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Abstract

Many peptide hormones form an alpha-helix upon binding their receptors1–4, and sensitive
detection methods for them could contribute to better clinical management. De novo protein
design can now generate binders with high affinity and specificity to structured proteins5,6.
However, the design of interactions between proteins and short helical peptides is an unmet
challenge. Here, we describe parametric generation and deep learning-based methods for
designing proteins to address this challenge. We show that with the RFdiffusion generative
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model, picomolar affinity binders can be generated to helical peptide targets either by noising
and then denoising lower affinity designs generated with other methods, or completely de novo
starting from random noise distributions; to our knowledge these are the highest affinity
designed binding proteins against any protein or small molecule target generated directly by
computation without any experimental optimization. The RFdiffusion designs enable the
enrichment of parathyroid hormone or other bioactive peptides in human plasma and
subsequent detection by mass spectrometry, and bioluminescence-based protein biosensors.
Capture reagents for bioactive helical peptides generated using the methods described here
could aid in the improved diagnosis and therapeutic management of human diseases.7,8

Main

Peptide hormones, such as parathyroid hormone (PTH), neuropeptide Y (NPY), glucagon
(GCG), and secretin (SCT), which adopt alpha helical structures upon binding their receptors1–4,
play key roles in human biology and are well established biomarkers in clinical care and
biomedical research (Fig. 1A). There is considerable interest in their sensitive and specific
quantification, which currently relies on antibodies that require substantial resources to
generate, can be difficult to produce with high affinity, and often have less-than-desirable
stability and reproducibility5. Furthermore, the loop-mediated interaction surfaces of antibodies
are not particularly well suited to high specificity binding of extended helical peptides. Designed
proteins can be readily produced with high yield and low cost in E. coli and have very high
stability, but while there have been considerable advances in de novo protein design to generate
binders for folded proteins5,6, the design of proteins that bind helical peptides with high affinity
and specificity remains an outstanding challenge. Design of peptide-binding proteins is
challenging for two reasons. First, proteins designed to bind folded proteins, such as picomolar
affinity hyper-stable 50-65 residue minibinders5, have shapes suitable for binding rigid concave
targets, but not for cradling extended peptides. Second, peptides have fewer residues to interact
with, and are often partially or entirely unstructured in isolation9; as a result, there can be an
entropic cost of structuring the peptide into a specific conformation10, which compromises the
favorable free energy of association. Progress has been made in designing peptides that bind to
extended beta strand structures11 and polyproline II conformations conformations12 using protein
side chains to interact with the peptide backbone, but such interactions cannot be made with
alpha helical peptides due to the extensive internal backbone - backbone hydrogen bonding.

Design of helical peptide binding scaffolds

We set out to develop general methods for designing proteins that bind peptides in helical
conformations. To fully leverage recent advances in protein design, we explored both parametric
and deep learning-based approaches. For parametric generation, we reasoned that helical
bundle scaffolds with an open groove for a helical peptide could provide a general solution to
the helical peptide binding problem: the extended interaction surface between the full length of
the helical peptide target and the contacting helices on the designed scaffold could enable the
design of high affinity and specificity binding (Fig. 1B). In parallel, we reasoned that deep

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.10.519862doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?mGnh9u
https://www.zotero.org/google-docs/?41RStB
https://www.zotero.org/google-docs/?GaIDz3
https://www.zotero.org/google-docs/?pV1YB4
https://www.zotero.org/google-docs/?U0xa1n
https://www.zotero.org/google-docs/?FcsGrx
https://www.zotero.org/google-docs/?6aZmvp
https://www.zotero.org/google-docs/?sjUSuz
https://www.zotero.org/google-docs/?LSLB8P
https://doi.org/10.1101/2022.12.10.519862
http://creativecommons.org/licenses/by-nd/4.0/


3

learning methods, which do not pre-specify scaffold geometries, could permit the exploration of
different potential solutions to helical peptide binding.

Parametric design of groove scaffolds

We began by exploring parametric methods for generating backbones with overall “groove”
shapes. Using the Crick parameterization of alpha-helical coiled coils13, we devised a method to
sample scaffolds consisting of a three helix groove supported by two buttressing helices (Fig.
1C, see Supplementary Materials). We assembled a library of these scaffolds sampling a range
of supercoiling and helix-helix spacings to accommodate a variety of helical peptide targets
(Supplementary Fig. S1). We then used this library to design binders to PTH, GCG, and NPY,
and screened 12 designs for each target using a nanoBiT split luciferase binding assay. Many of
the designs bound their targets (3/12, 4/12, and 8/12 to PTH, GCG, and NPY) but with only
micromolar affinities (see Supplementary Materials). These results suggest that groove-shaped
scaffolds can be designed to bind helical peptides, but also that design method improvement
was necessary to achieve high-affinity binding.

While powerful for generating and sampling a large number of potential scaffolds, the parametric
generation approach has the limitation of building only from ideal building blocks, in this case
parametric alpha helices. Deep learning methods do not have these limitations, and we
explored whether RoseTTAFold Inpainting (RFjoint)14, a model that can jointly design protein
sequences and structures, could be used to improve the modest affinities of our
parametrically-designed PTH binders (Fig. 2A). We used RF Inpainting to extend the binders
(non-parametrically) to incorporate additional interactions with the target peptide to take
advantage of the full potential binding interface of the peptide. Out of 192 designs tested, 44
showed binding against PTH in initial yeast display screening. Following SEC purification, the
best binder was found to bind at 6.1 nM affinity to PTH. Binding was quite specific: very little
binding was observed to PTH related peptide (PTHrp), a related peptide sequence with 30%
sequence identity (Fig. 2A). Overall, the affinity of the starting PTH binders was improved by
approximately three orders of magnitude, and the highest-affinity binder had 19% greater
surface area contacting the target peptide. We used the same design strategy to generate
higher affinity binders for NPY and GCG. Using weak parametric binders as a starting point, we
extended their binding interfaces and generated a ~231 nM affinity binder for GCG and a 3.5 µM
binder for NPY after screening 96 designs (Supplementary Fig. S2).

As an alternative to de novo design of scaffolds that contain grooves, we explored the threading
of helical peptides of interest onto already existing repeat protein scaffolds that make extensive
interactions with helical peptides (Fig. 2B). We started from a library of scaffolds that contained
single helices bound by helical repeat scaffolds. We then threaded sequences of peptides of
interest onto the bound single helix and filtered to maximize interfacial hydrophobic interactions
of the target sequence to the binder scaffold. The binders were then redesigned in the presence
of the threaded target sequence with ProteinMPNN15 and the complex was predicted with AF216

(with initial guess6) and filtered on AF2 and Rosetta metrics. Initial screening using yeast
surface display identified 4/66 binders, which were expressed in E. coli. Following size exclusion
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chromatography (SEC) purification of the monomer fraction, all 4 of the designs were found to
bind with sub-micromolar affinity using fluorescence polarization (FP), with the highest-affinity
design binding with an affinity of 2.7 nM for SCT. Binding specificity was also assessed by
measuring affinity for glucagon during FP experiments. We found that the tightest SCT binder
was only 4 fold selective for SCT over GCG, which suggested additional design strategies might
be necessary to increase the quality of the binding interface and to achieve high-specificity
binding (Fig. 2B).

Designing peptide binders by hallucination

We next explored the use of deep learning hallucination methods to generate helical peptide
binders completely de novo, with no pre-specification of the desired binder geometry (from
peptide sequence alone) (Fig. 2C). Hallucination or “activation maximization” approaches start
from a network that predicts protein structure from sequence, and carry out an optimization in
sequence space for sequences which fold to structures with desired properties. This approach
has been used to generate novel monomers17, functional-site scaffolds14 and cyclic oligomers18.
Hallucination using AlphaFold2 (AF2) or RosettaFold has a number of attractive features for
peptide binder design. First, neither the binder nor the peptide structure needs to be specified
during the design process, enabling the design of binders to peptides in different conformations
(this is useful given the unstructured nature of many peptides in solution; disordered peptides
have been observed to bind in different conformations to different binding partners9). Second,
metrics such as the predicted alignment error (pAE) have been demonstrated to correlate well
with protein binding6, permitting the direct optimization of the desired objective, albeit with the
possible hazard of generating adversarial examples18.

We began by designing binders to the apoptosis-related BH3 domain of Bid (Fig. 1A). The Bid
peptide is unstructured in isolation, but adopts an alpha-helix upon binding to Bcl-2 family
members19,20; it is therefore a model candidate for the design of helix-binding proteins. Starting
from only the Bid primary sequence, and a random seed binder sequence (of lengths 60, 70, 80,
90 or 100 residues), we iteratively optimized the sequence of the binder through a Monte Carlo
search in sequence space, guided by a composite loss function including the AF2 confidence
(pLDDT, pTM) in the complex structure, and in the interaction between peptide and target (pAE).
The trajectories typically converged in 5000 steps (sequence substitutions; Supplementary Fig.
S3), and the output binder sequence was subsequently redesigned with ProteinMPNN, as
previously described18. All designed binders were predicted to bind to Bid in a helical
conformation; the exact conformations differ between designs because only the amino acid
sequence of the target is specified in advance. This protocol effectively carries out flexible
backbone protein design, which can be a challenge for traditional Rosetta based design
approaches for which conformational sampling can be very compute intensive. Interestingly, in
line with our prediction that “groove” scaffolds would offer an ideal topology for helical peptide
binding, many of the binders from this approach contained a well-defined “groove”, with the
peptide predicted to make extensive interactions with the binder, typically helix-helix
interactions.
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47 of the hallucinated designs were tested experimentally (Supplementary Fig. S4A). Initial
screening was performed with co-expression of a GFP-tagged Bid peptide and the HIS-tagged
binders, with coelution of GFP and binder used as a readout for binding. 4 of these designs
were further characterized, and showed soluble, monomeric expression even in the absence of
peptide co-expression (Supplementary Fig. S4B). All designed proteins could be pulled-down
using Bid BH3 peptide immobilized on beads (Supplementary Fig. S4C). Circular dichroism
experiments indicated that the Bid peptide was unstructured in solution, and that helicity
increased upon interaction with the hallucinated proteins, in line with the design prediction
(Supplementary Fig. S4D). The binders were highly thermostable, and, unlike the native Bcl-2
protein Mcl-1, readily refolded after (partial) thermal denaturation at 95 °C (Supplementary Fig.
S4E). Isothermal titration calorimetry revealed that all four bound Bid peptide, with the
highest-affinity design binding having an affinity of 25 nM (Fig. 2C), a higher affinity interaction
than with the native partner Mcl-1 (Supplementary Fig. S4F).

Peptide binder design with RFdiffusion

We next explored the design of binders using the RoseTTAFold-based denoising diffusion
model RFdiffusion described in the accompanying paper (Watson et al.). RFdiffusion is much
more compute efficient than hallucination, and is trained to directly generate a diversity of
solutions to specific design challenges starting from random 3D distributions of residues that are
progressively denoised. We reasoned that RFdiffusion could be used both for binder
optimization (by sampling related conformations around a specific binder structure) and for fully
de novo design starting from a completely random noise distribution.

A long standing challenge in protein design is to increase the activity of an input native protein
or designed protein by exploring the space of plausible closely related conformations for those
with predicted higher activity. This is difficult for traditional design methods as extensive full
atom calculations are needed for each sample around a starting structure (using molecular
dynamics simulation or Rosetta full atom relaxation methods), and it is not straightforward to
optimize for higher binding affinity without detailed modeling of the binder-target sidechain
interactions. We reasoned that, in contrast, RFdiffusion might be able to rapidly generate
plausible backbones in the vicinity of a target structure, increasing the extent and quality of
interaction with the target guided by the extensive knowledge of protein structure inherent in
RoseTTAfold. During the reverse diffusion (generative) process, RFdiffusion takes random
Gaussian noise as input, and iteratively refines this to a novel protein structure over many (“T”)
steps (typically 200). Partly through this denoising process, the evolving structure no longer
resembles “pure noise”, instead resembling a “noisy” version of the final structure. We
reasoned that ensembles of structure with varying extents of deviation from an input structure
could be generated by partially noising to different extents (for example, timestep 70), and then
denoising to a similar, but not identical final structure (Fig. 3A, B).

We experimented with this approach starting from our parametrically-designed inpainted binders
to GCG (with 231 nM affinity) and NPY (with 3.5 µM affinity) (Supplementary Fig. S2). Following
partial noising and denoising, we identified designs that in silico, had significantly improved AF2
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metrics compared to the starting design. The diversity compared to the starting design could be
readily tuned by varying the time point to which the starting design was noised (Fig. 3A). Initial
screening on yeast display revealed quite high binding success rates, with 25/96 designs
binding GCG, and 20/96 binding NPY at 10 nM peptide concentration. The highest affinity
designs were expressed in E. coli, purified, and their binding affinities were determined using
FP. The highest-affinity binders were found to bind at subnanomolar affinities to GCG, and 5.6
nM to NPY (Fig. 3C). The designed proteins are quite specific: the GCG binders did not bind
oxyntomodulin (OXM), a proglucagon-derived peptide that shares the same sequence amino
acid as GCG, except for the last eight residues at the C-terminus21. Likewise, the NPY binder
did not show any cross-reactivity to peptide YY (PYY), which is a member of the NPY/pancreatic
polypeptide family and shares a high percentage of sequence similarity22.

Inspired by this success at optimizing binders with RFdiffusion, we next tested its ability to
design binders to a different BH3 peptide, Bim and PTH completely de novo through
unconditional binder design - providing RFdiffusion only with the sequence and structures of the
two peptides in helical conformations, and leaving the topology of the binding protein and the
binding mode completely unspecified (Fig. 4A). From this minimal starting information,
RFdiffusion generated designs predicted by AF2 to fold and bind to the targets with high in silico
success rates. A representative design trajectory is shown for PTH in Fig. 4B; starting from a
random distribution of residues surrounding the PTH peptide in a helical conformation, in
sequential denoising steps the residue shifts to surround the peptide and progressively organize
itself into a folded structure which cradles the peptide along its entire surface.

We obtained synthetic genes encoding 96 designs for each target. Using yeast surface display,
we found that 25 of the 96 designs bound to Bim at 10 nM peptide concentration. The highest
affinity design, which purified as a soluble monomer, bound too tightly for steady state estimates
of the dissociation constant (Kd); global fitting of the association and dissociation kinetics
suggest a Kd of ~100pM (Fig 4C). For PTH, we found that 56/96 of the designs bound by yeast
surface display with sub-micromolar affinities. The highest affinity design again bound too tightly
for accurate Kd estimation; instead fluorescence polarization data provides an approximate
upper bound for the Kd<500 pM (Fig. 4C). Binding was also highly specific; no binding was
observed to the related PTHrp (Fig. 4C). The diffused from scratch binders again had
considerable structural similarity to our starting groove binding concept.

Origins of higher affinity binding

The RFdiffusion scaffolds bind the peptides with extended helices in a manner not entirely
different from our starting groove structures and the other designs described above. What is the
origin of their higher affinity? Reasoning that de novo building of the designs in the presence of
the target, rather than starting from pre-generated scaffolds, could increase the extent of shape
matching between binder and target, we computed the contact molecular surface5 for all of our
designs in complex with the peptides. The average contact molecular surface for the partially
diffused GCG binders and NPY increased by 33% and 29% respectively compared to the
starting models, and the Rosetta ddG by 29% and 21% (Fig. S5A, S5B).
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Comparison of solutions to the binding problem

Our results provide an interesting side by side comparison of human and machine based
problem solving. Despite the differences in affinity, the deep learning methods typically came up
with the same overall solution to the helical peptide binding design problem–groove shaped
scaffolds with helices lining the binding site–as the human designers did in the first Rosetta
parametric approaches. The increased affinity likely derives at least in part from higher shape
complementarity resulting from direct building of the scaffold to match the peptide shape; the
ability of RFdiffusion to “build to fit'' provides a general route to creating high shape
complementary binders to a wide range of target structures.

Design of protein biosensors for parathyroid hormone detection

Given our success in generating de novo binders to clinically-relevant helical peptides, we next
sought to test their use as detection tools for use in diagnostic assays. Compared to
immunosensors, which often exhibit antibody denaturation, loss of conformational stability, and
wrong positioning of the antigen-binding site during sensor immobilization, de novo
protein-based biosensors offer a more robust platform with high stability and tunability for
diagnostics23,24. To design parathyroid hormone biosensors, we grafted the 6.1 nM PTH binder
into the lucCage system25, screened 8 designs for their luminescence response in the presence
of PTH, and identified a sensitive lucCagePTH biosensor (LOD = 10 nM) with ~21-fold
luminescence activation in the presence of  PTH  (Fig. 5A).

Enriching peptide targets from a complex mixture

We explored the use of our picomolar affinity RFdiffusion generated binder to PTH as a capture
reagent in immunoaffinity enrichment coupled with liquid chromatography-tandem mass
spectrometry (LC-MS/MS), a powerful platform for detecting low-abundance protein biomarkers
in human serum26. We evaluated the RFdiffusion binder in an LC-MS/MS assay for PTH in
serum. PTH enrichment was quantified based on the analysis of the N-terminal peptide of a
tryptic digestion of PTH in human plasma27–29. (see Supplemental Materials). We found that the
designed binder enabled capture of PTH from spiked buffer and spiked human plasma with
recoveries of 53% and 43%, respectively (Fig. 5B).

Discussion

Antibodies have served as the industry standard for affinity reagents for many years, but their
use is often hampered by variable specificity and stability30,31. For binding helical peptides, the
computationally designed helical scaffolds described in this paper have a number of structural
and biochemical advantages. First, the extensive burial of the full length of an extended helix is
difficult to accomplish with antibody loops, but very natural with matching extended alpha
helices in groove shape scaffolds. Second, designed scaffolds are more amenable to
incorporation into sensors as illustrated by the LucCage PTH sensor. Third, they are more
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stable, can be produced much less expensively, and could be more easily incorporated into
affinity matrices for enrichment of peptide hormones from human serum. Fourth, peptide binders
can achieve high affinity and specificity purely through computational methods, eliminating the
need to use animals, which often mount weak responses to highly conserved bioactive
molecules. Our MS based detection of peptides present at very low abundance in sera following
enrichment using the designed binders could provide a general route forward for serological
detection of a wide range of disease associated peptide biomarkers.

Our results highlight the emergence of powerful new deep learning methods for protein design.
The inpainting and RFdiffusion methods were both able to improve on initial Rosetta designs,
and the hallucination approach generated high affinity binders without requiring prespecification
of the bound structures. Most impressively, the RFdiffusion method rapidly generated very high
affinity and specific binders to multiple helical peptides. As described in the accompanying
manuscript (Watson et al), RFdiffusion is able to design binders to folded targets; here we
demonstrate further that RFdiffusion can be used to improve starting designs by partial noising
and denoising, and can generate binders to peptides starting from no information other than the
target. To our knowledge, the Bim and PTH binding proteins diffused starting from random
noise are the highest affinity binders to any target (protein, peptide, or small molecule) achieved
directly by computational design with no experimental optimization. We expect both the de novo
peptide binder design capability and the ability to resample around initial designs (before or after
experimental characterization) to be broadly applicable.
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Figure 1. Binding helical peptides in groove scaffolds. (A) Helical peptide targets:
parathyroid hormone (PTH), glucagon (GCG), neuropeptide Y (NPY), secretin (SCT), and the
apoptosis-related BH3 domains of Bid and Bim. (B) “Open groove” structural solution to the
helix binding problem. (C) Parametric approach to sampling of groove scaffolds varying
supercoiling and helix distance to fit different targets.
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Figure 2. Design strategies for binding helical peptides. (A) Redesign of parametrically
generated binder designs using RFjoint inpainting to expand the binding interface. Left:
schematic illustration of approach. Middle: original parametric scaffold (gray), inpainted design
with extended interface (pink), and PTH target (purple). Right: Fluorescence polarization
measurements with TAMRA-labeled targets indicate 6.1 nM binding to PTH and only weak
binding to off-target PTH related peptide (PTHrp). (B) Threading peptides onto pseudorepetitive
protein scaffolds. Left: schematic illustration. Right: Design model of SCT based on repeat
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protein scaffold (grey) and SCT target (orange). Fluorescence polarization measurements with
TAMRA-labeled targets indicate 3.95 nM binding to SCT and 12 nM binding to GCG. (C)
Designing binders with deep network hallucination. Top left: schematic illustration. Right,
designed binder resulting from Monte Carlo optimization of binder sequence using AlphaFold
over 5000 steps, with only target sequence (not structure) provided. Hallucinated binder (gray);
target Bid peptide (blue). Isothermal titration calorimetry measurements (far right) indicate 25
nM binding to Bid. Bottom: hallucination trajectory starting from random sequence (left) to final
sequence (right); the protein folds around the peptide, which increases in helical content from
step 0 to step 1000.
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Figure 3. Peptide binder optimization with RFdiffusion: (A) Top: Schematic showing partial
noising and denoising using RFdiffusion. A starting monomer (left) is partially noised for an
increasing number of steps and then denoised resulting in designs (color) increasingly different
from the original design (gray). Varying the noising stage from which denoising trajectories are
initiated enables control over the extent of introduced structural variation. Bottom left: The
distribution of RMSD to initial design vs number of partial noising steps. Bottom right: Starting
from initial helix binder designs, we use partial diffusion to design optimized binders with
improved shape complementarity. (B) Partial denoising trajectory starting from an initial NPY
binder shown on left. The final design (color) is shown on the right overlaid over the original
design (gray). Contact molecular surface (CMS), Rosetta DDG (DDG) and interface shape
complementarity (sc_int) values are reported for the original and optimized binder. (C) Diffused
binders to GCG and NPY. Top left: Design models (gray) and AF2 predictions (pink, metrics in
Supplementary Table 1), of diffused binders to Glucagon (GCG, yellow). Top right: Fluorescence
polarization measurements with TAMRA-labeled Glucagon indicate a sub-nanomolar binding
affinity. Bottom left: Design models (gray) and AF2 predictions (pink, metrics in Supplementary
Table 1), of diffused binders to Neuropeptide Y (NPY, green). Bottom right: Fluorescence
polarization measurements with TAMRA-labeled NPY indicate a binding affinity of 5.29 nM.
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Figure 4. Peptide binder design with RFdiffusion: (A) Schematic showing binder design
using RFdiffusion. (B) Denoising trajectory in the presence of PTH (purple, Supplementary
Video 1). Starting from random noise (left), a folded structure starts to emerge, leading to the
final designed binder (right). (C) Top left: Design model (gray) and AF2 prediction (pink, metrics
in Supplementary Table 1), of an experimentally validated binder to PTH (purple). Top right:
Fluorescence polarization measurements with TAMRA-labeled PTH indicate a sub-nanomolar
binding affinity. Bottom left: Design model (gray) and AF2 prediction (pink, metrics in
Supplementary Table 1), of an experimentally validated binder to Bim (dark gray). Bottom right:
Biolayer interferometry measurement of Bim binding indicates a sub-nanomolar affinity, with
very slow dissociation kinetics.
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Figure 5. Application of designed binders to sensing and detection. (A) Protein biosensors
for PTH detection. Left: Schematic of the grafted PTH lucCage biosensor, depicting the cage
and latch (left, beige), key (right, beige), luciferase halves (inactive in white, active in blue), the
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PTH binder (red), and PTH peptide target (purple). Right: design model shown in the same color
scheme. (B) Titration of PTH results in linear increases in luciferase luminescence. (C)
Evaluation of the PTH biosensor at limiting concentrations of PTH indicates a 10 nM limit of
detection (see methods). (D-F) The designed PTH binder enables robust recovery of PTH from
complex mixtures. (D) Enrichment experiment schematic. (E) LC-MS/MS chromatograms for
SVSEIQLMHNLGK, the N-terminal tryptic peptide of PTH; different peptide fragments detected
by the LC-MS/MS assay are in different colors. (F) Mean chromatographic peak areas for
triplicate measurements of each sample type are shown. Error bars represent standard
deviation.

Acknowledgements

This work was supported with funds provided by a grant U19 AG065156 from the National
Institute for Aging (S.V.T., M.M., E.H., A.H., H.H.H., I.L., D.B.), a gift from Amgen (J.W.), the
Audacious Project at the Institute for Protein Design (A.H.-W.Y., D.B.), a gift from Microsoft Gift
supporting Computational Protein Structure Prediction and Design at the Institute for Protein
Design (D.J., D.B.), the Washington State General Operating Fund supporting the Institute for
Protein Design (P.V.), a grant INV-010680 from the Bill and Melinda Gates Foundation Grant
(D.J., J.W., D.B.), a NIH NIBIB Pathway to Independence Award (A.H.-W.Y., K99EB031913), a
National Science Foundation Training Grant number EF-2021552 (P.L.), NERSC award
BER-ERCAP0022018 (P.L.), the Open Philanthropy Project Improving Protein Design Fund
(P.L., G.R.L.,D.B.), The Donald and Jo Anne Petersen Endowment for Accelerating
Advancements in Alzheimer’s Disease Research (N.Ben.), and the Howard Hughes Medical
Institute (D.B.). J.M.R. and F.H. were supported by the Novo Nordisk Foundation
(NNF19OC0054441 to J.M.R.). H.H.H is supported by a postdoctoral fellowship provided by the
Partnership for Clean Competition. We thank Microsoft and AWS for generous gifts of cloud
computing resources.

Author Contributions

D.B. directed the work. I.L. and S.V.T. designed, screened, and experimentally characterized the
parametrically designed groove scaffold peptide binders. P.J.Y.L. and S.V.T. designed, screened
and experimentally characterized the threaded peptide binders. J.L.W., developed the
hallucination method for peptide binding. J.L.W., F.H., and J.M.R designed and experimentally
characterized the hallucinated peptide binders. J.L.W. and S.V.T. designed and characterized
the inpainted binders. S.V.T. and P.V. designed, screened, and experimentally characterized all
the different classes of diffused peptide binders shown in this manuscript. J.L.W., D.J., and
N.R.B. developed the RFdiffusion algorithm used for peptide binder design. H.H.H, E.H., M.J.M.,
and A.N.H performed the LC-MS/MS peptide detection. A.H.-W.Y. designed and characterized
the lucCagePTH biosensors and analyzed the sensing experiments. M.E. and G.R.L supported
during yeast display binding screening. All authors reviewed and accepted the manuscript.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2022. ; https://doi.org/10.1101/2022.12.10.519862doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.10.519862
http://creativecommons.org/licenses/by-nd/4.0/


18

Supplementary Materials

Figure S1: Parametric groove scaffold library: 50 scaffolds from the library of 18 thousand
parametric groove scaffolds, demonstrating a range of supercoiling and helix distances to
accommodate a range of helical peptide targets.

Identification of weak binder hits from parametric designs in pilot experiment

The first helical peptide binder hits were identified in pilot experiments screening for binding
using the nanoBiT split luciferase assay (methods). These kinetic binding experiments were
performed in cell lysate with no control over protein concentration, so candidate binders were
selected qualitatively for showing some increase in luminescence signal over time above
background noise, indicating likely binding activity. Additional pilot experiments indicated that
this binding activity was all at very weak affinities, likely >100 nM. Therefore, these initial
candidates were not further characterized, but rather selected for additional design to yield
higher affinity binders.

Identification of  weak binders for NPY and GCG using extended parametric designs

We used the RF Inpainting approach to extend the binding interfaces of NPY and GCG weak
binders hits from parametric design. However, the characterized proteins displayed
high-specificity only, as their binding affinities were too low for diagnostic applications.
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Figure S2. Inpainted peptide binders were specific and bound  their targets with low
affinity. (A) NPY binder. (B) Glucagon binder. AF2 predictions of the proteins and peptides are
shown on the left.
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Figure S3: Hallucinating Bid Binders with AlphaFold2: A) Example hallucination trajectory
generating 70 amino acid binders to the peptide Bid (blue). Initially, AlphaFold2 predicts an
unstructured “binder”, but over 5000 steps, a binder is built up around the peptide. Crucially, no
template structure is provided for the Bid peptide, allowing AF2 to predict its structure
throughout. Note the predicted elongation of the helical structure in the peptide (blue, top) over
the hallucination trajectory. B) Hallucination trajectories approximately converge after 5000
steps. Left to right, top to bottom: The mutation rate at each step is decayed throughout the
trajectory (1250 x 3 steps, 2500 x 2 steps, 1250 x 1 step). More mutations initially helps speed
up hallucination, while a lower rate later on allows more gradual refinement. The AF2
confidence (pLDDT, pTM) in the bound structure increases throughout trajectories, while the
pAE between peptide and binder (known to be a good correlator of binding) decreases. The
contact probability also trends to convergence over the trajectories, while the proteins typically
become more compact (radius of gyration). N=96 trajectories.
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Figure S4. Hallucinated Bid binders were stable and bound Bid peptide with high affinity.
(A) 47 hallucinated designs tested for initial experimental screening. (B) 4 designs were chosen
for expression without Bid peptide. All expressed as monomeric proteins (assessed by
preparative SEC) and were pure by SDS-PAGE. (C) All hallucinations could be pulled-down by
biotinylated Bid immobilized on streptavidin magnetic beads. B = bound to bead, U = unbound,
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in supernatant. L = ladder. (D) Bid is unstructured in isolation by circular dichroism (CD),
whereas all hallucinations were helical in isolation, as predicted from the hallucinated structure.
A 1:1 molar ratio of binder:Bid (Mix) produced greater helical signal than that predicted by the
isolated spectra (No inter.) suggesting binding is inducing helix formation. (E) Melting with CD
showed that Hallucinations were thermostable, and binding to Bid increased thermostability
(where measurable). All hallucinations would remain folded, or refold after heating and cooling,
in contract to the natural binder Mcl-1 which precipitated in the process. (F) ITC showed that
hallucinations bound to Bid, with µM to nM Kds.

Figure S5. Binding metrics for partially diffused binders. A) Computational metrics for 96
ordered partially diffused glucagon binders showed significant improvement in contact molecular
surface (a measure of interface size and quality) and Rosetta ddG (a measure of interface
predicted energy) over the starting design (vertical red lines). Distribution means are shown in
black. B) Computational metrics for 96 ordered partially diffused NPY binders showed significant
improvement in contact molecular surface, Rosetta ddG, and interface shape complementarity
(a measure of interface quality) over the starting design (vertical red lines). Means are shown in
black.
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Supplementary Video 1. A video of the diffusion trajectory for the fully diffused PTH binder can
be seen at
https://www.bakerlab.org/wp-content/uploads/2022/11/diffusion_animation_PTHbinder.gif

GCG Binder NPY Binder PTH Binder Bim Binder

RMSD AF2 vs
Design

0.62 Å 0.61 Å 0.78 Å 0.80 Å

AF2 interaction
PAE

9.25 8.29 4.40 4.50

AF2 pLDDT for
binder

95.52 93.41 94.3 96.6

Table 1. Alphafold metrics for partially and fully diffused binders.

Parametric design of groove-shaped scaffold library and use for binder design

The parametric groove-shaped scaffold library was sampled using a random sampling
approach, where key parameters were selected randomly from distributions. An even
distribution of bundle “lengths” was sampled, where each parametric helix was 15-19 residues
long. A supercoiling value was randomly selected from a biased distribution favoring more
supercoiled scaffolds, given these scaffolds were more likely to fail in the subsequent looping
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step. An average helix neighbor distance value was randomly selected from a normal
distribution informed by native helical bundle geometries. The distance of each helix from its
neighbors was independently randomly selected from a much tighter normal distribution
centered at the preselected average helix neighbor distance value, to provide some noise within
a given scaffold to helix distances and allow for heterogeneous amino acid selections. Values
for helix phase and Z displacement were randomly sampled for each helix. The “groove”
consisting of 3 helices was first sampled as a helical bundle using the Crick parameterization of
alpha-helical coiled coils, around an imaginary central helix where the target was to later be
docked. Next, the two buttressing helices were sampled with the same parameterization, but
moved radially outward with randomly sampled helix neighbor distances as well as an additional
randomly sampled tilt. This process was used to sample a set of 200k arrangements of 5
helices. Next, the Rosetta ConnectChainsMover was used to loop this set into approximately
135k successful scaffold backbones. These backbones were designed and filtered using
Rosetta to yield a final library of 18 thousand scaffolds. This library was used to design binders
to different helical peptide targets using an adapted version of the miniprotein binder design
computational pipeline used by Cao et al.5.

Design of BIM peptide binders

We also experimented with unconditional binder design for the apoptosis-related peptide Bim
(DMRPEIWIAQELRRIGDEFNAYYARR; PDB: 6X8O)- providing RFdiffusion only with the
sequence and structures of the two peptides in helical conformations, and leaving the topology
of the binding protein and the binding mode completely unspecified. From this minimal starting
information, RFdiffusion generated designs predicted by AF2 to fold and bind to the targets with
high in silico success rates. We obtained synthetic genes encoding 96 designs for each target.
Using yeast surface display, we found that 25 of the 96 designs bound to Bim (10nM, no
avidity). The highest affinity design, which purified as a soluble monomer, bound too tightly for
steady state estimates of the dissociation constant (Kd); global fitting of the association and
dissociation kinetics suggest a Kd of ~100pM. External potentials were used to promote
interactions between the binder and target - specifically, the radius of gyration of the complex
was minimized.
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