Title

Rapid Restoration of Cell Phenotype and Matrix Forming Capacity Following Transient Nuclear Softening

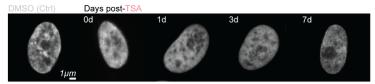
Author names

Ryan C. Locke^{1,2,3} & Liane Miller¹, Elisabeth A. Lemmon^{1,2,4}, Sereen S. Assi¹, Dakota L. Jones², Eddie D. Bonnevie^{1,2,3}, Jason A. Burdick^{2,5}, Su Jin Heo^{1,2}, and Robert L. Mauck^{1,2,3}

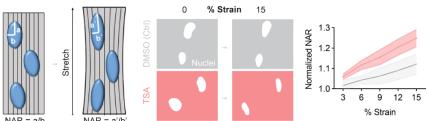
Affiliations

¹Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA

²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA


³Department of Veterans Affairs, CMC VAMC, Philadelphia, PA, USA

⁴School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA

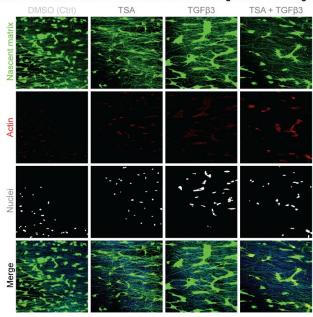

⁵BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA

Supplemental data

a. Representative images for chromatin condensation parameter (CCP)

b. Nuclear deformability increased following TSA treatment

c. No differences in 2D wound closure following TSA treatment



Supplemental Figure 1. (a) Representative images of high magnification DAPI-stained nuclei used for quantification of chromatin condensation parameter edge density. (b) Schematic of nuclear deformability assay and representative binarized images of DAPI-stained nuclei at 0 and 15% strain for DMSO-treated controls and TSA-treated cells. Quantification of the nuclear aspect ratio (NAR) at incremental strain steps for DMSO-treated controls and TSA-treated cells, showing increased nuclear deformability at each strain step following TSA treatment. (c) Representative images of 2-dimensional scratch assay over time for DMSO-treated controls and TSA-treated cells, and quantification of percent wound closure over time. N=5-6.

a. Study design for nascent matrix formation to 2-weeks

b. Maintence of functional nascent matrix formation following nuclear softening at 2-weeks

Supplemental Figure 2. Representative confocal images of nascent matrix at 14 days following DMSO, TSA, TGF β 3, or TSA + TGF β 3 treatment. Green: deposited nascent matrix over the culture period, yellow: overlay of nascent matrix and actin (red), blue: nanofibrous scaffold autofluorescence, magenta: nuclei.

a. Complete recovery of bulk transcriptional phenotype and normal respose to pro-matrix stimuli differentially expressed genes between low- and high-dose TSA treatments at day 0 following washout of low-dose TSA Low (150nM) TSA dose TSA 0d vs TSA + TGFR3 7d vs 125 none Low-dose TSA 0d <u>High-dose</u> 60 100 0/14a1 200 0261055 -Log₁₀ (p_{adj}) 75 oc10062099 Cpt1 4a Inhb 40 1472 83 826 Tnfrsf2 34 14 107 818 50 100 Chst1 20 Stmr Ncami **Amp13** 25 Down Both compared to Ctrl 0d 10 -5 -5 5 -10 -5 5 Log₂ (Fold Change) Log₂ (Fold Change) Log₂ (Fold Change) d. Minimal differences in response to subsequent TGF $\beta 3$ following prior exposure to c. Minimal differences in differential expression between low- and high-dose TSA low- or high-dose TSA compared to TGFβ3-control 7d: High-dose vs. Low-dose TSA Low-dose 7d: TGFβ3 vs. TSA + TGFβ3. High-dose 7d: TGFβ3 vs. TSA + TGFβ3. 80 100 none c10216812 none 60 60 75 4xin2 Mki6 -Log₁₀ (p_{adj}) Aldh1a3 eg10 40 40 40 50 elsr2 Csf 20 20 25 20 Krt18 Mmp13 0 -10 0 -5

b. Significant overlap and differences in

0

Log₂ (Fold Change)

5

Supplemental Figure 3. (a) Volcano plots for low-dose TSA treatment groups. (b) Venn diagram comparing differentially expressed genes at day 0 following low- and high-dose TSA. Numbers indicate upregulated (top number) genes and downregulated (bottom number) genes. Non-overlapping quadrants represent unique genet sets for each group. (c) Volcano plots for high-dose compared to low-dose TSA treatment at day 0 and 7. (d) Volcano plots for TGF β 3 only compared to low- or high-dose TSA + TGF β 3 at day 7.

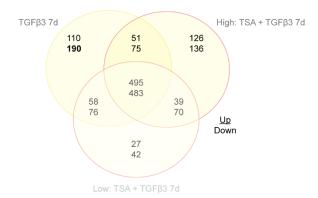
-5

5

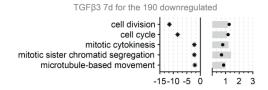
Log₂ (Fold Change)

5

Log₂ (Fold Change)


-5

Log₂ (Fold Change)


5

-5

a. High similarity of differentially expressed genes for TGF-treated groups

b. Minimal pathway differences between unique genes for TGF-treated groups

Supplemental Figure 4. (a) Venn diagram of differentially expressed genes between groups treated with TGF β 3, including TGF β 3 only, high-dose TSA + TGF β 3, and low-dose TSA + TGF β 3. Numbers indicate upregulated (top number) genes and downregulated (bottom number) genes. Non-overlapping quadrants represent unique gene sets for each group. (b) Gene ontologies for unique upregulated genes following high-dose TSA + TGF β 3. Note: The unique downregulated genes following high-dose TSA + TGF β 3 and both the up- and down-regulated genes following low-dose TSA + TGF β 3 were not significantly enriched into specific gene ontologies.