Methods S1

Contents

General considerations 2
Synthesis of azetidine probes 3
Synthesis of MY-1A 3
Synthesis of MY-1B 3
Synthesis of MY-3A 4
Synthesis of MY-3B 5
Synthesis of MY-11B 6
Synthesis of MY-11A 7
Synthesis of MY-45A and MY-45B 8
Synthesis of tryptoline probes 10
EV-96, EV-97, EV-98, EV-99 10
Synthesis of WX-01-10 12
Synthesis of WX-01-12 15
Synthesis of WX-02-23 18
Synthesis of WX-02-43 20
Synthesis of EV-97-ctrI 21
Synthesis of EV-96-ctrI 22
Synthesis of EV-99-ctrI 23
Synthesis of EV-98-ctrI 24
Spectroscopic and chromatographic data 25
References cited 55

General considerations

All reagents and solvents were purchased and used as received from commercial vendors or synthesized according to cited procedures. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise stated. Flash chromatography was performed using 20-40 $\mu \mathrm{m}$ silica gel (60-Å mesh) on a Teledyne Isco Combiflash Rf or a Biotage Isolera Prime, alternatively in a glass column using SiliaFlash® F60 40-63 $\mu \mathrm{m}$ silica gel (60-A mesh). Preparative high-pressure liquid chromatography (prep-HPLC) was performed on a Gilson GX-281 instrument equipped with a Phenomenex Gemini C18 column ($150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 10 \mu \mathrm{M}$) eluting with a mixture of acetonitrile and a buffered aqueous phase. Aqueous buffers are denoted as follows: BASE ($0.05 \% \mathrm{ammonia} \mathrm{v} / \mathrm{v}$), TFA (0.075\% trifluoroacetic acid v/v), FA (0.225\% formic acid v/v), HCL (0.05\% concentrated hydrochloric acid, v/v), NEU (10 mmol ammonium bicarbonate). Analytical thin layer chromatography (TLC) was performed on 0.2 mm or 0.25 mm silica gel 60-F plates and visualized by UV light (254 $n m$). Preparative thin layer chromatography (prep-TLC) was performed on GF254 plates (acrylic adhesive, $0.5 \times 200 \times 200 \mathrm{~mm}, 5-20 \mu \mathrm{M}$ particle size, $250 \mu \mathrm{M}$ thickness). NMR spectra were recorded on Bruker Avance III 400, Avance III HD 400, Avance Neo 400 spectrometers (${ }^{1} \mathrm{H}, 400 \mathrm{MHz}$) at 300 K unless otherwise noted. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (δ), multiplicity (s = singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad), coupling constants, and integration. Chemical shifts are reported in parts per million (ppm) using the appropriate solvent as reference. Analytical supercritical fluid chromatography (SFC) was performed on a Shimadzu LC system (flow rate: $3 \mathrm{~mL} / \mathrm{min}$, back pressure: 100 Bar, column temperature: $35^{\circ} \mathrm{C}$) equipped with a polydiode array detector unless otherwise noted. Tandem liquid chromatography/mass spectrometry (LC-MS) was performed on an Agilent 1200 series LC/MSD system equipped with an Agilent G6110A mass detector, alternatively a Shimadzu LC-20AD or AB series LC-MS system equipped with Shimadzu SPD-M20A or SPDM40 mass detectors, alternatively a Waters H-Class LC with equipped with diode array and QDa mass detector.

Synthesis of azetidine probes

Synthesis of MY-1A

(2S,3R)-1-acryloyl-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-1A) (1)

To a precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S} 1(50.0 \mathrm{mg}, 131 \mu \mathrm{~mol})$ (Maetani et al., 2017) in dichloromethane (1 mL) were added triethylamine ($26.5 \mathrm{mg}, 262 \mu \mathrm{~mol}$) and acryloyl chloride ($14.2 \mathrm{mg}, 157 \mu \mathrm{~mol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 hours. Upon completion, the reaction mixture was concentrated under reduced pressure to obtain a residue, which was purified by prep-TLC $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=2: 1$) to give MY-1A ($51.0 \mathrm{mg}, 89 \%$ yield) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 436.0655$. Found 436.0646.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.47$ (br s, 1H), $8.81(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.54-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25\left(\mathrm{~m}, 4 \mathrm{H}+\mathrm{CHCl}_{3}\right), 6.53(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.48-6.18 (m, 1H), 5.98-5.62 (m, 1H), $5.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.40(\mathrm{~m}$, $1 \mathrm{H}), ~ 4.33-4.24(\mathrm{~m}, 1 \mathrm{H})$.

Synthesis of MY-1B

Prepared in analogous fashion from ent-S1 (Maetani et al., 2017).
(2R,3S)-1-acryloyl-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-1B) (2)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 436.0655$. Found 436.0649.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.47$ (s, 1H), 8.80 (d, J = $\left.4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.42$ (d, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.25\left(\mathrm{~m}, 4 \mathrm{H}+\mathrm{CHCl}_{3}\right), 6.64-6.15(\mathrm{~m}$, 2H), 5.90-5.64 (m, 1H), 5.37 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.22$ (m, 1H).

Synthesis of MY-3A

(2S,3S)-3-(4-bromophenyl)-1-(tert-butoxycarbonyl)azetidine-2-carboxylic acid (S3)

To a solution of ent-S1 ($450 \mathrm{mg}, 1.18 \mathrm{mmol}$) in acetonitrile (3 mL) was added $\mathrm{Boc}_{2} \mathrm{O}$ ($308 \mathrm{mg}, 1.41 \mathrm{mmol}$), and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 min . Upon completion, the reaction mixture was filtered over Celite and concentrated under reduced pressure to give S2 (600 mg, crude) as a yellow oil. To a solution of S2 ($450 \mathrm{mg}, 933$ $\mu \mathrm{mol})$ in ethanol (3 mL) was added sodium hydroxide ($373 \mathrm{mg}, 9.33 \mathrm{mmol}$), and the resulting mixture was stirred at $110^{\circ} \mathrm{C}$ for 15 min . Upon completion, the mixture was diluted with water and washed with dichloromethane $(2 \times 100 \mathrm{~mL})$. The resulting aqueous solution was acidified with $\mathrm{HCl}(1 \mathrm{M})$ to adjust pH to $5 \sim 6$, exhaustively extracted with $\mathrm{i}-\mathrm{PrOH} / \mathrm{CHCl}_{3}(3: 7,5 \times 60 \mathrm{~mL})$, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give $\mathbf{S 3} \mathbf{(3 3 0 ~ m g , ~ 9 9 \% ~ y i e l d ~}$ over two steps) as a white solid.

LC-MS m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$356.0. Found 356.0.
(2S,3S)-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (S5)

 added diisopropylethylamine ($239 \mathrm{mg}, 1.85 \mathrm{mmol}$) and 8 -aminoquinoline $(23.7 \mathrm{mg}, 262 \mu \mathrm{~mol})$, followed by HATU ($705 \mathrm{mg}, 1.85 \mathrm{mmol}$). The resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 hours. Upon completion, the reaction mixture was concentrated under reduced pressure to give a residue, which was purified by prep-TLC $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=2: 1)$ to give $\mathbf{S 4}(200 \mathrm{mg})$ as a yellow solid used directly in the next step. To a solution
of S4 $(100 \mathrm{mg})$ in dichloromethane (1 mL) was added $\mathrm{HCl} /$ dioxane $(4 \mathrm{M}, 1 \mathrm{~mL})$. and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 hour. Upon completion, the reaction mixture was partitioned between ethyl acetate $(40 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The water layer was extracted with i-PrOH/CHCl ${ }_{3}$ (3:7, $5 \times 20 \mathrm{~mL}$), then the organic phase was dried over sodium sulfate, filtered, and concentrated under reduced pressure to give $\mathbf{S 5}$ ($90.0 \mathrm{mg}, 51 \%$ yield over two steps) as an off-white solid.

LC-MS m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$382.1. Found 382.1.

(2S,3S)-1-acryloyl-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-3A) (3)

To a solution of $\mathbf{S 5}(80.0 \mathrm{mg}, 209 \mu \mathrm{~mol})$ in dichloromethane $(1 \mathrm{~mL})$ were added triethylamine ($42.4 \mathrm{mg}, 419 \mu \mathrm{~mol}$) and acryloyl chloride ($37.9 \mathrm{mg}, 419$ $\mu \mathrm{mol})$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 hours. Upon completion, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=2: 1$) to give MY-3A ($34.0 \mathrm{mg}, 37 \%$ yield) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 436.0655$. Found 436.0649.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 11.13-10.67(\mathrm{~m}, 1 \mathrm{H}), 8.95-8.84(\mathrm{~m}, 1 \mathrm{H}), 8.83-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{dd}, \mathrm{J}=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{br} \mathrm{d}, \mathrm{J}=16.9$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.42-6.25 (m, 1H), 5.91-5.75 (m, 1H), 5.18-4.95 (m, 1H), 4.76-4.55 (m, 1H), 4.43-4.14 (m, 2 H).

Synthesis of MY-3B

Prepared in analogous fashion from S1.
(2S,3S)-1-acryloyl-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-3B) (4)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 436.0655$. Found 436.0643.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.95$ (br s, 1H), 8.97-8.69 (m, 2H), 8.15 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}$ $=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.27(\mathrm{~m}, 1 \mathrm{H}), 5.90-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.02(\mathrm{~m}, 1 \mathrm{H})$, 4.73-4.59 (m, 1H), 4.37-4.21 (m, 2H).

Synthesis of MY-11B

(2R,3S)-N-(quinolin-8-yl)-1-(2,2,2-trifluoroacetyl)-3-(4-((triisopropylsilyl)ethynyl)phenyl)azetidi ne-2-carboxamide (S7)

To a solution of $\mathbf{S 6}$ ($690 \mathrm{mg}, 1.44 \mathrm{mmol}$) and (triisopropylsilyl)acetylene ($789 \mathrm{mg}, 4.33 \mathrm{mmol}$) in N, N-dimethyl formamide (2 mL) were added copper(I) iodide ($27.5 \mathrm{mg}, 144 \mu \mathrm{~mol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(101 \mathrm{mg}, 144 \mu \mathrm{~mol})$ and triethylamine ($292 \mathrm{mg}, 2.89 \mathrm{mmol}$). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 16 hours under nitrogen atmosphere. Upon completion, the reaction mixture was partitioned between ethyl acetate $(60 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$. The water layer was extracted with ethyl acetate ($40 \mathrm{~mL} \times 3$). The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give a residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=100: 1$ to $\left.1: 1\right)$ to give $\mathbf{S 7}(500 \mathrm{mg}, 59 \%$ yield $)$ as a white solid.

LC-MS m/z calculated for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 580.3$. Found 580.4.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, mixture of rotamers): $\delta 10.18-9.69(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.65(\mathrm{~m}, 1 \mathrm{H}), 8.52-8.33$ (m, 1H), 8.14 (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.22\left(\mathrm{~m}, 3 \mathrm{H}+\mathrm{CHCl}_{3}\right), 7.17(\mathrm{~d}, \mathrm{~J}=8.0$ Hz, 1H), 5.66-5.38 (m, 1H), 4.91-4.39 (m, 3H), 1.11-0.91 (m, 21H).

To a solution of $\mathbf{S 7}(500 \mathrm{mg}, 862 \mu \mathrm{~mol})$ in tetrahydrofuran (8.6 mL) was added tetrabutylammonium fluoride (1 M in THF, 8.6 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 hours. Upon completion, the reaction mixture was concentrated in vacuo to give the residue. The residue was purified by prep-TLC $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/ethyl acetate $\left.=0: 1\right)$ to obtain $\mathbf{S 8}(250 \mathrm{mg})$ as a white solid. To a solution of $\mathbf{S 8}(100 \mathrm{mg}, 305 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ were added diisopropylethylamine ($79.0 \mathrm{mg}, 611 \mu \mathrm{~mol}$) and acryloyl chloride ($55.3 \mathrm{mg}, 611 \mu \mathrm{~mol}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 hour. Upon completion, the reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $\left.=1: 2\right)$ and prep-HPLC (column: Waters Xbridge $150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water (10 mM $\left.\mathrm{NH}_{4} \mathrm{HCO}_{3}\right)-\mathrm{CH}_{3} \mathrm{CN}$]; B\%: 35\%-68\%, 8 min). It was further separated by SFC (Column: Chiralpak AD-3 $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$ Mobile phase: Phase A: CO_{2}, and Phase B: i-PrOH (0.05% diethylamine); Gradient elution: 40% i-PrOH (0.05% diethylamine) in CO_{2}; Flow rate: $3 \mathrm{~mL} / \mathrm{min}$; Column Temp: 35 ${ }^{\circ} \mathrm{C}$; Back Pressure: 100 Bar) to obtain MY-11B ($52.0 \mathrm{mg}, 53 \%$ yield over two steps) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$382.1550. Found 382.1542.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}, mixture of rotamers): δ 10.4-10.2 (m, 1H), 8.90 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.12(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}$, 2H), 7.26-7.16 (m, 2H), 6.62-6.10 (m, 2H), 5.84 (d, J = $9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70-5.40 (m, 1H), 4.65-4.55 (m, $1 \mathrm{H}), 4.50-4.22(\mathrm{~m}, 2 \mathrm{H})$, 4.10-4.00 (m, 1H).

Synthesis of MY-11A

Prepared in analogous fashion from ent-S6.
(2S,3R)-1-acryloyl-3-(4-bromophenyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-11A) (9)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 382.1550$; Found 382.1540.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): ~ \delta 8.85$ (dd, $\left.J=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.29$ (dd, $J=8.3$,
$1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.23(\mathrm{~m}, 2 \mathrm{H}), 6.09-5.36(\mathrm{~m}, 2 \mathrm{H})$, 4.80-4.40 (m, 4H), $3.36(\mathrm{~s}, 1 \mathrm{H})$.

Synthesis of MY-45A and MY-45B

General procedure A: preparation of but-2-ynoyl chloride solution. $\mathrm{PCl}_{5}(115 \mathrm{mg}, 0.55 \mathrm{mmol}$, 1.1 equiv) was added to an ice-cold suspension of but-2-ynoic acid ($42.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) in dichloromethane (1 mL). The ice bath was removed and the reaction mixture was stirred at room temperature until it turned into a clear solution (typically 30 minutes to 1 hour).

General procedure B: butynamide formation. But-2-ynoyl chloride (0.5 M solution in dichloromethane, 1.5 equiv), prepared according to general procedure A , was slowly added to a solution of the corresponding amine (1.0 equiv) and Hünig's base (3.0 equiv) in dichloromethane $(0.05 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and stirred until complete consumption of starting material (as monitored by TLC). The reaction was quenched by addition of sat. aq. NaHCO_{3} and was extracted with EtOAc (3x). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography and preparative TLC as indicated.
(2S,3R)-3-(4-bromophenyl)-1-(but-2-ynoyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-45A)
(11)

Following general procedure B using $\mathbf{S 1}(16.9 \mathrm{mg}, 0.044 \mathrm{mmol}, 1.0$ equiv).(Maetani et al., 2017) Purification by flash column chromatography (SiO_{2}, dichloromethane/acetone $=100: 0$ to $10: 1)$ followed by preparative $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CHCl}_{3} /$ acetone $=9: 1$) provided MY-45A as a white foam ($9.9 \mathrm{mg}, 50 \%$ yield).

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 448.0655$. Found 448.0648.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta 10.54(\mathrm{~s}, 0.6 \mathrm{H}), 10.35(\mathrm{~s}, 0.4 \mathrm{H}), 8.95-8.77(\mathrm{~m}, 1 \mathrm{H})$, $8.40(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}$, 0.6 H), $5.29(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.69-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}$, $1 \mathrm{H}), 1.79(\mathrm{~s}, 2 \mathrm{H})$.
(2R,3S)-3-(4-bromophenyl)-1-(but-2-ynoyl)-N-(quinolin-8-yl)azetidine-2-carboxamide (MY-45B) (12)

Following general procedure B using ent-S1 ($18.7 \mathrm{mg}, 0.049 \mathrm{mmol}, 1.0$ equiv).(Maetani et al., 2017) Purification by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, dichloromethane/acetone $=100: 0$ to 10:1) followed by preparative $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CHCl}_{3} /$ acetone $=9: 1$) provided MY-45B as a white foam (10.3 $\mathrm{mg}, 47 \%$ yield).

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 448.0655$. Found 448.0644 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta 10.55(\mathrm{~s}, 0.6 \mathrm{H}), 10.35(\mathrm{~s}, 0.4 \mathrm{H}), 8.98-8.74(\mathrm{~m}, 1 \mathrm{H})$, 8.40 (d, J = 7.4 Hz, 1H), 8.22-7.98 (m, 1H), 7.73-7.40 (m, 3H), 7.30-7.19 (m, 4H), 5.40 (d, J = 9.7 Hz, 0.6 H), $5.29(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.72-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.52-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}$, $1 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H})$.

Synthesis of tryptoline probes

EV-96, EV-97, EV-98, EV-99 were prepared as reported previously (Vinogradova et al., 2020).
methyl (1R,3S)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate (EV-96) (5)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 405.1445$. Found 405.1441.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 1 \mathrm{H})$, 7.12-7.03 (m, 1H), $7.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.65(\mathrm{~m}, 2 \mathrm{H})$, $6.30-6.04(\mathrm{~m}, 2 \mathrm{H}), 6.00-5.79(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{dd}, J=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.51$ (m, 3H), 3.50-3.39 (m, 1H), 3.26-3.14 (m, 1H), 1 exchangeable proton not observed.
methyl (1S,3R)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate (EV-97) (6)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$405.1445. Found 405.1450.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 1 \mathrm{H})$,
7.11-7.04 (m, 1H), $7.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.85-6.68(\mathrm{~m}, 2 \mathrm{H})$, 6.30-6.05 (m, 2H), 6.00-5.79 (m, 2H), $5.70(\mathrm{dd}, \mathrm{J}=10.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55-4.95(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.51$ $(\mathrm{m}, 3 \mathrm{H}), 3.50-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.10(\mathrm{~m}, 1 \mathrm{H}), 1$ exchangeable proton not observed.
methyl (1S,3S)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate (EV-98) (7)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$405.1445. Found 405.1444.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta 7.52(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.15-7.09 (m, 1H), 7.08-7.03 (m, 1H), 7.02-6.81 (m, 2H), $6.80(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.39(\mathrm{~m}$,
$2 \mathrm{H}), 6.49-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.50(\mathrm{~m}, 1 \mathrm{H})$, $3.13(\mathrm{~s}, 3 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 1 \mathrm{H}), 1$ exchangeable proton not observed.
methyl (1R,3R)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-3-carboxylate (EV-99) (8)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 405.1445$. Found 405.1442.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$,
7.15-7.09 (m, 1H), 7.08-7.02 (m, 1H), 7.02-6.84 (m, 2H), $6.80(\mathrm{~s}, 1 \mathrm{H}), ~ 6.73-6.65(\mathrm{~m}$, 1H), 6.62-6.53 (m, 1H), 6.38-6.21 (m, 1H), 5.90 (s, 2H), 5.87-5.78 (m, 1H), 5.68-5.25 (m, 1H), 3.66-3.56 (m, 1H), 3.13 (s, 3H), 3.09-2.97 (m, 1H), 1 exchangeable proton not observed.

Synthesis of WX-01-10

methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(5-hydroxy-1H-indol-3-yl)propanoate (S11)

To a solution of $\mathbf{S 9}(2.00 \mathrm{~g}, 9.08 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added dropwise thionyl chloride ($2.00 \mathrm{~g}, 16.8 \mathrm{mmol}, 1.22 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$. The mixture was warmed and stirred at $40^{\circ} \mathrm{C}$ for 16 hours. The reaction was monitored by LC-MS. The reaction mixture was concentrated under reduced pressure to give $\mathbf{S 1 0}$ (1.90 g , crude) as a yellow oil, which was used for next step without purification. To a solution of $\mathbf{S 1 0}(1.90 \mathrm{~g}$, crude) in methanol (20 mL) and water (5 mL) were added $\mathrm{Boc}_{2} \mathrm{O}(3.54 \mathrm{~g}, 16.2 \mathrm{mmol}, 3.73 \mathrm{~mL})$ and sodium bicarbonate ($2.04 \mathrm{~g}, 24.3 \mathrm{mmol}$). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 hours and the reaction was monitored by LC-MS. Upon completion, the reaction mixture was diluted with water (50 mL) and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give S11 (3.00 g , crude) as a yellow solid, which was used in the next step without further purification.

LC-MS m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$335.2. Found 335.2.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (br s, 1H), 7.21 (d, $\left.J=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97$ (dd, $J=7.9,2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.77 (dd, $J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}$, 1H), 3.25-3.17 (m, 2H), 1.57 (s, 9H).
methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(5-(prop-2-yn-1-yloxy)-1H-indol-3-yl)propanoate (S12)

To a solution of $\mathbf{S 1 1}(2.00 \mathrm{~g}$, crude) in acetonitrile (30 mL) were added potassium carbonate ($2.48 \mathrm{~g}, 17.9 \mathrm{mmol}$) and propargyl bromide (934 $\mathrm{mg}, 6.28 \mathrm{mmol}, 677 \mu \mathrm{~L}, 80 \% \mathrm{w} / \mathrm{w}$ in toluene). The mixture was stirred at $85^{\circ} \mathrm{C}$ for 16 hours. The reaction was monitored by LC-MS. The reaction mixture was extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give a residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=10: 1$ to $\left.5: 1\right)$ to give $\mathbf{S 1 2}(2.30 \mathrm{~g}$, quant.) as a white solid.

LC-MS m/z calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}-\mathrm{Boc}+\mathrm{H}]^{+}$273.1. Found 273.1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00$ (br s, 1H), 7.29-7.24 (m, 1H + CHCl 3), $7.11(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.01 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, 4.68-4.61 (m, 1H), 3.68 (s, 3H), 3.24 (d, J=5.6 Hz, 2H), 2.52 (t, J = 2.4 Hz, 1H), 1.42 (s, 9H).

Compounds S14 and S15

To a solution of $\mathbf{S 1 2}(1.30 \mathrm{~g}, 3.49 \mathrm{mmol})$ in methanol (13 mL) was added $\mathrm{HCl}(4 \mathrm{M}$ in $\mathrm{MeOH}, 9 \mathrm{~mL})$. The mixture was stirred at $20^{\circ} \mathrm{C}$ for 5 hours. The reaction was monitored by LC-MS. Upon completion, the reaction mixture was concentrated under reduced pressure to give $\mathbf{S 1 3}(1.00 \mathrm{~g}$, crude) as a yellow oil, which was used in the next step without purification. To a solution of S13 (900 $\mathrm{mg}, 3.31 \mathrm{mmol}$) in methanol (15 mL) was added piperonal ($595 \mathrm{mg}, 3.97 \mathrm{mmol}$). The mixture was stirred at $75^{\circ} \mathrm{C}$ for 16 hours. The reaction was monitored by LC-MS. Upon completion, the reaction mixture was diluted with water $(20 \mathrm{~mL})$ to adjust the pH to $8-9$, then extracted with $\mathrm{EtOAc}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=1: 0$ to 2:1) to give $\mathbf{S 1 4}(130 \mathrm{mg}, 7.7 \%$ yield) and $\mathbf{S 1 5}(130 \mathrm{mg}, 7.2 \%$ yield) as yellow solids.
methyl (1S,3S)-1-(benzo[d][1,3]dioxol-5-yl)-6-(prop-2-yn-1-yloxy)-2,3,4,9-tetrahydro-1H-pyrido [3,4-b]indole-3-carboxylate (S14)

LC-MS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$405.1. Found 405.2.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$
(d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (ddd, $J=8.4,5.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 2 \mathrm{H})$,
$5.95(\mathrm{~s}, 2 \mathrm{H}), 5.21-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.68(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=11.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (ddd, $J=15.0,4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=15.0,11.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1$ exchangeable proton not observed.
methyl (1R,3S)-1-(benzo[d][1,3]dioxol-5-yl)-6-(prop-2-yn-1-yloxy)-2,3,4,9-tetrahydro-1H-pyrido [3,4-b]indole-3-carboxylate (S15)

LC-MS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$405.1. Found 405.2.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right): \delta 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})$,
7.14-7.08 (m, 1H), 6.93-6.78 (m, 1H), 6.75 (s, 3H), 5.99-5.89 (m, 2H), $5.35-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=3.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{ddd}, \mathrm{J}=15.3,5.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, \mathrm{J}=15.4,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=$ 2.4 Hz, 1H), 1 exchangeable proton not observed.
methyl (1R,3S)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-6-(prop-2-yn-1-yloxy)-2,3,4,9-tetra-hydro-1H-pyrido[3,4-b]indole-3-carboxylate (WX-01-10) (13)

To a solution of $\mathbf{S 1 5}(80.00 \mathrm{mg}, 198 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ were added triethylamine ($40.0 \mathrm{mg}, 396 \mu \mathrm{~mol}, 55.1 \mathrm{uL}$) and acryloyl chloride ($17.9 \mathrm{mg}, 198 \mu \mathrm{~mol}, 16.1 \mathrm{uL}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and the reaction was monitored by LC-MS. Upon completion, the reaction mixture was concentrated under reduced pressure to give a residue, which was purified by prep-HPLC (column: Phenomenex Luna C18 150*25mm*10um; mobile phase: [water ($0.225 \% \mathrm{FA}$)-ACN]; B\%: 39\%-69\%, 10min) and preparatory TLC (SiO_{2}, petroleum ether/EtOAc = 1:1) to give WX-01-10 ($18.0 \mathrm{mg}, 20 \%$ yield) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 459.1551$. Found 459.1551.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.82-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{br} \mathrm{dd}, J=16.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (dd, $J=16.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.10(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{brd}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{brd}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10$ (br s, 1H), $4.73(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{br} \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of WX-01-12

methyl (methoxycarbonyl)-D-tryptophanate (S17)

To a precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{S} 16(1.05 \mathrm{~g}, 4.12 \mathrm{mmol}, \mathrm{HCl})$ in dichloromethane $(20 \mathrm{~mL})$ were added sodium carbonate $(0.584 \mathrm{~g}, 6.18 \mathrm{mmol})$ and methyl chloroformate ($0.655 \mathrm{~g}, 6.18 \mathrm{mmol}, 0.48 \mathrm{~mL}$). The mixture was allowed to gradually warm to $20^{\circ} \mathrm{C}$ overnight (20 h). The reaction mixture was diluted with water (100 mL) and dichloromethane (50 mL). The organic layer was washed sequentially with water, sat. aq. sodium bicarbonate, and brine. The organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give $\mathbf{S 1 7}$ ($1.14 \mathrm{~g}, 4.12 \mathrm{mmol}$, quant.), which was used in the next step without further purification.

LC-MS m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$277.1. Found 277.1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dt}, J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20 (ddd, $J=8.2,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (ddd, $J=8.0,7.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$
methyl (R)-3-(5-hydroxy-1 H-indol-3-yl)-2-((methoxycarbonyl)amino)propanoate (S18)

$\mathbf{S} 17$ ($1.14 \mathrm{~g}, 4.12 \mathrm{mmol}$) was dissolved in trifluoroacetic acid (12 mL) and the solution was stirred at $20^{\circ} \mathrm{C}$ for 2.5 h . Next, the reaction mixture was cooled to $12^{\circ} \mathrm{C}$ (1,4 dioxane dry ice bath) and a solution of lead tetraacetate (4.02 g , 9.08 mmol ; best results were obtained using fresh Strem Chemicals batch) in dichloromethane (80 mL) was added over 10 min . The brown mixture was stirred for 1.5 h at the same temperature before adding zinc ($1.35 \mathrm{~g}, 20.6 \mathrm{mmol}$) and warming the reaction to $20^{\circ} \mathrm{C}$ over 45 min (the reaction becomes amber in color). The reaction was diluted with water (100 mL) and stirred vigorously over 30 min before extracting with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layers were filtered through a silica plug and concentrated under reduced pressure. The resulting brown oil was dissolved in methanol (20 mL) and treated with potassium carbonate ($0.375 \mathrm{~g}, 2.71 \mathrm{mmol}$) overnight (18 h) at $20^{\circ} \mathrm{C}$ to solvolyze any trifluoroacetate ester formed over previous steps. The resulting solution was diluted in 50% sat. aq. NaCl and extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes/EtOAc $=1: 1$ with 0.1% acetic acid) to give $\mathbf{S} 18$ as a tan oil/foam ($0.605 \mathrm{~g}, 4.13 \mathrm{mmol}, 50 \%$).

LC-MS m/z calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$293.3. Found 293.0.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.77$ (dd, $J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.67$ (ddd, $J=6.4,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (s, 3H), 3.65 (s, 3 H), $3.20(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1 exchangeable proton not observed.
methyl (R)-2-((methoxycarbonyl)amino)-3-(5-(prop-2-yn-1-yloxy)-1H-indol-3-yl)propanoate (S19)

To a solution of $\mathbf{S 1 8}(690 \mathrm{mg}, 2.36 \mathrm{mmol})$ in acetonitrile $(20 \mathrm{~mL})$ were added potassium carbonate ($979 \mathrm{mg}, 7.08 \mathrm{mmol}$) and propargyl bromide ($351 \mathrm{mg}, 2.36 \mathrm{mmol}, 254 \mu \mathrm{~L}, 80 \% \mathrm{w} / \mathrm{w}$ in toluene), and the mixture was stirred at $85^{\circ} \mathrm{C}$ for 3 hours. The reaction was monitored by TLC and LC-MS. The reaction mixture
was diluted with water $(100 \mathrm{~mL})$ and extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=1: 1$ to $1: 1$) to give $\mathbf{S} 19$ ($550 \mathrm{mg}, 1.66 \mathrm{mmol}, 71 \%$ yield) as a yellow oil.

LC-MS m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$331.1. Found 331.1.
methyl (R)-2-amino-3-(5-(prop-2-yn-1-yloxy)-1H-indol-3-yl)propanoate (ent-S13)

To a solution of $\mathbf{S} 19(400 \mathrm{mg}, 1.21 \mathrm{mmol})$ in acetonitrile (4 mL) was added trimethylchlorosilane ($263 \mathrm{mg}, 2.42 \mathrm{mmol}, 307 \mu \mathrm{~L}$) and sodium iodide (363 $\mathrm{mg}, 2.42 \mathrm{mmol}$). The mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 hour. This reaction was monitored by LC-MS. The reaction mixture was diluted with water $(100 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give ent-S13 (510 mg , crude) as a yellow oil. It was used in next step directly without purification.

The remaining transformations were performed as described previously for WX-01-10.
methyl (1S,3R)-2-acryloyl-1-(benzo[d][1,3]dioxol-5-yl)-6-(prop-2-yn-1-yloxy)-2,3,4,9-tetra-hydro-1H-pyrido[3,4-b]indole-3-carboxylate (WX-01-12) (14)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 459.1551$. Found 459.1552.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, J=2.4 Hz, 1H), 6.87 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.85-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.56$ (dd, $J=16.7,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=16.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.99-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{~d}, J$ $=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.03$ (m, 1H), $2.51(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of WX-02-23

(1R,3S)-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (S21)

To a solution of $\mathbf{S} 20$ ($500 \mathrm{mg}, 1.43 \mathrm{mmol}$) (Vinogradova et al., 2020) in methanol $(10 \mathrm{~mL})$ were added lithium hydroxide monohydrate $(71.9 \mathrm{mg}, 1.71 \mathrm{mmol})$ and water ($257 \mathrm{mg}, 14.3 \mathrm{mmol}, 257 \mu \mathrm{~L}$). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 48 hours. The reaction was monitored by LC-MS. The reaction mixture was concentrated under reduced pressure to give a residue, which was suspended in toluene (10 mL) and concentrated under reduced pressure to remove residual water. $\mathbf{S 2 1}$ ($500 \mathrm{mg}, 97 \%$ yield), obtained as a white solid was used in the next step without further purification.

LC-MS m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$337.1. Found 337.1.
${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}): $\delta 7.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.05-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.80$ (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.54(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 1 \mathrm{H})$, 2.95-2.85 (m, 1H), 2.65-2.54 (m, 2H).
((1R,3S)-1-(benzo[d][1,3]dioxol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-3-yl)(morpholino)methanone (S22)

To a solution of $\mathbf{S 2 1}(350 \mathrm{mg}, 1.04 \mathrm{mmol})$ in N, N-dimethyl formamide (2 mL) were added HATU ($594 \mathrm{mg}, 1.56 \mathrm{mmol}$), morpholine ($1.81 \mathrm{~g}, 20.8 \mathrm{mmol}$, 1.83 mL), and diisopropylethylamine ($269 \mathrm{mg}, 2.08 \mathrm{mmol}, 363 \mu \mathrm{~L}$). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 hour and the reaction was monitored by LC-MS. Upon completion, the reaction mixture was diluted with water $(20 \mathrm{~mL})$ and extracted with ethyl acetate ($3 \times$ 20 mL). The organic layers were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give a residue, which was purified by prep-HPLC (column: Waters Xbridge $150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water ($10 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$) $-\mathrm{CH}_{3} \mathrm{CN}$]; $\mathrm{B} \%$: $26 \%-59 \%, 10 \mathrm{~min}$) to give $\mathbf{S 2 2}$ ($300 \mathrm{mg}, 70 \%$ yield) as a white solid.

LC-MS m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.2$. Found 406.2.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.50(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 1 \mathrm{H})$, 7.06-7.00 (m, 1H), 6.80-6.72 (m, 2H), 6.68-6.62 (m, 1H), $5.94(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{dd}, \mathrm{J}=10.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78-3.47 (m, 8 H), 3.29-3.13 (m, 1 H), 3.05-2.90 (m, 1 H), 2 exchangeable protons not observed.

1-((1R,3S)-1-(benzo[d][1,3]dioxol-5-yl)-3-(morpholine-4-carbonyl)-1,3,4,9-tetrahydro-2H-pyrido [3,4-b]indol-2-yl)prop-2-en-1-one (WX-02-23) (15)

 To a solution of $\mathbf{S 2 2}(70.0 \mathrm{mg}, 173 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ were added triethylamine ($34.9 \mathrm{mg}, 345 \mu \mathrm{~mol}, 48.1 \mu \mathrm{~L}$) and acryloyl chloride (15.6 mg , $173 \mu \mathrm{~mol}, 14.1 \mu \mathrm{~L}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and the reaction was monitored by LC-MS. Upon completion, the reaction mixture was concentrated under reduced pressure to give a residue, which was purified by prep-HPLC (column: Waters Xbridge $150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water (10 mM $\mathrm{NH}_{4} \mathrm{HCO}_{3}$) $-\mathrm{CH}_{3} \mathrm{CN}$]; B\%: 28\%-58\%,10min) to give WX-02-23 ($23.1 \mathrm{mg}, 28 \%$ yield) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 460.1867$. Found 460.1867.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.47$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (ddd, $J=8.2$, $7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (ddd, $J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.42-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{dd}$,
$J=16.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.88(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{dd}, J=10.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.01(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.44$ ($\mathrm{m}, 5 \mathrm{H}$), 3.44-3.12 ($\mathrm{m}, 5 \mathrm{H}+$ solvent residual peak), 1 exchangeable proton not observed.

Synthesis of WX-02-43

Prepared in analogous fashion from ent-S20 (Vinogradova et al., 2020).
1-((1S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-3-(morpholine-4-carbonyl)-1,3,4,9-tetrahydro-2H-pyrido [3,4-b]indol-2-yl)prop-2-en-1-one (WX-02-43) (16)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 460.1867$. Found 460.1870.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.47(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.42-6.34(\mathrm{~m}$, 1H), 6.24 (d, J = $16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.93 (s, 2H), 5.76 (dd, J = 10.6, 1.4 Hz, 1H),
5.13-5.02 (m, 1H), 3.72-3.44 (m,5H), 3.44-3.11 (m,5H + solvent residual peak), 1 exchangeable proton not observed.

Synthesis of EV-97-ctrl

(1S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carb oxamide (S23)

A solution of ent-S20 (1.50 g, 4.28 mmol$)$ (Vinogradova et al., 2020) in ethanol (10 mL) was degassed by purging with nitrogen 3 times, and methylamine ($20.3 \mathrm{~g}, 40 \%$ w / w in water) was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, then at $80^{\circ} \mathrm{C}$ for 2 hours under nitrogen atmosphere. The reaction was monitored by LC-MS. The reaction mixture was concentrated under reduced pressure to give a residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=1: 0$ to 1:1) to give $\mathbf{S 2 3}$ (1.25 $\mathrm{g}, 3.28 \mathrm{mmol}, 77 \%$ yield) as a yellow solid.

LC-MS m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$350.1. Found 350.1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H})$, 7.03-6.97 (m, 1H), 6.77-6.70 (m, 2H), 6.68-6.60 (m, 1H), $5.89(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 1 \mathrm{H})$, 3.16-3.07 (m, 1H), 2.89-2.78 (m, 1H), $2.75(\mathrm{~s}, 3 \mathrm{H}), 3$ exchangeable protons not observed.
(1S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2-propionyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]i ndole-3-carboxamide (EV-97-ctrI) (18)

To a solution of $\mathbf{S} 23(50.0 \mathrm{mg}, 143 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ were added triethylamine ($21.7 \mathrm{mg}, 215 \mu \mathrm{~mol}, 29.9 \mu \mathrm{~L}$) and propionyl chloride ($13.2 \mathrm{mg}, 143$ $\mu \mathrm{mol}, 13.2 \mu \mathrm{~L})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and the reaction was monitored by LC-MS. The reaction mixture was concentrated under reduced pressure to give a residue, which was purified by prep-HPLC (column: Waters Xbridge $150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water ($10 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$) $-\mathrm{CH}_{3} \mathrm{CN}$]; B\%: $25 \%-55 \%$, 10 min) to give EV-97-ctrl ($37.6 \mathrm{mg}, 92.8 \mu \mathrm{~mol}, 65 \%$ yield) as an off-white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.1761$. Found 406.1760.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.42$ (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~m}$, $1 \mathrm{H}), 3.53-3.30(\mathrm{~m}, 2 \mathrm{H}+$ solvent residual peak), $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 1 \mathrm{H})$, 1.10-0.94 (m, 3H), 2 exchangeable protons not observed.

Synthesis of EV-96-ctrl

Prepared in analogous fashion from S20 (Vinogradova et al., 2020).
(1S,3R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2-propionyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]i ndole-3-carboxamide (EV-96-ctrI) (17)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.1761$. Found 406.1761.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09-7.02 (m, 1H), 7.01-6.95 (m, 1H), 6.93-6.87 (m, 2H), 6.80-6.68 (m, 1H), 6.23
$(\mathrm{s}, 1 \mathrm{H}), 5.91-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.56-3.30(\mathrm{~m}, 2 \mathrm{H}+$ solvent residual peak), $2.61(\mathrm{~s}, 3 \mathrm{H})$, 2.59-2.48 (m, 1H), 2.36-2.25 (m, 1H), $1.03(\mathrm{~m}, 3 \mathrm{H})$, 2 exchangeable protons not observed.

Synthesis of EV-99-ctrl

(1R,3R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2,3,4,9-tetrahydro-1 H-pyrido[3,4-b]indole-3-carb oxamide (S25)

A solution of $\mathbf{S} 24(1.50 \mathrm{~g}, 4.28 \mathrm{mmol})$ (Vinogradova et al., 2020) in ethanol (10 mL) was degassed by purging with nitrogen 3 times, and methylamine ($20.3 \mathrm{~g}, 40 \% \mathrm{w} / \mathrm{w}$ in water) was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 hour, then $80^{\circ} \mathrm{C}$ for 2 hours under nitrogen atmosphere. The reaction was monitored by LC-MS. Upon completion, the reaction mixture was concentrated under reduced pressure to give a residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc $=1: 0$ to $\left.1: 1\right)$ to give S25 (1.45 g, $4.03 \mathrm{mmol}, 94 \%$ yield) as a yellow solid.

LC-MS m/z calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$350.1. Found 350.1.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.95(\mathrm{~m}, 2 \mathrm{H})$, 6.90-6.75 (m, 3H), 5.91 (s, 2H), $5.10(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}$, 1H), 2.79 (s, 3H), 3 exchangeable protons not observed.
(1R,3R)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2-propionyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]i ndole-3-carboxamide (EV-99-ctrI) (20)

To a solution of $\mathbf{S 2 5}(50.0 \mathrm{mg}, 143 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ were added triethylamine ($21.7 \mathrm{mg}, 215 \mu \mathrm{~mol}, 29.9 \mu \mathrm{~L}$) and propionyl chloride ($13.2 \mathrm{mg}, 143$ $\mu \mathrm{mol}, 13.2 \mu \mathrm{~L})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and the reaction was monitored by LC-MS. Upon completion, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by prep-HPLC (column: Waters Xbridge $150 \mathrm{~mm} \times 25 \mathrm{~mm} \times 5 \mu \mathrm{~m}$; mobile phase: [water $\left(10 \mathrm{mM} \mathrm{NH} \mathrm{NHCO}_{3}\right)-\mathrm{CH}_{3} \mathrm{CN}$]; B\%: 29\%-59\%, 10 min) to give EV-99-ctrl ($36.9 \mathrm{mg}, 90.9 \mu \mathrm{~mol}, 64 \%$ yield) as a white solid.

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.1761$. Found 406.1756.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-6.95(\mathrm{~m}, 3 \mathrm{H})$, $6.86-6.60(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.20-5.00(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, \mathrm{J}=15.7,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80-2.55 (m, 2H), $2.21(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2$ exchangeable protons not observed.

Synthesis of EV-98-ctrl

Prepared in analogous fashion from ent-S24 (Vinogradova et al., 2020).
(1S,3S)-1-(benzo[d][1,3]dioxol-5-yl)-N-methyl-2-propionyl-2,3,4,9-tetrahydro-1 H-pyrido[3,4-b]i ndole-3-carboxamide (EV-98-ctrI) (19)

HRMS ESI-TOF m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 406.1761$. Found 406.1762.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.09 (m, 1H), 7.07-6.90 (m, 2H), $6.84(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, 5.25-5.00 (m, 1H), 3.75-3.55 (m, 1H), 2.96 (dd, J= 15.9, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75-2.55 (m, 2H), 2.22 (s, 3H), $1.22(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 2$ exchangeable protons not observed.

Spectroscopic and chromatographic data

${ }^{1} \mathrm{H}$ NMR of MY-1A (1) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of MY-1B (2) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of MY-3B (4) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathrm{EV}-97$ (6) in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR of EV-99 (8) in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR of MY-11B (10) in DMSO- d_{6}

${ }^{1} \mathrm{H}$ NMR of MY-45B (12) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of WX-01-12 (14) in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of WX-02-43 (16) in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR of EV-97-ctrl (18) in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ NMR of EV-99-ctrl (20) in $\mathrm{CD}_{3} \mathrm{OD}$

Chiral stationary phase SFC:

MY-1A (1)

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
PeakTable						
PDA Chl 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	1.428	0.049	0.000	652902	1161646	100.000
Total				652902	1161646	100.000

MY-1B (2)

MY-1A and MY-1B mixture

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
		PeakTable				
PDA Ch1 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	1.424	0.049	0.000	296527	545869	13.295
2	1.760	0.085	5.021	1125780	3560048	86.705
Total				1422307	4105918	100.000

Method

Column: Chiralcel OJ-3 50×4.6mm I.D., $3 \mu \mathrm{~m}$;
Mobile phase B: MeOH (0.05\% DEA);
Gradient elution: 5\% to 40\% B.

MY-3A (3)

1 PDA Multi 1 / $220 \mathrm{~nm}, 4 \mathrm{~nm}$

PDA Ch1 220nm	PeakTable					
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	1.605	0.129	0.000	561301	2805243	100.000
Total				561301	2805243	100.000

MY-3B (4)

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
		PeakTable				
PDA Ch1 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	2.417	0.197	0.000	70006	540538	100.000
Total				70006	540538	100.000

MY-3A and MY-3B mixture

Method

Column: Chiralpak AD-3 $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$;
Mobile phase: A: $\mathrm{CO}_{2}, \mathrm{~B}: \operatorname{iPrOH}(0.05 \% \mathrm{DEA})$;
Gradient elution: 40\% B (isocratic).

EV-96 (5)

EV-97 (6)
mAU
Chromatogram

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Result					
Peak Table					
Peak\# Ret. Time	Height	Height\%	Resolution(USP)	Area	Area\%
$1 \quad 1.685$	6779	1.581	--	18710	0.456
22.278	421874	98.419	3.818	4086960	99.544

EV-96 and EV-97 mixture

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Result					
Peak Table					
PDA Ch1 220nm					
Peak\# Ret. Time	Height	Height\%	Resolution(USP)	Area	Area\%
$1 \quad 1.664$	610940	76.585	Resolution(USP) --	1306910	46.379
$2 \quad 2.365$	186793	23.415	5.162	1511007	53.621

Method

Column: Chiralcel OD-3 50×4.6mm I.D., $3 \mu \mathrm{~m}$;
Mobile phase B: MeOH (0.05\% DEA);
Gradient elution: 5\% to 40\% B.

EV-98 (7)

PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

EV-99 (8)

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Result
Integration Result \quad I

PDA Ch1 220nm		Peak Table					
		Height	Height\%	Resolution(USP)		Area	Area\%
1	0.619	2874854	100.000		--	10981838	100.000

EV-98 and EV-99 mixture

Method

Column: Chiralpak AD-3 $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$
Mobile phase B: MeOH/CH3CN (0.05% DEA);
Gradient elution: 40\% B (isocratic)

MY-11A (9)

1 PDA Multi 1 / $220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
		PeakTable				
PDA Ch1 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	0.961	0.072	0.000	3299	9386	0.809
2	1.447	0.120	5.055	247033	1151490	99.191
Total				250333	1160876	100.000

MY-11B (10)

($220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
PeakTable						
PDA Ch1 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	0.979	0.082	0.000	487407	1637634	100.000
Total				487407	1637634	100.000

MY-11A and MY-11B mixture

Method

Column: Chiralpak AD-3 50×4.6mm I.D., $3 \mu \mathrm{~m}$
Mobile phase: $\mathrm{A}: \mathrm{CO}_{2}, \mathrm{~B}: \operatorname{iPrOH}(0.05 \%$ DEA);
Gradient elution: 40\% B (isocratic).

MY-45A (11)

MY-45B (12)

MY-45A and MY-45B mixture

	Peak 1 Area ($\left.\mathrm{t}_{R} 3.0 \mathrm{~min}\right)$		Peak 2 Area ($\left.\mathrm{t}_{R} 3.6 \mathrm{~min}\right)$		
sample	relative (\%)	absolute	relative (\%)	absolute	ee (\%)
MY-45A	100.00	991600	-	-	100.00
MY-45B	0.26	3707	99.74	1423004	-99.48
mixture	41.32	491070	58.68	697307	-17.35

Method

Column: Daicel IBN $250 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$
Column temperature:
Mobile phase: A: $\mathrm{CO}_{2}, \mathrm{~B}: \mathrm{MeOH}$
Gradient elution: 40\% B (isocratic)
Flow rate: $3.5 \mathrm{~mL} / \mathrm{min}$

Back pressure: 110.3 bar
Detection wavelength: 235 nm

WX-01-10 (13)
mAU
Chromatogram

PDA Multi 1 220nm,4nm
1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Result						
Peak Table						
PDAChl 220nm						
Peak\#	Ret. Time	Height	Height\%	USP Width	Area	Area\%
1	1.780	2547962	97.425	0.055	5360030	96.588
2	2.190	67356	2.575	0.075	189350	3.412

WX-01-12 (14)

1 PDA Multi 1 / $220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Result						
Peak Table						
PDA Ch1	20 nm					
Peak\#	Ret. Time	Height	Height\%	USP Width	Area	Area\%
1	1.775	95306	4.343	0.047	160514	1.646
2	2.071	2099003	95.657	0.122	9589854	98.354

WX-01-10 and WX-01-12 mixture

Method

Column: Cellucoat $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$
Mobile phase B: EtOH (0.05\% DEA);
Gradient elution: 5\% to 40% B.

WX-02-23 (15)

maU	

WX-02-43 (16)
mAU

1 PDA Multi 1 / $220 \mathrm{~nm}, 4 \mathrm{~nm}$

				PeakTable		
PDACh1	220 nm					
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	0.566	0.049	0.000	390	643	0.024
2	1.865	0.553	4.318	132541	2696012	99.976
Total				132931	2696655	100.000

WX-02-23 and WX-02-43 mixture

Method

Column: Chiralcel OD-3 $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$;
Mobile phase B: MeOH (0.05\%DEA);
Gradient elution: 40\% B (isocratic)

EV-96-ctrl (17)

EV-97-ctrl (18)

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results					
	PeakTable				
PDA Ch1 220nm					
Peak\# Ret. Time	USP Width	Resolution	Height	Area	Area \%
10.448	0.055	0.000	2504	4904	0.349
$2 \quad 1.992$	0.710	4.040	54596	1398379	99.651
Total			57100	1403283	100.000

Mixture of compounds EV-96 and EV-97

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
		PeakTable				
PDA Ch1 220nm						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	0.444	0.056	0.000	214301	447926	55.168
2	2.303	0.569	5.944	16753	364004	44.832
Total				231054	811931	100.000

Method

Column: Chiralcel OD-3 $50 \times 4.6 \mathrm{~mm}$ I.D., $3 \mu \mathrm{~m}$;
Mobile phase B: MeOH (0.05\%DEA);
Gradient elution: 40\% B (isocratic).

EV-99-ctrl (20)

mAU

1-PDA Multi 1 / $220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results

PeakTable

PDA Ch1 220 nm		PeakIable				
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	Area \%
1	0.859	0.146	0.000	359647	1997444	99.895
2	1.381	0.160	3.418	316	2095	0.105
Total				359963	1999539	100.000

Mixture of compounds EV-98-ctrl and EV-99-ctrl

1 PDA Multi $1 / 220 \mathrm{~nm}, 4 \mathrm{~nm}$

Integration Results						
PDACh1 220 nm PeakTable						
Peak\#	Ret. Time	USP Width	Resolution	Height	Area	
1	0.857	0.147	0.000	117235	653341	59.496
2	1.422	0.376	2.161	31162	444778	40.504
Total				148397	1098120	100.000

Method

Column: Chiralpak AD-3 50×4.6mm I.D., $3 \mu \mathrm{~m}$;
Mobile phase B: MeOH (0.05\%DEA);
Gradient elution: 40\% B (isocratic).

References cited

Maetani, M., Zoller, J., Melillo, B., Verho, O., Kato, N., Pu, J., Comer, E., and Schreiber, S.L. (2017). Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp(3))-H Arylation. J Am Chem Soc 139, 11300-11306.
Vinogradova, E.V., Zhang, X., Remillard, D., Lazar, D.C., Suciu, R.M., Wang, Y., Bianco, G., Yamashita, Y., Crowley, V.M., Schafroth, M.A., et al. (2020). An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 182, 1009-1026 e1029.

