental measurements, details about the
experimental method and conditions, and the structural region of the mutation site(s), either INT, SUR, SUP, COR
or RIM [39]. The mutations happening in the interface (SUP, COR, RIM), in particular in the core (COR), induce
bigger changes in binding affinity than the ones located in the non-interacting surface (SUR) or the interior (INT) of the
protein (Fig. S 2). Overall, we observed a tendency for the mutations to be deleterious rather than beneficial. The most
impactful single-point mutation is located in the complex 1CHO with ∆∆Gbind = 8.802 kcal/mol. This rich body of
annotations helps us to analyze our results and identify the weak and strong points of DLA-mutation by evaluating its
performance with respect to different classifications.

We restricted our experiments to the entries for which the binding affinity of the wild-type and mutant complexes
were determined using a reliable experimental method, namely ITC, SPR, FL, or SP, as done in [70]. This first filtering
step led to 4 974 entries associated with 255 protein complexes. We retained 4 634 entries from 245 complexes by
excluding mutation entries with ambiguous free energy or without energy change. We then focused only on 3 393
single-mutation entries coming from 222 complexes. After removing duplicated entries (a protein complex with
the same mutations), we remained with 2 975 mutations. We finally randomly selected a subset of 2 003 mutations
associated with 142 complexes. We call this subset S2003.

Protein-protein complex 3D structures

We created two databases of protein-protein complex 3D structures, namely PDBInter and S2003-3D, for training and
validation purposes. PDBInter was curated from the Protein Data Bank (PDB) [5] and thus contains only experimental
structures. S2003-3D was generated using the "backrub" protocol implemented in Rosetta [64] and thus contains only
3D models.

PDBInter. We downloaded all PDB biological assemblies (June 2020 release) from the FTP archive rsync.wwpdb.
org::ftp/data/biounitrsync.wwpdb.org::ftp/data/biounit. We discarded the entries with more than 100 chains or
with a resolution lower than 5Å. We also removed the protein chains smaller than 20 residues or with more than 20%
of unknown residues. We then redundancy-reduced the resulting dataset using annotations from the SCOPe database
[19, 8]. The 5 055 protein complex structures that were finally retained do not share any family level similarity between
them according to the SCOPe hierarchy.

S2003-3D. We generated conformational ensembles for the wild-type and mutated complexes from S2003. We followed
a modeling protocol similar to that reported in [3]. It relies on the backrub method [64] for sampling side chain and
backbone conformational changes. Our goal was to accurately mimic and explore the fluctuations around a native state.
The protocol unfolds in two optimization steps carried out on the side chains and the backbone (Fig. S 1):

1. for the backbone and the side chains, it applies quasi-Newton minimization for continuous optimization of
torsion angles: Φ, Ψ, χ1, χ2, χ3, etc.

2. for the side chains only, it performs Monte Carlo simulation with the backbone-based side-chain rotamer
library of Dunbrack [61] for discrete combinatorial rotamer optimization, also known as repacking.
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Figure S 1: Pipeline for the generation of mutated complexes with backrub. After filtering the SKEMPI v2.0
database, we retained 2003 single point-mutations for 142 complexes (S2003). A wild-type structure undergoes a local
minimisation of backbone and side-chain torsion angles followed by a Monte Carlo simulation step. We applied it to
produce 30 models for each mutated structure and 30 for the wild-type. This process is followed by a repacking step
applied to wild-type and mutation models. For the mutation positions at the interface of each model, we compute the
associated cubic volumetric maps.

Evaluation of ssDLA on the validation set from PDBInter

To visualise the performance of the model, we generated logos from pseudo alignments of 20 columns corresponding to
the 20 amino acids. In the column corresponding to the amino acid ai, the frequency of occurrence of each amino acid
aj corresponds to the propensity of ssDLA to predict aj when the true central residue of the input cube is ai. Note that
the propensity is computed by counting the number of times aj has maximum probability score among the 20 candidate
amino acids. If some amino acid was never predicted, we simply put a gap character.

Different experimental setups for the supervised prediction of ∆∆Gbind

We experimented different setups of supervised learning by using different combinations of auxiliary features and
different initialisation schemes for the network weights. In the basic set up, the only auxiliary feature we used was the
structural region of the wild-type residue (SR). We previously showed that this information significantly contributes to
the performance of the DLA framework [48]. On top of that, we also considered evolutionary information, by using the
GEMME scores (SR-GEMME) or the Tjet conservation levels (SR-Tjet). In its most complete form, DLA-mutation
combines SR, GEMME scores, Tjet, and descriptors of the buriedness (CV) and physico-chemical properties (PC) of
the wild-type residue (All). For the network weights, we either started from the weights of the pre-trained ssDLA (fine
tuning) or randomly initialised them. For each mutation, DLA-Mutation considers 30 pairs of cubes extracted from the
mutation site of the associated 30 backrub models. The predicted ∆∆Gbind is an average over all 30 models.

Table S 3: Seven classes of amino acids

Class name Description Amino acid(s) Representative color

ARO Aromatic F, W, Y, H Green
CAST Hydroxyl-containing and Alanine C, A, S, T Black
PHOB Aliphatic hydrophobic I, L, M, V Red
POS Positively charged K, R Purple
POL-N Polar and negatively charged N, Q, D, E Blue
GLY Glycine G Gray
PRO Proline P Orange

Training and evaluation of downstream tasks: prediction of residue- and interface-level
properties

We generated embedding vectors (ek) for all the cubes representing a given input interface. For training purposes, we
redundancy-reduced the set of 142 complexes from S2003 based on a 30% sequence identity cutoff. We then performed
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a 50/50 split at the cluster level. This resulted into 85 train and 57 test complexes for the first, residue-based, task. As
training and testing samples, we considered:

• either all interfacial residues (4710 residues for train and 3397 residues for test) extracted from the X-ray
crystal structures of S2003;

• or only the residues belonging to the positions with mutation from S2003 (1700 residues for train and 303
residues for test) extracted from the wild-type backrub models of S2003-3D. We performed two experiments
here: (i) pick up one backrub model at random (out of 30) to generate the input cubes, (ii) average the
embedding vectors computed for a given interfacial residue over the 30 backrub models.

For the second, interface-based task, due to missing annotations, we used only 22 train and 52 test complexes. We
computed the average embedding vector over all interfacial residues before giving it to the classifier. In addition, we
focused only on the X-ray crystal structures. In both tasks, the number of epochs depended on the size of train set and
the learning rate (0.00001). We stopped the training when the validation loss converged to a steady value (Fig. S 8).

Table S 4: Weights of amino acids classes in self-supervised learning

Amino acid Weights
167 channels 4 channels

A 0.768 0.768
C 4.100 4.100
D 0.901 0.751
E 0.724 0.724
F 1.117 1.117
G 0.825 0.825
H 1.747 1.747
I 0.920 0.920
K 0.904 0.904
L 0.529 0.529
M 2.088 2.088
N 1.170 1.170
P 0.856 0.856
Q 1.182 1.182
R 0.717 0.717
S 0.885 0.885
T 0.920 0.920
V 0.817 0.817
W 2.897 2.897
Y 1.109 1.109
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Figure S 2: Distribution of ∆∆Gbind values in SKEMPI v2. We focus here only on the single point mutations.
The different distributions correspond to the different protein structural regions: COR (1500 mutations), SUP (437
mutations), RIM (824 mutations), INT (223 mutations), and SUR (423 mutations).
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A B

Figure S 3: Frequency of interfacial amino acids in PDBInter. For each amino acid type, we report the number of
times it appears in the core, the rim, or the support of the interface. A train set. B. Validation set.
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A B

Figure S 4: An example of masking with a sphere of 5 Å. Masking atoms inside a spherical volume of radius 5 Å
randomly centered on the central interfacial residues (A) arginine or (B) isoleucine. Top is the intact local environment
and bottom is the masked one. Both interfacial residues belong to the same interface.
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A B

Figure S 5: Train and validation loss curves of ssDLA. The x-axis is the number of epochs and the y-axis is the
log-loss (categorical cross-entropy). (A) Default ssDLA model, where we used 167 channels corresponding to 167
amino acid-specific atom types (see [52] for a detailed list). (B) Simplified model where we considered only 4 atom
types (C, N, O, S).
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Figure S 6: Performance of simplified ssDLA model with 4 channels. The predictive power of simplified ssDLA
model where we considered only 4 atom types (C, N, O, S) is evaluated on the validation set of PDBInter. The
three logos represent the propensities of each amino acid to be predicted (having maximum score in the output layer),
depending on the true amino acid (x-axis) and on its structural region (see Methods). Amino acids are colored based on
seven similarity classes: ARO (F, W, Y, H) in green, CAST (C, A, S, T) in black, PHOB (I, L, M, V) in red, POS (K, R)
in purple, POL-N (N, Q, D, E) in blue, GLY (G) in gray and PRO (P) in orange (see Methods).
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Figure S 7: The predictive performance of six experimental setups on a test set of 391 mutations from 32 unseen
protein complexes (randomly selected from S2003 dataset) with a complex-based train and test split. A-D. The
training process fine-tunes the weights of the pre-trained model ssDLA and includes All (A), SR (B), SR-GEMME (C)
or SR-Tjet (D) features. E-F. Training starts from randomly initialized weights with All (E) or SR (F) features.
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A B C

Figure S 8: Train and validation loss curves of the downstream task: prediction of amino acid classes. x-axis is
the epochs and the y-axis is the loss function (categorical cross-entropy). A-B. Embedding vectors extracted by default
ssDLA model (167 channels, A) or by simplified model (4 channels, B) from X-ray crystal structures of S2003. C.
Embedding vectors extracted by default ssDLA from wild-type backrub models of S2003.
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Figure S 9: Prediction of the amino acid classes for the interfacial residues using embedding vectors extracted
by ssDLA. Train and test were performed on all the interfacial residues of the X-ray crystal structures of S2003. The
confusion matrix and per-class F1-scores for the embedding vectors extracted by default ssDLA (167 channels, A) or
simplified version (4 channels, B). In the confusion matrices the percentage values and the colors indicate recall.
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Figure S 10: Prediction of the amino acid classes for the mutation sites using embedding vectors extracted by
ssDLA. Train and test were performed on the subset of mutation sites of the X-ray crystal and wild-type backrub
structures of S2003. A. The confusion matrix and per-class F1-scores for the embedding vectors of X-ray structures
extracted by default ssDLA (167 channels). B-C. The confusion matrix and per-class F1-scores for the embedding
vectors of wild-type backrubs extracted by default ssDLA with two aggregating schemes: averaging over backrub
models (B) or choosing a single backrub model (C). In the confusion matrices the percentage values and the colors
indicate recall.
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Figure S 11: Prediction of the interaction functional classes using embedding vectors extracted by ssDLA. Train
and test were performed on the X-ray crystal structures of S2003. A-B. The confusion matrix (A) and per-class F1-scores
(B) for the embedding vectors extracted by default ssDLA (167 channels). In the confusion matrices the percentage
values and the colors indicate recall. The aggregating scheme for each complex is the averaging of embedding vectors
over is interfacial residues.
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Figure S 12: DLA-Mutation predictions for mutations to Alanine separated by different complexes. Predictions
are obtained with the DLA-Mutation architecture with a fine-tuned pre-trained model and All auxiliary features. A.
3M62, B. 1CHO, C. 1JCK, D. 4L3E, E. 1MI5, F. 4OZG, G. 4PWX, H. 3MZG.
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