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Abstract18

Recent efforts for democratising protein structure prediction have leveraged the MMseqs219

algorithm to efficiently generate multiple sequence alignments with high diversity and a limited20

number of sequences. Here, we investigated the usefulness of this strategy for mutational out-21

come prediction. We place ourselves in a context where we only exploit information coming from22

the input alignment for making predictions. Through a large-scale assessment of ∼1.5M mis-23

sense variants across 72 protein families, we show that the MMseqs2-based protocol implemented24

in ColabFold compares favourably with tools and resources relying on profile-Hidden Markov25

Models. Our study demonstrates the feasibility of simultaneously providing high-quality and26

compute-efficient alignment-based predictions for the mutational landscape of entire proteomes.27

1 Introduction28

In recent years, tremendous progress has been achieved in the prediction of protein 3D structures and29

mutational landscapes [1, 2] by leveraging the wealth of publicly available natural protein sequence data30

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. State-of-the-art predictors capture arbitrary range dependencies between31

amino acid residues by implicitly accounting for global sequence contexts or explicitly exploiting structured32

information coming from alignments of evolutionary related protein sequences. Very efficient algorithms, e.g.33

MMseqs2 [14], allow for identifying homologous sequences and aligning them on a mass scale. Others relying34

on profile hidden Markov models (HMMs), such as JackHMMer/HMMer [15], carefully generate very large35

families, achieving a very high sensitivity. Several large-scale resources like Pfam [16] and ProteinNet [17]36

give access to pre-computed multiple sequence alignments (MSAs) built from profile HMMs. These MSAs37

are associated with curated protein families in Pfam, or with experimentally resolved protein 3D structures38

in ProteinNet. The depth, quality, and computational cost of a MSA are important factors contributing to39

its effective usefulness. Nevertheless, precisely assessing the impact of expanding or filtering out sequences40

on predictive performance is difficult. For protein structure prediction, Mirdita and co-authors showed that41

AlphaFold2 original performance could be attained with much smaller and cheaper alignments through the42

MMseqs2 [14]-based strategy implemented in ColabFold [3].43

In this work, we tested whether the same gain could be achieved for mutational outcome prediction. We44

compared the prediction accuracy achieved by Global Epistatic Model for predicting Mutational Effects45

(GEMME) [20] from MSAs generated using the ColabFold’s MMseqs2-based protocol [3, 14] versus three46

classical workflows relying on profile HMMs [17, 16, 18]. GEMME is a fast MSA-based mutational outcome47

predictor relying on a few biologically meaningful and interpretable parameters. It performs on-par with48

statistical inference-based methods estimating pairwise couplings [21] and also deep learning-based methods,49

including family-specific models [22, 23, 24, 25] as well as high-capacity protein language models trained50

across protein families [18, 26, 27] (Fig. S1, see also [24, 26, 20] for quantitative comparisons). We assessed51

GEMME predictions against a large collection of 87 Deep Mutational Scanning experiments (DMS) totalling52

∼1.5M missense variants across 72 diverse protein families [18]. We used the Spearman rank correlation53

coefficient to quantify the accuracy of the predictions, as previously done by us and others [18, 27, 20].54
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2 Materials and Methods55

2.1 DMS benchmark set56

We downloaded the ProteinGym substitution benchmark [18] from the following repository:57

https://github.com/OATML-Markslab/Tranception. It contains measurements from 87 DMS collected58

for 72 proteins of various sizes (between 72 and 3,423 residue long), functions (e.g. kinases, ion chan-59

nels, g-protein coupled receptors, polymerases, transcription factors, tumor suppressors), and origins (Fig.60

S2A-C). The DMS cover a wide range of functional properties, including thermostability, ligand binding,61

aggregation, viral replication, and drug resistance. Up to four experiments are reported for each protein62

(Fig. S2D). Although the benchmark mostly focuses on single point mutations, it also reports multiple63

amino-acid variant measurements for 11 proteins (Table S1).64

2.2 MSA resources and protocols65

We considered four different MSA generation protocols and resources, referred to as ProteinGym, ColabFold,66

ProteinNet and Pfam (Table 1). They represent a variety of choices in terms of sequence database, search67

algorithm and sequence context. Two protocols, ColabFold and ProteinGym, were available for all 87 DMS68

(from 72 proteins) from the ProteinGym benchmark. ProteinNet was available for 51 (from 42 proteins),69

Pfam for 52 (from 39 proteins). When comparing two methods, we reduced the Spearman rank calculations70

to their common positions.71

Table 1: Details about the MSA generation protocols.
Name Databases Search Fine #(covered #(sequences)

algorithms tuning proteins)a Min - Max
ProteinGym UniRef100 [12] JackHMMer [15] yesb 72 44 - 539,868
ColabFold UniRef30 [12] and MMseqs2 [14] no 72 126 - 24,269

ColabFold env.c [3]
ProteinNet UniParcd [31] and JackHMMer [15] no 42 249 - 1,389,216

IMG [13]
Pfam UniProtKB [5] HMMer [15] yese 39f 134 - 283,380

aWe indicate the number of proteins treated with each protocol, out of the 72 proteins comprised in the
ProteinGym substitution benchmark. bFor each protein, 9 MSAs were generated by exploring bit score
thresholds from 0.1 to 0.9 and the MSA leading to the highest number of significant Evolutionary
Couplings [21] was retained. cColabFold environmental database contains BFD [6], which includes
UniProt/TrEMBL+Swissprot, Mgnify [9], MetaEuk [10], SMAG [4], TOPAZ [34], MGV [7], GPD [8], and
MetaClust2 [11]. d UniParc, for UniProt Archive, is a non-redundant archive of protein sequences
extracted from more than 10 public databases, including UniProtKB, Ensembl [35], PDB, FlyBase [36] and
WormBase [37]. eFor each Pfam family, the profile HMM used to query UniProtKB was hand curated, and
the score threshold used to select the sequences was set manually. f For this protocol, we considered a
non-redundant subset of 59 proteins.

The ColabFold protocol [3] relies on the very fast MMseqs2 method [14] (3 iterations) to search72

against UniRef30, a 30% sequence identity clustered database based on UniProt [5], and a novel database73
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compiling several environmental sequence sets (Table 1). It maximises diversity while limiting the number74

of sequences through an expand-and-filter strategy. Specifically, it iteratively identifies representative hits,75

expand them with their cluster members, and filters the latter before adding them to the MSA. We used76

the same sequence queries as those defined in ProteinGym. For all but 5 proteins, the query corresponds to77

the full-length UniProt sequence. For each query, we generated two MSAs by searching against UniRef3078

and ColabFold environmental database, respectively, and we then concatenated them.79

The ProteinGym protocol [18] relies on the highly sensitive homology detection method JackHM-80

Mer [15] (5 iterations) to search against UniRef100 [12], the non-redundant version of UniProt (Table 1).81

JackHMMer is part of the HMMer suite and is based on profile hidden Markov models (HMMs). This82

protocol is relatively costly, with up to several hours for a single input MSA. The MSAs generated with this83

protocol have been widely used to assess mutational outcome predictors [18, 21]. In this work, we took the84

alignments provided with the ProteinGym benchmark [18].85

The ProteinNet protocol [17] also performs 5 iterations of JackHMMER, but it extends the sequence86

database to the whole UniProt Archive (Uniparc) [31] complemented with metagenomic sequences from IMG87

[13] (Table 1). Another difference from ProteinGym is that the queries correspond to sequences extracted88

from experimentally determined protein structures available in the PDB [19]. The MSAs are readily available89

and organised in a series of data sets, each one encompassing all proteins structurally characterised prior to90

different editions of the Critical Assessment of protein Structure Prediction (CASP) [32]. We chose the most91

complete set, namely ProteinNet12. It covers all proteins whose structure was deposited in the PDB before92

2016, the year of CASP round XII [33]. For each protein from the ProteinGym benchmark, we retrieved93

the corresponding PDB codes from the Uniprot website (https://www.uniprot.org) and picked up the94

structure with the highest coverage among those represented in ProteinNet12 (Table S1). We could treat95

42 proteins, out of 72 in total. For the remaining ones, the positions covered by the available MSAs were96

out of the range of mutated positions.97

The Pfam database [16] is a resource of manually curated protein domain families. Each family,98

sometimes referred to as a Pfam-A entry, is associated with a profile HMM built using a small number of99

representative sequences, and several MSAs. We chose to work with the full UniProt alignment, obtained100

by searching the family-specific profile-HMM against UniProtKB (Table 1). The proteins sharing the same101

domain composition will have exactly the same MSAs. To avoid such redundancy, we focused on a subset102

of 59 proteins extracted with an adjusted version of UniqueProt [29, 30]. Instead of PSI-BLAST we used103

MMseqs2 to improve runtime, and discarded alignments of less than 50 residues for pairs of sequences with104

at least 180 residues to prevent very short alignments from removing longer sequences. For each protein, we105

first retrieved its Pfam domain composition and downloaded the corresponding MSAs from the Pfam website106

(https://pfam.xfam.org, release 34.0). We could retrieve at least one (and up to 5) MSA overlapping with107

the range of mutated positions for 39 proteins (Table S1). Each detected Pfam domain appears only once108

in the set.109
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3 Results and Discussion110

3.1 The ColabFold protocol leads to the most accurate predictions111

ColabFold and ProteinGym are the best performing protocols and the only ones covering all ∼1.5M mutations112

from the ProteinGym benchmark (Table 2). The ColabFold protocol allows obtaining more accurate113

predictions for two thirds of the DMS (Fig. 1A), while producing MSAs with substantially fewer sequences114

(Fig. S3). More precisely, for the proteins with abundant sequence information (Table 2, ”high” category115

based on ProteinGym MSAs), the accuracy is higher by ∆ρ̄ = 0.032 on average and the MSAs are shallower116

(Fig. 1B, Neff ratio < 1, see red triangles). In fact, all proteins falling in the ”high” alignment depth117

category (Neff/L > 100, see Materials and Methods) based on their ProteinGym MSAs would be reclassified118

in the ”medium” category (1 < Neff/L < 100) based on their ColabFold MSAs (Fig. S4). This observation119

highlights the relevance of ColabFold’s MMseqs2-based expand-and-filter strategy for these cases. For the120

”medium” and ”low” categories, the results are less clear. On the one hand, the ColabFold protocol increases121

the alignment depth for 24 proteins belonging to these categories (Fig. 1B, see green and blue triangles122

with Neff ratio > 1). For instance, for the SARS-CoV-2 Replicase polyprotein 1ab, GEMME could make123

predictions only with the ColabFold MSA, the variability of the ProteinGym MSA being too low (Fig. 1A,124

see null x-value). Overall, the accuracy gain resulting from the increased MSA depth is limited (∆ρ̄ =125

0.015±0.045). On the other hand, ColabFold produces very shallow MSAs for the polymerases PA and PB2126

from influenza A virus (UniProt names: PA I34A1 and A4D664 9INFA, respectively), 20 times shallower127

than those produced by ProteinGym, resulting in a dramatic deterioration of the prediction accuracy for128

these proteins (Fig. 1B, see the two outliers, ∆ρ ∼ −0.3). This behaviour does not extend to the other129

viral proteins from the benchmark.130

3.2 Expanding the sequence search space marginally improves predic-131

tion accuracy132

The ColabFold MSAs result from applying an MMseqs2-based search, expand and filter algorithm to both133

the UniRef30 database, and the ColabFold database comprising UniProt/TrEMBL, Swissprot, and several134

collections of environmental sequences (Table 1). We found that the ColabFold database marginally con-135

tributed to the mutational outcome predictions (Fig. S5). It proved necessary in only one case, the human136

SC6A4. In addition, it slightly improved prediction accuracy for a few viral proteins, yet without allowing137

reaching a good agreement with the experimental measurements – the Spearman rank correlation remains138

below 0.3 (Fig. S5). By contrast, it significantly deteriorated the predictions for the human KCNH2 by139

∆ρ = −0.14. The limited influence of metagenomics can also be observed when using JackHMMer as the140

search algorithm, as attested by the similar performance obtained for ProteinGym (UniRef100) and Pro-141

teinNet (UniParc and IMG, see Table 2). By looking at the per-DMS Spearman rank correlations (Fig.142

2A), we could identify a few human proteins, namely P53, BRCA1, SUMO1, and YAP1, as well as IF1 and143

CCDB from E. coli, that benefited from the additional information exploited by ProteinNet. By contrast,144

the Spearman rank correlation computed for the yeast protein GAL4 dropped dramatically, from 0.497 to145

0.217. This result illustrates the interest of considering the full sequence context. While the ProteinGym146

protocol could retrieve 16,159 sequences by querying the full-length protein sequence, the ProteinNet MSA,147
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Table 2: Average Spearman’s rank correlation between predicted values and experimental
measurements on the ProteinGym substitution benchmark.
Set Class #(proteins) #(DMS) ColabFold ProteinGym ProteinNet Pfam
All 72 87 0.470 0.463 - -

Low 14 20 0.453 0.444 - -
Medium 43 17 0.443 0.446 - -

High 15 50 0.552 0.520 - -
Human 26 32 0.445 0.436 - -

Eukaryote 10 13 0.500 0.479 - -
Prokaryote 17 21 0.529 0.505 - -

Virus 19 21 0.429 0.451 - -
ProteinNet 42 51 0.507 0.497 0.495 -

Human 19 23 0.484 0.466 0.477 -
Eukaryote 6 7 0.539 0.531 0.495 -
Prokaryote 13 17 0.562 0.536 0.540 -

Virus 4 4 0.353 0.453 0.410 -
Pfam 39 52 0.463 0.440 - 0.432

Human 15 20 0.440 0.423 - 0.407
Eukaryote 7 10 0.462 0.448 - 0.436
Prokaryote 9 13 0.517 0.489 - 0.496

Virus 8 9 0.438 0.399 - 0.391

The Neff categories Low, Medium and High were taken from [18] and correspond to the ProteinGym
alignments. We use this classification as a reference, although proteins may change category between the
different protocols (see Fig. S4). The Spearman rank correlations are computed either over all residues
from the target sequences, or only the residue ranges covered by ProteinNet and Pfam, respectively. The
correlations over the full-length versus partial proteins are comparable for ColabFold and ProteinGym
protocols (Fig. S6).

which covers a very small portion of the protein (Fig. 2A, 6% that is 55 residues out of 881, PDB code:148

1HBW), comprises only 249 sequences.149

3.3 A domain-focused perspective150

The residue spans defined by the Pfam and ProteinNet MSAs correspond to well-curated or well-folded pro-151

tein domains. One may wonder whether the predictions are better in these regions compared to unannotated152

or disordered regions. In our experiment, we did not observe such a trend. The ColabFold and ProteinGym153

MSAs yielded comparable Spearman correlation coefficients over the full-length protein and over the regions154

annotated as Pfam domains or with experimentally resolved 3D structures (Fig. S6). Moreover, recon-155

structing a protein’s mutational landscape by combining predictions coming from different MSAs, each one156

representing a curated Pfam domain, proved less accurate than building a single query-specific full-length157

MSA (Fig. S7). Indeed, the ColabFold strategy led to a higher Spearman rank correlation than the Pfam158

protocol for 70% of the considered DMS (Fig. 2C). For the remaining 30%, the gain brought by Pfam does159

not exceed ∆ρmax = 0.077.160
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4 Conclusion161

Overall, this study identified ColabFold as the best suited MSA generation protocol for assessing protein162

mutational outcomes. It yields the best performance and allows covering protein regions lacking structural163

data or domain annotations. It limits the number of sequences, thus preventing memory issues. It is164

faster than classical homology detection methods by orders of magnitude. The study also showed that the165

alignment depth is not a good indicator of the prediction accuracy as one might expect. The Spearman rank166

correlation can be as good as 0.7 even with shallow alignments. And above a certain threshold, adding more167

sequences does not improve the predictions. Moreover, extending the sequence search space to environmental168

datasets only marginally improves the accuracy of the predictions. Finally, readily available resources such169

as ProteinNet and Pfam are valid options, but they only provide a partial coverage of the query proteins.170

This study demonstrates the feasibility of MSA-based computational scans of entire proteomes at a very171

large scale. Combining ColabFold with GEMME, it takes only a few days to generate the complete single-172

mutational landscape of the human proteome on the supercomputer “MeSU” of Sorbonne University (64173

CPUs from Intel Xeon E5-4650L processors, 910GB shared RAM memory).174
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Figure 1: Comparison of the ProteinGym and ColabFold protocols. A. GEMME’s Spearman
rank correlation coefficients (ρ) computed against the 87 DMS sets from the ProteinGym substitution
benchmark. The input MSAs were generated using the ProteinGym (x-axis) or ColabFold (y-axis)
protocols. The colors indicate the taxons of the target sequences and the shapes indicate whether the
experiment contains only single mutations (circle) or also multiple mutations (square). B. Differences
in ρ values in function of the number of effective sequence (Neff ) ratio. Positive values correspond to
ColabFold performing better than ProteinGym. Each point (triangle) corresponds to a given input
MSA (i.e. a given target sequence) and its y-value is averaged over the set of DMS experiments
(between 1 and 4, see Fig. S2) associated to it. The colors indicate the depth of the ProteinGym
MSAs, either low, medium or high, as defined in [18] (see also Materials and Methods).
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Figure 2: Performance comparison between the different MSA generation protocols. A.
Comparison of ProteinNet, ColabFold and ProteinGym, focusing on the 51 DMS covered by Pro-
teinNet (x-axis). The Spearman rank correlation coefficients are computed over the residue spans
covered by ProteinNet MSAs for all methods. The DMS associated to viral proteins are highlighted
in bold. B. Comparison of Pfam, ColabFold and ProteinGym, focusing on the 52 DMS covered
by Pfam (x-axis). The Spearman rank correlation coefficients are computed over the residue spans
covered by Pfam MSAs for all methods. The DMS associated to proteins containing more than one
Pfam domains are highlighted in bold on the x-axis.
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Supplementary methods261

Alignment depth262

We measured the alignment depth as the ratio of the effective number of sequences Neff by the number of263

positions L. The effective number of sequences is computed as a sum of weights [38],264

Neff =
N∑
s

πs, (1)

where N is the number of sequences in the MSA and πs is the weight assigned to sequence x(s), computed265

as266

πs =
( N∑

t

I[DH(x(s),x(t)) < θID]
)−1

, (2)

where DH(x(s),x(t)) is the normalised Hamming distance between the sequences x(s) and x(t) and θID is267

a predefined neighbourhood size (percent divergence). Hence, the weight of a given sequence reflects how268

dissimilar it is to the other sequences in the MSA. To be consistent with [18], we set θID = 0.2 (80% sequence269

identity) for eukaryotic and prokaryotic proteins, and θID = 0.01 (99% sequence identity) for viral proteins.270

In [18], MSAs are labeled as Low, Medium or High depending on the ratio Neff/Lcov, where Lcov is271

the number of positions with less than 30% gaps. Specifically, MSAs with Neff/Lcov < 1 are considered as272

shallow (’Low’ group) whereas those with Neff/Lcov > 100 are considered as deep (’High’ group). MSAs273

with 1 < Neff/Lcov < 100 are in the intermediate ’Medium’ group. In our calculations, we consider the274

ratio between Neff and the total number of positions L, which is equal to the length of the target sequence275

for both ProteinGym and ColabFold MSAs.276

Generating the predictions with GEMME277

GEMME takes as input a FASTA-formatted MSA, with the ungapped query sequence on top. We used278

the tool reformat.pl from the HH-suite [39] to convert A2M and A3M alignment files into FASTA format.279

Moreover, we modified the MSAs from ProteinNet and Pfam by putting the sequence of interest on top and280

removing the insertions with respect to this sequence. We used GEMME’s Docker image, available from281

http://www.lcqb.upmc.fr/GEMME, to compute the predictions. For the proteins with only single mutations,282

we predicted the full mutational landscape with the command: ”python2.7 $GEMME PATH/gemme.py283

aliXXX.fasta -r input -f aliXXX.fasta” where aliXXX.fasta is the input MSA file in FASTA format. For the284

proteins with multiple mutations, we predicted only the effects of the mutations of interest. To do so, we285

passed a file specifying the list of mutations as input with the option ”-m”. We used the default parameters286

for all proteins and all input MSAs.287

Assessing and comparing the predictions288

Assessing and comparing the predictions obtained from the ProteinGym and ColabFold MSAs was straight-289

forward since they cover the entire range of mutated positions and their query sequence is identical to the290

wild-type sequence used in the DMS. The MSAs from ProteinNet and Pfam however typically cover only291

a part of the mutated region and their query sequence sometimes display a few mutations with respect to292
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the DMS wild-type sequence. To compute the Spearman correlation, we restricted ourselves to the covered293

positions displaying the correct wild-type amino acid. When comparing two methods, we further reduced294

the calculation to their common positions.295

Supplementary tables and figures296

Table S1: Coverage of the ProteinGym benchmark by the tested MSA generation proto-
cols. For each protein, we indicate its UniProt identifier, whether it is associated with measurements
for multiple mutations, and whether the mutated region is covered by each of the tested protocols.
We also give the PDB code selected for ProteinNet, and the number of Pfam domains (with available
MSAs) overlapping with the mutated region.
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Figure S1: Comparison of GEMME with the other mutational outcome predictor TRAN-
CEPTION, given the same input MSAs. Spearman rank correlation coefficients (ρ) are reported
for the 87 DMS from the ProteinGym benchmark, using the ProteinGym MSAs as input (Table 1,
see ProteinGym). The version of TRANCEPTION used here (with retrieval) combines a protein
language model trained across families with information coming from a query-specific MSA retrieved
at inference time [18]. The plotted values were taken from [18], where TRANCEPTION was shown
to outperform Wavenet [23], DeepSequence [25], EVmutation [21], EVE [22], EMS-1v [27], and MSA
Transformer [28]. GEMME predictions were generated using default parameters. The colors indicate
the alignment depth categories defined in [18] (see also Materials and Methods). The shapes indicate
whether the experiment contains only single mutations (circle) or also multiple mutations (square).
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Figure S2: ProteinGym benchmark properties. A. Distribution of the length (in number of
residues) of the 73 target protein sequences from the benchmark. B. Distribution of the length (in
number of residues) of the protein regions covered by ProteinGym MSAs. C. Taxonomic classification
of the proteins. The label ”Eukaryote” refers to non-human eukaryotes. D. Distribution of the
number of reported experiments per protein.
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Figure S3: Distribution of the number of sequences per MSA depending on the protocol.
The total number of MSAs varies from one protocol to another (see full details in Table 1).
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Figure S4: Prediction accuracy in function of the alignment depth. The input MSAs were
generated using ProteinGym (A) or ColabFold (B) protocol. Each point (triangle) corresponds
to a given input MSA (i.e. a given target sequence) and its y-value is averaged over the set of
DMS experiments (between 1 and 4, see Fig. S2) associated to it. The Spearman correlations
computed between the y (ρ) and log-x (logNeff/L) values are 0.065 and 0.225 for ProteinGym (A)
and ColabFold (B), respectively. The colors indicate the ProteinGym Neff categories, as defined in
[18] (see also Materials and Methods). About half of the target sequences change category between
the two protocols (see all red points, and also the blue points with a ratio lower than 1 and the green
points with a ratio above 1 on panel B).
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Figure S5: Influence of the search database on GEMME performance. The input MSAs
were generated using the Colabfold protocol, considering only the UniRef30 database (x-axis) or
both the UniRef30 database and the ColabFold database (y-axis). The values are reported for 86
out of the 87 DMS from ProteinGym. The DMS associated with SC6A4 is missing because the
MSA generated from the UniRef30 database only was too shallow to compute reliable evolutionary
conservation levels.
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Figure S6: Prediction accuracy achieved on the full-length versus partial proteins. Distri-
butions of Spearman rank correlations obtained with the ProteinGym (A,C) and ColabFold (B,D)
protocols. A-B. Each distribution contains 51 values corresponding to the 51 DMS covered by Pro-
teinNet. The correlations computed over the full-length proteins (in pink) are compared to those
computed over the regions covered by ProteinNet (in blue). C-D. Each distribution contains 52 val-
ues corresponding to the 52 DMS covered by Pfam. The correlations computed over the full-length
proteins (in pink) are compared to those computed over the regions covered by Pfam (in green).
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Figure S7: Protein coverage from the ProteinNet and Pfam MSAs. Percentage of residues
from the target sequences covered by the MSAs from ProteinNet (A) and Pfam (B).
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