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Summary 

Alzheimer’s disease (AD), the leading cause of dementia, affects millions of people worldwide. 

With no disease-modifying medication currently available, the human toll and economic costs 

are rising rapidly. Under current standards, a patient is diagnosed with AD when both cognitive 

decline and pathology (amyloid plaques and neurofibrillary tangles) are present. Remarkably, 

some individuals who have AD pathology remain cognitively normal. Uncovering factors that 

lead to “cognitive resilience” to AD is a promising path to create new targets for therapies. 

However, technical challenges discovering novel human resilience factors limit testing, 

validation, and nomination of novel drugs for AD. In this study, we use single-nucleus 

transcriptional profiles of postmortem cortex from human individuals with high AD pathology 

who were either cognitively normal (resilient) or cognitively impaired (susceptible) at time of 

death, as well as mouse strains that parallel these differences in cognition with high amyloid 

load. Our cross-species discovery approach highlights a novel role for excitatory layer 4/5 

cortical neurons in promoting cognitive resilience to AD, and nominates several resilience genes 

that include ATP1A1, GRIA3, KCNMA1, and STXBP1. This putative cell type has been 

implicated in resilience in previous studies on bulk RNA-seq tissue, but our single-nucleus and 

cross-species approach identifies particular resilience-associated gene signatures in these cells. 

These novel resilience candidate genes were tested for replication in orthogonal data sets and 

confirmed to be correlated with cognitive resilience. Based on these gene signatures, we 

identified several potential mechanisms of resilience, including regulation of synaptic plasticity, 

axonal and dendritic development, and neurite vesicle transport along microtubules that are 

potentially targetable by available therapeutics. Because our discovery of resilience-associated 

genes in layer 4/5 cortical neurons originates from an integrated human and mouse 

transcriptomic space from susceptible and resilient individuals, we are positioned to test 
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causality and perform mechanistic, validation, and pre-clinical studies in our human-relevant 

AD-BXD mouse panel. 
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Introduction 

Resilience to cognitive decline associated with Alzheimer’s disease (AD) is a phenomenon by 

which some people retain better than expected cognitive ability despite high amyloid and tau 

burdens.1 Bolstering the brain’s ability to cope with AD pathology is an attractive new avenue for 

therapies. Resilience to AD has been reported in longitudinal cohort studies, such as in the 

Religious Orders Study (ROS) and Memory and Aging Project (MAP) groups, in which a third of 

individuals with normal cognition have AD pathology.2,3 While some resilience factors have been 

identified by studying these individuals,4-6 many resilience factors and the mechanisms by which 

they act remain unknown or poorly understood, particularly in the context of specific cell types 

and their contribution to resilience. In particular, a recent study7 used deconvolution approaches 

on post-mortem human bulk RNA-seq data from ROSMAP to implicate a specific neuronal 

subtype associated with residual cognition. Here, we extend this type of comparison by directly 

investigating single-nucleus RNA-seq data from human and mouse brain tissue to identify not 

only cell types associated with resilience, but also specific gene signature changes within these 

cell types. The cross-species comparison allows us to link findings to translationally relevant 

model organisms, which are essential to validate and test resilience candidates; such 
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genetically diverse mouse models have already been valuable for modeling complex 

diseases.8,9 

The AD-BXDs are a panel of mice that incorporates the 5XFAD mutation into the genetically 

diverse BXD genetic reference panel. This panel models individual differences in memory 

function in response to human FAD mutations, resulting in a genetically diverse population of 

AD mice that is sensitive to additive effects of inherited risk loci defined by LOAD GWAS.10 The 

AD-BXD panel has been used to nominate several resilience factors based on ‘omics’ analysis 

of strains stratified as resilient or susceptible to cognitive decline in the presence of 

pathology.11,12 While progress has been made using bulk data from these models (as well as 

human bulk RNA-seq data), there is still a need to identify and prioritize additional human-

relevant resilience factors to advance drug interventions to pre-clinical studies. By harmonizing 

molecular signatures of resilience in this mouse model panel with those found in humans, we 

establish a framework to nominate translationally-relevant resilience candidates that can 

undergo further testing in pre-clinical studies. 

In this study, we integrated cortical transcriptomic data from the human ROSMAP and the 

mouse AD-BXD cohorts and discovered that cognitive resilience to AD is associated with the 

upregulation of gene expression in a subset of excitatory neurons. We identified biological 

processes such as axonal and dendritic development, regulation synaptic transmission and 

plasticity, and axo-dendritic transport. We further narrowed down the list of candidate genes via 

validation in orthogonal human data sets and nominated resilience targets, including ATP1A1, 

GRIA3, KCNMA1, and STXBP1 based on their high potential for drug targetability. Thus, we 

demonstrate the power of cross-species transcriptomic analyses to identify novel AD resilience 

factors. 
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Results 

High alignment of integrated cross-species gene expression profiles enables conserved 

resilience factor interrogation 

We integrated single nucleus transcriptomic data from human and mouse cohorts to identify 

conserved cell type-specific signatures of resilience to AD. We used human prefrontal cortex 

(PFC) tissue samples from the ROSMAP cohort,13 which includes tissue from a number of 

resilient and susceptible individuals, as well as cognitively normal controls (Fig. 1A). For mouse, 

we used frontal cortex tissue samples containing PFC from AD-BXD strains determined to be 

cognitively resilient and susceptible to the presence of the 5XFAD transgene (Fig. 1B), along 

with their non-transgenic genetically identical counterparts (Fig. 1A). To better align the mouse 

population to the human, we chose the 14-month time point and considered contextual fear 

memory. 

Integration of processed data (Fig. 1A) resulted in a space with a high overall alignment score of 

0.76 (comparable to examples in Welch et al 201914), with individual cluster alignments that 

ranged from 0.47 to 0.92, with mean of 0.74 (Table S1 and Fig. 1C). The majority of clusters 

had alignment above 0.65, with exceptions of clusters C9 – mixed, C13 – inh. neurons, C25 – 

endothelial, C12 - immune – microglia, C16 – inh. neurons, and C23 – inh. neurons, which had 

lower confidence scores. The lower alignment scores for inhibitory neurons may be indicative of 

tissue dissection in mouse including subcortical regions. There was also comparable 

representation of human and mouse nuclei in 25 clusters (as observed in cluster proportion 

composition and individual UMAPs in Fig. 1C). Additionally, all clusters had contributions from 

human and mouse samples (Fig. S2A). 

All major cell types were identified in the integrated data set using MetaNeighbor and marker 

genes: excitatory (clusters 17, 20, and 24) and inhibitory (clusters 5, 13, 15, 16, 22, and 23) 
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neurons, astrocytes (cluster 2, 10, and 21), oligodendrocytes (clusters 6 and 7), oligodendrocyte 

precursors (OPCs, cluster 4), microglia (clusters 12, 14, and 19), vascular and leptomeningeal 

cells (VLMC, clusters 8 and 18), endothelial cells (clusters 1 and 25), and pericytes (cluster 3) 

(Fig. 1D and E, Table S2). Cluster 9 had a mixed cell signature and was labeled as a “mixed 

cluster” (Fig. 1E, rightmost cluster). The ratio of cell types across samples was proportionally 

similar (Fig. 1F). Additionally, we observed high correlation values within each cluster for human 

vs mouse when gene expression in each cluster was correlated between species (Fig. 2A and 

B, top and center), with lower correlation between clusters assigned to different cell types (Fig. 

2A and B, bottom). We also confirmed cell type cluster assignment using marker genes when 

the data were separated by species (Fig. 2C). Note that because the mouse gene names were 

converted to their human equivalent, when describing the mouse portion of results from the 

integrated data analysis, the names were left in all capital letters. When the mouse results were 

considered separately, homologous mouse gene names were used. 

 

Gene upregulation in excitatory neurons is the strongest resilience signature 

Resilience may arise due to broad changes in cellular composition, changes in gene 

expression, or a combination of both. Thus, to probe the nature of resilience in the AD-BXD 

population, we analyzed whether resilience is associated with differences in cellular composition 

and/or gene expression. We found that there were no statistically significant differences in 

cluster composition between resilient and susceptible individuals in the human cohort and in the 

14-month-old AD-BXDs (Fig. 3A and B). This suggests that changes associated with resilience 

are subtle (at the resolution of our clustering), leading us to hypothesize that the differences in 

long term memory between resilient and susceptible individuals may be reflected in altered 

gene expression in one or more cell types, and/or changes in the proportion of nuclei 

expressing a set of genes within one or more cell types. 
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Overall, there were 124 human and 142 mouse genes across all clusters that were differentially 

expressed between resilient and susceptible groups (see Methods, adjusted p-value ≤ 0.05 and 

log2FC ≥ 0.25 or ≤ -0.25) (Fig. 3C and D), with no overlap between species (Table S3), with 

most of the differentially expressed genes present in neuronal clusters (Fig. 3E and F). Most 

downregulated genes in the human resilient group were in the endothelial cluster (C1) and in 

the mouse in the immune-other (C11) cluster (Figs. 4A and B). Excitatory neuronal cluster 20, 

annotated as Layer 4/5 intratelencephalic (IT) neurons using MetaNeighbor (Table S2) and 

confirmed to contain layer-specific genes15,16 (Fig. S2B), contained most of the genes that were 

significantly differentially expressed and were upregulated in both the mouse and the human 

subsets (Fig. 4A and B). This neuronal subtype may correspond to a previously reported cell 

cluster whose signature was associated with residual cognition in bulk human RNA-seq data,7 

although the cell cluster definition there was based on a healthy donor reference snRNA-seq 

data set. 

To test the hypothesis that cognitive status was not associated with differences in neuronal 

composition suggested by comparable relative proportions of nuclei in susceptible and resilient 

AD strains (Fig. 3A), we quantified the coverage of NeuN positive cells in layers 4 and 5 of the 

frontal cortex in a separate cohort of AD-BXD mice by immunohistochemistry (IHC). We found 

that cognitive status was not correlated with regional differences in NeuN load in a population of 

male and female 14-month-old AD-BXDs. This lack of relationship between neuron coverage 

within layers 4 and 5 of the frontal cortex and resilient versus susceptible status suggests that 

gross changes in neuronal cell composition are unlikely to be driving the differences in CFM 

among the strains assessed (Fig. S2C for correlations on all assessed layer 4 and 5 regions 

and Figs. 4C for data from selected few layer 5 regions). The same was found when analyzing 

the female subset of mice; there was no significant association across all frontal cortical regions 

measured except in the orbital area, medial part, layer 5 NeuN (p-value 0.004), but it did not 
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survive FDR correction (p-value 0.1) (data not shown). In addition, we confirmed the finding that 

cluster 20 (layers 4/5) proportions were not different between resilient and susceptible groups in 

an independent AD-BXD cohort. Deconvolution17 of frontal cortex bulk RNA-seq estimated 

proportions of clusters based on snRNA-seq data (Fig. S2D). Considering each cluster 

proportion, no statistically significant differences between resilient and susceptible groups of 

mice were found, including in cluster 20 (Fig. S2D). Therefore, since we observed no change in 

neuron load by nuclear fraction (Figs. 3B and S2D) and IHC analyses (Fig. 4C), we interpret this 

as cognitive resilience is conferred, in part, by changes in gene expression levels in layer 4/5 

neurons, as there is no observable difference in the degree of neurodegeneration between 

susceptible and resilient individuals using two orthogonal analyses. 

Notably, differentially expressed genes were overrepresented in excitatory neuronal cluster 20. 

Specifically, our analysis identified 39 human and 61 mouse genes with greater mean and 

percent nucleus expression in resilient individuals, indicating upregulation may be driven by 

more neurons expressing these genes. The 61 upregulated mouse genes were not significantly 

differentially expressed in animals from the corresponding non-transgenic strains at 6 or 14 

months or the transgenic animals at 6 months, with one exception that KCNH7 is downregulated 

in cluster 20 with log2FC -0.51 in 14 months NTG group in resilient group compared to the 

susceptible one. This suggests that genes are activated in response to the presence of amyloid 

and increasing age in resilient strains. 

When we compared GO enrichment analyses on human and mouse differential gene sets from 

all clusters, we found that of the two species, only mouse gene GO terms reached significance 

for biological processes (GO:BP), including neurogenesis, nervous system development, 

neuron differentiation, generation of neurons, and neuron development (Fig. 4D, far left). For 

molecular function enrichment, the human gene set list was enriched only for prostaglandin-E 

synthase activity, while the mouse gene set list was enriched in multiple binding categories, 
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such as microtubule, tubulin, cytoskeletal protein, and calmodulin (Fig. 4D, middle). Genes from 

both species were enriched for neuron-specific compartments, such as dendrite, synapse, and 

neuron projection (Fig. 4D, far right). The singular enriched human GO molecular function or 

biological process pathways is likely due to the fact that there are fewer differentially expressed 

genes, and poorer gene coverage from the Chromium v2 library for the human compared to the 

v3 library for the mouse indicated by more reads per nucleus on average in each cluster for 

mouse than human (mean of average counts per nucleus in each cluster: x̄ = 0.146 counts, sd = 

0.090 counts for mouse; x̄ = 0.047 counts, sd = 0.019 counts for human). Additionally, other 

factors such as longer post-mortem interval during human brain sample collection, as well as 

the general diversity of human samples due to cumulative lifetime exposure and experiences, 

may contribute to variability. Since the mouse data set had a greater read depth, we examined 

the resilience mouse gene list to select resilience transcriptomic candidates from the 14-month-

old transgenic cohort in the next sections of this report, focusing on genes in cluster 20. 

Because of the high alignment of human and mouse transcriptional profiles, we hypothesize that 

the translational relevance of the mouse resilience findings is high, which we test directly in 

orthogonal human data sets, below. 

 

Resilience gene candidates involved in nervous system development and transport pathways 

Some genes from mouse cluster 20 that are among the highest ranked top 10 biological 

processes (in three broad parent categories of nervous system development, transport, and 

axo-dendritic transport) share pathways (Fig. 5A). For example, 18 genes, e.g. KALRN, 

GPM6B, SPTBN1, and PPP3C, are in the categories nervous system development and 

transport, while genes MAP1A, MAP2, and PAFAH1B1 are in the categories nervous system 

development and axo-dendritic transport. We also note the different expression profiles in each 

strain that led to overall resilience profiles in nervous system development (Fig. 5B) and 
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transport genes (Fig. 5C), highlighting the strength of using a genetically diverse mouse panel. 

Note that gene names were left in the human notation (all letters capitalized) due to the use of 

human annotations for GO analysis. 

Notably, neurogenesis pathway (GO: 0022008) is a top 5 pathway with 21 genes (e.g. 

CAMK2B, DCLK1, MAP1A, MAP1B, MAP2, MACF1, and MYT1L). Although neurogenesis has 

been most extensively studied in the hippocampus and the subventricular zone, it has also been 

observed in multiple other regions in rodent studies.18 While the degree to which neurogenesis 

is present in the adult human hippocampus remains highly controversial,19-21 it has been shown 

to be decreased in neurodegenerative diseases22 and associated with cognition.23 We observed 

enrichment of these genes in these resilient cases, although all these genes are also part of the 

nervous system development process (Figs. 5A and S3A) because the neurogenesis GO term 

is a child of the nervous system development GO term (GO:0007399). Additional analyses 

revealed low expression of neurogenesis markers observed in other studies, e.g. Dcx, Mki67, 

Mcm2, Lpar1, Pax6 and Sfrp119,24,25 (Fig. S3B). We observed Dcx in inhibitory neurons (Fig. 

S3B), as previously described in the hippocampus.21 Thus, it remains unsettled whether the 

resilience signature in excitatory neuronal cluster 20 is truly indicative of newly born neurons in 

the cortex. Future work is required to test the prediction that newly born neurons are part of this 

resilience signature in the cortex. 

To further understand known neuronal gene functions associated with resilience in our study, 

we further classified genes under the broad term “nervous system development” (25 genes). 

More specific roles for genes were uncovered, including neuron differentiation (DCLK1, GRID2, 

MAP2, MYCBP2, PAFAH1B1), axonogenesis (DCLK1, KALRN, MACF1, MAP1A, MAP1B, 

MAP2, MYCBP2, PAFAH1B1, SPTBN1, STXBP1), dendrite morphogenesis (CAMK2B, DCLK1, 

MAP2, PPP3CA), and regulation of synaptic plasticity (CAMK2B, CX3CL1, GRID2, MAP1A, 

MAP1B, STXBP1) (Fig. S4A). Some of these genes have been previously studied in the context 
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of AD. For example, proteins MAP1A, MAP1B, and MAP2 are microtubule-associated proteins 

with function in microtubule assembly during neurite growth and morphogenesis, known to 

interact with MAPT (microtubule-associated protein tau), and have been shown to be involved in 

AD pathogenesis.26,27 DCLK1 codes for another microtubule-associated protein, Doublecortin 

Like Kinase 1, that regulates neurogenesis.28 PPP3CA (Protein Phosphatase 3 Catalytic 

Subunit Alpha), involved in presynaptic and postsynaptic phosphorylation, had different pattern 

of isoform expression in AD vs controls.29 CX3CL1 codes for a chemokine Fractalkine, a ligand 

for CX3CR1, enabling interaction between neurons and microglia30 that was found to have a 

role in neurogenesis.31 It was also reported that the hippocampal levels of CX3CL1 are lower in 

late AD stages.32 Our findings add to the growing body of evidence that resilience is associated 

with improved neuronal function.9 Yet, how transcriptomic upregulation of these genes 

translates to improved cognition remains to be discovered. 

Many genes in the broad category “transport” (36 genes) that we identified to be upregulated in 

resilient mice have known functions in the central nervous system. More narrowly defined 

enriched pathways include vesicle and organelle transport along microtubules and regulation of 

membrane potential (Fig. S4B). Genes categorized as involved in microtubule transport include 

DST (Dystonin), which codes for the BPAG1 protein, a linking cytoskeletal protein33 and 

member of the plakins family of gigantic crosslinking proteins that include another resilience 

upregulated gene, MACF134; DYNC1H1 (Dynein Cytoplasmic 1 Heavy Chain 1), a heavy chain 

of a motor complex whose mutations are associated with various neurological diseases by 

reducing the range of complex movement along microtubules35; and KIF1B (Kinesin Family 

Member 1B) that codes for a motor protein whose mutation causes Charcot-Marie-Tooth 

disease.36 Regulation of membrane potential include ATP1A1 (ATPase Na+/K+ Transporting 

Subunit Alpha 1), coding for a protein with a role in establishing sodium and potassium 

gradients; DMD (Dystrophin), mutations of which cause Duchenne muscular dystrophy; and 
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GRID2 (Glutamate Ionotropic Receptor Delta Type Subunit 2). The fact that these genes were 

upregulated in the resilient mouse group may mean that microtubule transportation processes 

are retained. In fact, genes whose function involves axonal guidance (UNC5C) and acting 

binding (ENC1) were previously identified as resilience factors.37 As well, neuronal transport 

deficits have been identified in AD,38,39 and while microtubule stabilization reduced pathology 

and improved cognition in AD mouse models,40-42 challenges remain to translate these findings 

to the clinic.43,44 The remaining parent pathway – “axo-dendritic transport” – has overlapping 

genes with the previously discussed pathways and provides further biological processes likely 

involved in resilience. Overall, biological processes pathways enriched in these genes point to 

an improved ability to move cargo along microtubules in neurons. Alternatively, neurons in the 

resilient mice may be undergoing processes to remodel the cytoskeleton to retain functionality 

under stress.45 The upregulation of these genes involved in transport in resilient individuals 

points to overall improvement of neural function. 

 

Downregulated genes regulate neuronal processes 

Additionally, the clusters containing most downregulated genes in the human (endothelial C1) 

and in the mouse (immune - other C11) were identified. For human downregulated genes, 18 of 

the 30 total downregulated genes were in endothelial cluster C1, including DPP10, ENO2, and 

MAGI2. GO Biological Processes analysis revealed multiple pathways related to neuronal 

function, such as regulation of neuron projection development (LRRC7, MAGI2, MAP3K13, 

NEGR1) (Fig. S5A). Endothelial cells have been shown to influence neurogenesis and axonal 

growth through release of secreted factors,46,47 yet, how these downregulated genes are 

involved in resilience requires further investigation. Interestingly, gene AQP4-AS1, a long non-

coding RNA, was downregulated in three clusters: inh. neurons C16 and C23, and ex. neurons 

C24 (Table S3). For the mouse, 37 of 47 total downregulated genes were in the immune – other 
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cluster 11 with lymphocyte marker genes CCL5 and NKG7.48,49 Genes in this cluster are also 

involved in neuronal function, such as synaptic signaling and plasticity, neuron projections and 

differentiation (Fig. S5B). Lymphocytes are known to be involved in AD; for instance, T cells 

infiltrate the CNS in AD with a potential role in disease pathology50 and directly interact with 

neurons and promote neuroinflammation.51 Due to the small size of the clusters C1 and C11, it 

is difficult to interpret these findings in the context of resilience. Further studies with enrichment 

of these cell types would be necessary to determine their role in resilience. 

 

Resilience candidates are upregulated in excitatory neurons and correlate with cognition in 

independent human reference data sets 

We found corroborating evidence of these upregulated mouse genes among several human 

data sets. Remarkably, 25 genes were predicted to have differential expression in resilient 

individuals in various tissues, including the brain, using PrediXcan analysis in GWAS of 

resilience (Table S4) and expression of 38 genes across three tissues, including the DLPFC, in 

bulk transcriptomic data were found to be positively correlated with cognition (Table S5). 

When considering the products of the 61 genes assessed, 23 proteins with significant positive 

correlations between protein abundance and MMSE (mini-mental state exam) (p < 0.05; higher 

abundance correlated with better cognition) (Table S6) were identified in the ROSMAP and 

Banner (Banner Sun Health Research Institute) populations.52 Johnson et al reported that 

modules “post-synaptic density” and “protein transport” were enriched in proteins correlated with 

resilience that were previously identified in another study.52 In an analysis that directly 

compared protein abundance in AD vs AsymAD (individuals with AD pathology and without 

significant cognitive impairment) (Supplementary Table 2 in Johnson et al), 1,540 proteins had 

higher abundance in AsymAD (log2FC > 0 with adj. p-value < 0.05). Our results enable 
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narrowing down of resilience factors and nomination of cell-type specific targets. In fact, we 

matched 19 of our gene targets with the protein list, including ATP1A1, ATP2B2, DCLK1, 

GRIA3, KCNMA1, KIF1B, MAGI2, MAP2, SPTBN, and STXBP1. Overall, these gene 

expression and protein data cross-check strengthen confidence that the resilience factors that 

were identified in the mouse excitatory neuronal cluster 20 from the cross-species integrated 

data set are translationally relevant. 

 

Nominated resilience candidates include druggable targets 

An important factor to consider in nominating targets is whether the gene is druggable. Our 

study has nominated genes that are targetable based on Agora’s druggability criteria 

(https://www.synapse.org/#!Synapse:syn13363443). After obtaining these data for each gene, 

we filtered the list by druggability, safety, and accessibility of target. Those genes that are 

targetable by small molecules, homology, or structure were retained. Of the genes that are 

targeted by protein structure, only those with two or fewer “red flags” such as it being an 

essential gene, a cancer driver, having high off target gene expression, or a “black box warning” 

(label put on by the U.S. FDA to warn about serious safety risk) on drugs currently used in the 

clinic, were retained. Finally, we arrived at a list of 17 targetable genes (Table S7), six of which 

are targetable by small molecules and have a favorable safety profile: ATP1A1, GRIA3, KCNH7, 

NISCH, SCN2A, and TUBA4A. 

In addition, we reviewed which of the 61 genes had been previously nominated as potential 

targets for AD. Among the upregulated resilience genes from excitatory neuronal cluster 20, 11 

mouse genes have been nominated on Agora by research teams from the NIA-funded AMP-AD 

consortium (https://agora.adknowledgeportal.org/genes) (Table S8). None of these targets have 

been validated and one target – SCN2A – is subject of ongoing validation studies. Our data 
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provide new evidence to prioritize these genes for candidate validation: ATP2B2, CLU, 

CX3CL1, DCLK1, GFAP, GPM6B, KALRN, MAP1B, MAP2, and PPP3CA. 

 

Drug repositioning candidates identified to promote resilience motifs 

Using a complimentary strategy to nominate resilience drug candidates to test, we implemented 

a tiered computational approach to identify compounds that are most likely to boost the 

resilience signature (or “motifs”) by increasing expression of multiple target genes. Accordingly, 

we matched the 61-gene resilience signature with patterns of transcriptional changes upon drug 

administration to different cell lines (see Methods). Through this process, we identified 93 drugs 

with known biological function for potential repurposing to increase cognitive resilience in AD 

(Table S9). Moreover, we highlight nine drug candidates that stood out beyond the rest based 

on highest score (Table S9, global score of 0.9 or above), and we nominate them for priority 

testing: velnacrine, miglitol, sirolimus, BRD-K63175663, W-13, methotrexate, Mebendazole, 

podofilox, and BMS-536924. Interestingly, the top scorer is velnacrine, a synthetic AChE 

inhibitor that was considered for treatment of AD but discontinued.53 Other AChE interactors 

outside of top candidates were an antimalarial mefloquine (score 0.24) and a withdrawn drug for 

ulcers – ranitidine (score 0.15). Notably, rapamycin (synonym sirolimus), an MTOR inhibitor with 

efficacy in animal AD models54 and currently in clinical trial phase 2 (NCT04629495), is a top 

candidate with score of 0.98. As well, rapamycin acts on FGF2, a previously nominated 

modulator of short term memory by our group.12 Other notables in the top nine are tubulin and 

microtubule inhibitors mebendazole and podofilox. Interestingly, drug bepridil, an ATP1A1 

inhibitor, is also on the list with score of 0.11 (Table S9). To gain further biological insight into 

the 93 drugs considered for repurposing, GO Enrichment analysis on the known target genes of 

those drugs (also referred to as drug set enrichment analysis) was performed. We identified 

shared biological processes pathways related to neurotransmitter uptake, dopamine and 
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catecholamine in particular (Table S10), with nitric-oxide synthase and catecholamine binding 

molecular functions enrichment (Table S11), and cellular compartment enrichment at the 

synapse with terms of dopaminergic and GABA-ergic synapse, potassium and calcium channel 

complexes, as well as spindle microtubule among the top terms (Table S12). 

 

Discussion 

Our findings demonstrate that analysis of integrated mouse and human transcriptomic data 

uncovers novel and conserved cell type-specific signatures in layer 4/5 cortical neurons 

associated with resilience to AD cognitive decline. The integrated approach ensures same 

treatment of data and allows for straightforward mouse to human comparisons. Using this 

approach, we identified resilience genes that were confirmed in other human data sets. 

Specifically, we demonstrated that the majority of cell types resolved from mouse and human 

snRNA-seq data sets exhibited high alignment, which allowed us to identify translationally-

relevant resilience signatures conserved across the two species. We determined that the 

upregulation of gene expression in layer 4/5 excitatory neuron cluster reflects a robust signature 

of resilience, while cluster composition remains stable. This is related to, but distinct from, a 

recent report implicating a RORB+ neuronal cluster signature associated with residual cognition 

in bulk RNA-seq data from the ROSMAP cohort. In particular, we refined our investigation of this 

layer 4/5 neuronal cluster by cross-referencing human and mouse data, and also investigating 

specific gene expression signatures that are altered within this cluster. Through this process, we 

nominated targeting of specific genes such as ATP1A1, GRIA3, KCNMA1, and STXBP1 in 

pathways such as regulation of membrane potential and axonal transport in excitatory neurons 

to promote resilience. 
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While animal models are necessary for development of AD therapeutics, more translationally-

relevant mouse models are needed due to the lack of clinical trial success.55,56 Large-scale 

efforts to characterize human cohorts and mouse models allows for better understanding of the 

molecular underpinnings of AD.57 In particular, several studies reported both shared and 

divergent signatures between mouse and human transcriptomic AD signatures in microglia and 

other cell types.58-61 However, many studies share limitations of comparing gene signatures 

obtained from different computational pipelines, comparing different technology (e.g., snRNA-

seq vs scRNA-seq), comparing different brain regions, and only using one or a limited number 

of genetic backgrounds for mouse models. In our study, we aimed to eliminate several of these 

technical differences that may confound biological interpretation of results. Therefore, we 

performed a unified analysis using the same computational pipeline, sequencing technology, 

and included genetic diversity in profiling a similar region from the mouse and human brain 

tissue (Fig. 1A). While not all technical differences were eliminated, we demonstrate that this 

analysis pipeline is a powerful tool to synthesize transcriptomic data into an interpretable cross-

species data set (Fig. 1B-E). 

We discovered that while cross-species cluster composition remained unchanged with cognition 

status (Fig. 3A and B), both human and mouse resilient individuals had an upregulation of 

genes in one excitatory neuronal cluster (Fig. 4A and B) that was classified as layer 4/5 IT 

neurons (Table S2). IT neurons are a diverse class of neurons (in terms of connections, activity, 

and morphology) in layers 2-6 that project to telencephalon and contralaterally.16,62 IT neurons in 

layer 4 process external input, while IT neurons in other layers receive input from L4 and from 

external sources.16 Some signature genes that have been identified in 4/5 IT neurons include 

Rorb and Satb2.16,62 Interestingly, excitatory neurons expressing RORB were found to be 

vulnerable in the entorhinal cortex region in human AD,63 and also associated with residual 

cognition in bulk RNA-seq data analysis.7 Thus, converging lines of evidence suggest that 
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targeting excitatory IT neurons in these layers may be a therapeutic strategy to engage 

resilience mechanisms. We note that the resilience-associated genes within this cell group are 

not the same in human versus mouse; this could be due to differences in species, genetics 

(familial AD mutations in mouse versus late-onset AD in human individuals), pathology (amyloid 

in mouse versus amyloid and tau in human), or variation in our relatively small sample of 

humans. However, the fact that the same neuronal group is implicated in both species despite 

all of these differences is highly significant.  

In the approach to targeting excitatory neurons to promote resilience, our data indicate that it is 

the gene expression that matters, not the survival of neurons. First, we observed that there was 

no difference in cluster composition (at our optimal cluster resolution) between resilient and 

susceptible groups (Fig. 3A and B). Second, we corroborated this finding by IHC analysis of 

NeuN load in layers 4 and 5 of the frontal cortex in the mouse (Figs. 4C and S2C) as well as in 

a different cohort of AD-BXD mice (Fig. S2D). While the 5XFAD mutation itself resulted in a 

decrease of the number of neurons in layer 5 in middle age mice on C57Bl/6 x SJL and 

C57Bl/6J backgrounds,64,65 the difference in neuronal proportions between resilient and 

susceptible individuals is less clear. In a ROS cohort, same density of neurons was found in AD-

resilient (AD pathology and cognitively normal) and AD (AD pathology and dementia) individuals 

in midfrontal gyrus cortex (frontal lobe).6 While some coverage analyses show no difference in 

neuronal load, they do not take into account brain region shrinkage that is typical in AD. In a 

study where neurons were counted, fewer neurons were observed in AD patients compared 

with people with AD pathology but no cognitive symptoms in superior temporal sulcus area 

(temporal lobe).66 In the hippocampus, some regions maintained neuronal numbers while others 

showed decline between pre-clinical AD (cognitively normal people with AD pathology) and AD 

in Baltimore Longitudinal Study of Aging and the Johns Hopkins Alzheimer’s Disease Research 

Center cohorts.67 
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A closer examination of differentially expressed genes within this IT neuronal cluster revealed 

potential biological processes of resilience. The broad parent biological processes of the 61 

mouse genes were nervous system development, transport, axo-dendritic transport (Fig. 5A). 

While there were 21 genes in the broad category of neurogenesis, we observed no 

neurogenesis signature in cluster 20 (Fig. S3B). The genes that were labeled as part of the 

nervous system development were further classified by more specialized categories such as 

involvement in neuron migration, axonogenesis, regulation of synaptic plasticity and trans-

synaptic signaling, and dendrite morphogenesis (Fig. S4A). Activating these pathways may 

improve resilience to AD cognitive decline. Additionally, we identified genes in pathways 

transport and axo-dendritic transport to be upregulated (Figs. S3A and S4B) and hypothesize 

that resilient individuals are able to retain essential neuronal function, as this signature appears 

late in transgenic animals. Our hypothesis is bolstered by other studies showing that 

overexpression of a microtubule motor protein Kif11 improved cognition in 5XFAD mouse model 

while not changing Aβ load.68 

To provide additional evidence of translatability of the resilience genes identified in the mouse, 

we cross-referenced our findings with a different human cohort of resilient individuals and/or 

data modality. Remarkably, we found corroborating evidence among many of the 61 mouse 

genes in human cohort transcriptional data sets, including predicted differential expression in 

resilience in multiple tissues (Table S4) and positive correlation with cognition (Table S5). As 

well, we found abundance of over a third of proteins that are products of the resilience genes to 

be positively correlated with cognition (Table S6). 

Finally, in nominating resilience targets we considered the druggablity of these genes. From 

mining Agora druggability data set, we tabulated targets with the best druggability metrics. From 

the original list of mouse genes, 11 mouse genes have been nominated on Agora (Table S7), 

but only SCN2A and MAP1B had favorable druggability profiles, which is why studies such as 
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this are required to nominate more targets. We found 16 additional druggable genes among 

those that hadn’t been previously nominated, including seven that were validated across 

orthogonal transcriptomic and proteomic human datasets: ATP1A1, DCLK1, GRIA3, KCNMA1, 

MAP2, STRBP, and STXBP1.  

To highlight four of these seven targets, we will discuss ATP1A1, GRIA3, KCNMA1, and 

STXBP1 in some detail. ATP1A1 (ATPase Na+/K+ Transporting Subunit Alpha 1) codes for one 

of the four that are catalytic α subunits of Na+/K+ ATPase, which is involved in resting 

membrane potential; its mRNA is expressed in neurons throughout the mouse brain.69 GRIA3 

(Glutamate Ionotropic Receptor AMPA Type Subunit 3) codes for protein Glutamate Receptor 3, 

a subunit of the AMPA receptor, with function in synaptic transmission. Mutation in this gene 

has been associated with cognitive impairment,70 and levels of GluR3 have been found to vary 

during AD progression.71,72 KCNMA1 (Potassium Calcium-Activated Channel Subfamily M Alpha 

1) that codes for a subunit for a calcium activated big potassium channel with a role in 

neurotransmitter release. KCNMA1 SNPs were found to be associated with age at onset and 

duration of AD73 as well as increasing odds ratio of sporadic AD.74 STXBP1 (Syntaxin Binding 

Protein) codes for protein MUNC18-1 that interacts with the SNARE complex involved in 

neurotransmitter release that has recently been found to interact with tau.75 Another SNARE-

related protein, CPLX1, had been previously shown to be associated with cognitive resilience.4 

Interestingly, mRNA levels of KCNM174 and ATP1A176 have been reported to be elevated in AD. 

In our mouse snRNA-seq data, these four genes are expressed in at least 10% of nuclei in both 

groups of mice, with proportionally more resilient nuclei expressing them, while in nuclei that do 

express the gene, the average expression between resilient and susceptible groups is similar. 

Therefore, we postulate that upregulating gene expression of these genes in excitatory layer 4/5 

neurons may result in improved cognitive resilience. 
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Small molecules that have been approved for some of these genes, listed on genecards.org, 

include both agonists and antagonists. Focusing on agonists to potentially upregulate cognitive 

resilience, we identified several potential candidates to test in in vitro and animal models. For 

instance, approved small molecule agonists for ATP1A1 include magnesium gluconate used for 

hypomagnesemia (https://go.drugbank.com/drugs/DB13749), for GRIA3 include cyclothiazide, a 

diuretic (https://go.drugbank.com/drugs/ DB00606) and venlafaxine, a serotonin and 

norepinephrine reuptake inhibitor (https://go.drugbank.com/drugs/DB00285), and for KCNMA1 

another diuretic bendroflumethiazide (https://go.drugbank.com/drugs/DB00436). On the other 

hand, STXBP1 does not have an approved drug agonist. For drug targets lacking agonists, 

novel small molecules or gene therapies are needed for validation and pre-clinical studies. 

Notably, venlafaxine was also on the list of drugs for repurposing that upregulate resilience 

motifs with a score of 0.24 (Table S9), demonstrating that multiple drug nomination routes 

converge on same drugs. Our drug repurposing approach leverages the known properties of 

compounds that can be applied in the field of resilience. We identified other candidates that 

increase the resilience motifs that function in the CSN and at the synapse (Tables S10-12), with 

top candidates including rapamycin and velnacrine (Table S9). Interestingly, in our 5XFAD 

amyloid model of AD, we identified microtubule-associated resilience gene candidates and 

some of our top candidates for drug repurposing are mebendazole and podofilox, tubulin 

inhibitors. It has been recently published that mouse genetic background modulates mutant tau 

pathogenicity.77 Whether targeting these genes specifically in excitatory neurons in layers 4/5 

enhances resilience is a topic of future investigations. 

It is worth noting that in ROS/MAP and other cohorts, researchers have previously identified 

factors such as lifestyle and complex traits,5,78 pathology burden,79 cellular and structural 

markers,6,66,80 genes,37,81 and proteins6 associated or correlated with resilience (recently 

reviewed in 9). However, proving causality and translating findings to therapeutics remains a 
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challenge. Using the translationally-relevant AD-BXDs, in future studies we aim to study 

causality, understand the mechanisms of resilience that we nominated in the genetically diverse 

mouse models, as well as to perform preclinical studies to test top candidates. 

In conclusion, our cross-species integrative transcriptomic analyses of individuals resilient to AD 

cognitive decline resulted in nomination of several resilience targets. The AD-BXD mouse panel 

allows us to decipher causality and perform mechanistic and pre-clinical animal studies in 

forthcoming projects. 
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Figure Legends 

Fig. 1. Integration of human and mouse snRNA-seq PFC data resulted in a shared data 

space with no compositional differences between resilient and susceptible individuals. 

A. Cohort demographics and analysis workflow for cross-species data integration; B. Plot of 

CFM values to define resilient and susceptible status for the 14 mo mice with 5XFAD transgene; 
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C. Integrated human and mouse data set: UMAP visualization of the integrated data set with 

cluster numbers, and separate UMAP of the data for human (left) and mouse (right); alignment 

per cluster and cluster proportion by species below (see also Fig. S1); D. MetaNeighbor 

analysis and differential gene expression led to classification of each cluster as a cell type. 

Heatmap with cell-type specific marker genes demonstrate cell-type assignments. Heatmap was 

produced using average expression for each cluster, by default, with scaled data and maximum 

display value set at 2.5; E. UMAP for the integrated data set with cluster identity; F. Proportions 

of cell types in each sample (see also Fig. S2A). 

 

Fig. 2. Correlation analysis of genes per cluster and separate UMAPs for each species. A. 

Correlation plot of genes in each cluster across species; B. Example correlations showing each 

gene for a microglia cluster in human and mouse, for an ex. neuronal cluster for human and 

mouse, and for a microglia mouse cluster vs a human neuronal cluster with lower correlation 

value, with dashed blue line representing perfect concordance (slope of 1) and the solid black 

line the fit of the data used to calculate R2 value; C. Individual heatmaps for human and mouse 

data within the integrated clusters demonstrating a shared class identity in all but one cluster 

(right most cluster, #9). 

 

Fig. 3. Resilient transcriptional signatures identified in excitatory cluster shared cross-

species. A and B. Composition of all the sample groups in each cluster for human subjects with 

pathology (A) and 14 mo mice with 5XFAD transgene (B), with resilient and susceptible groups 

with more saturated color. No statistical differences were found between the resilient and 

susceptible groups in each cluster (t-test with Benjamini-Hochberg multiple comparison 

correction); C and D. Volcano plots with significantly differentially expressed genes between 
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resilient and susceptible individuals (each dot), for human (C) and 14 mo mouse subjects (D). 

Blue color indicates downregulation in resilient individuals (log2FC ≤ - 0.25) and red color 

indicates upregulation in resilient individuals (log2FC ≥ 0.25); E and F. Pie charts demonstrating 

cell type identity of clusters for differentially expressed genes from C and D. In both in human 

(E) and mouse (F), most genes are from neuronal clusters. 

 

Fig. 4. Resilience gene network characterization. A and B. Proportional significantly 

differentially expressed (adjusted p-value ≤ 0.05) upregulated and downregulated genes in the 

human subjects with pathology (A) and the 14 mo mice with 5XFAD transgene (B) showing 

most genes were upregulated (log2FC ≥ 0.25) and are particularly enriched in cluster 20. Only 

clusters with significantly differentially expressed genes are shown; C. Bar graphs of NeuN 

coverage in multiple layer 5 regions (orbital area, prelimbic area, and infralimbic area) 

demonstrate no difference between resilient and susceptible strains. Values with 0% coverage 

due to absence of area in sections were removed (see also Fig. S2C); D. GO enrichment 

analyses for human and mouse gene lists identified pathways in the mouse data set (5 top 

pathways included for each species, adjusted p-value threshold of 0.05). 

 

Fig. 5. Mouse resilience gene characterization. A. Gene concept network demonstrating 

gene linkages among the top 10 GO:BP terms demonstrating overlap and differentiation of gene 

function: parent pathways nervous system development (25 genes), transport (36 genes), axo-

dendritic transport (6 genes) (see also Figs. S3A, S4A-B). B. Heatmap of average normalized 

gene expression (scaled by gene) for nervous system development pathway, with blue 

indicating upregulation in resilient mice and red downregulation. C. Heatmap of average 
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normalized gene expression (scaled by gene) for transport pathway, with blue indicating 

upregulation in resilient mice and red downregulation. 

 

Methods 

Mouse subjects 

The AD-BXD panel of mice were generated as previously described.10 Briefly, female 5XFAD 

mice on C57BL/6J background harboring five human mutations that cause familial AD (Stock 

No: 34848-JAX; B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax) were mated 

with males from the BXD panel.82-84 The resulting F1 mice were group-housed (2-5 mice/cage) 

in a facility with a 12-hour light and dark cycle and had free access to food and water. Only 

female mice were used in this study. Mouse studies were carried out at the Jackson Laboratory 

and the University of Tennessee Health Science Center and were approved by the Institutional 

Animal Care and Use Committee (IACUC) at each location. All animal studies were conducted 

in compliance with the National Institutes of Health Guidelines for the Care and Use of 

Laboratory Animals.  

Contextual fear conditioning 

Mice were trained on contextual fear conditioning (CFC) paradigm as reported previously 10,85,86. 

After three days of habituation to transport and to the testing room, the mice were placed in a 

testing chamber. After a brief baseline period (150-180 s), four mild foot shocks (1 second, 0.9 

mA) separated by 115±20 seconds were applied. Contextual fear memory (CFM) was 

measured 24 hours later by placing the mouse in the same testing chamber and measuring 

percent freezing during a 10-minute time period. Female AD-BXDs and their non-transgenic 

littermates were tested on CFC at 6 and 14 months of age. 
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Selection of strains for transcriptomic analyses 

We analyzed a group of 14 strains, including two founder strains (B6*B6 and B6*D2 F1s) that 

differed in CFM at 14 months. Strains were stratified into resilient and susceptible based on 

population mean. AD-BXD strains were 28, 33, 39, 50, 53, 65, 66, 83, 99, 113, 124, 161, and 

the B6 and B6*D2 founder strains, along with the non-transgenic counterparts to all 14 strains. 

To select samples that were most representative in terms of CFM for snRNA-seq analyses, 

samples from mice nearest the strain average of CFM value (where available) were selected for 

each strain at 6 (mature) and 14 (middle-aged) months of age for both 5XFAD and their non-

littermate controls, resulting in 56 total samples. Quality control was performed on snRNA-seq 

data as follows: samples that were below 2.5 standard deviation of median genes per nucleus, 

total genes detected, and median UMI counts were replaced with samples from a mouse with 

the same demographics (strain, age, 5XFAD mutation status). This resulted in three samples 

needing to be replaced. Mean ages with standard deviation for each group were as follows: 

mature adult mice: 5.96 ± 0.44 months for transgenic animals; 6.00 ± 0.49 months for non-

transgenic animals; middle-aged mice: 13.98 ± 0.28 for transgenic animals; and 13.92 ± 0.41 

months for non-transgenic animals (n = 14 for each group, and n = 7 for cognitively impaired 

and unimpaired within each group) (Fig. 1A). 

Single nucleus RNA- sequencing for mouse subjects 

Mice were anesthetized with isoflurane and decapitated after CFM testing. The brains were 

removed and dissected after olfactory bulbs removal. Nuclei were isolated from snap-frozen 

frontal cortex (anterior to the anterior forceps of the corpus callosum) samples from one 

hemisphere using Nuclei Isolation Kit: Nuclei EZ Prep (Sigma-Aldrich Cat. No. NUC-101). 

Briefly, 50 µl of EZ Lysis Buffer and RNase inhibitor (1000 units/mL; Protector RNase Inhibitor, 

MilliporeSigma Cat. No. 03335399001, 2000 U, 40 U/µL) were added to 1.5 mL DNA LoBind 

tubes (Eppendorf Cat. No. 022431021) containing brain tissue. Tissue was ground with Bel-Art 
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Disposable Pestle (Sigma Aldrich Cat. No. BAF199230000). The tissue was washed off from 

the pestle with 25 µl of Lysis Buffer, and the tube was placed on ice for 5 minutes. The sample 

was centrifuged at 500xg for 5 minutes at 4 °C. Supernatant was removed and the pellet was 

resuspended in 50 µL of Lysis Buffer using a wide bore tip. The sample was placed on ice for 5 

minutes, after which 50 µl of PBS containing 0.04% BSA (from LAMPIRE Biological 

Laboratories Cell Culture Grade 35% BSA Liquid (Fisher Scientific Cat. No. 50-414-159) and 

RNase inhibitor (40 units/mL) were added. The sample was centrifuged for 5 minutes at 4 °C at 

500xg. Thereafter, the sample was resuspended in 100 µl of PBS containing 0.04 % BSA and 

RNase inhibitor and pushed through a pre-wet 40 µm filter (PluriStrainer Mini 40 µm Cell 

Strainer (Pluri Select Cat. No. 43-10040-60)). The sample was centrifuged for 5 minutes at 4 °C 

at 500xg, and resuspended in 100 µl of PBS containing 0.04% BSA and RNase inhibitor, then 

pushed through a pre-wet 5 µm filter (PluriStrainer Mini 5 µm Cell Strainer (Pluri Select Cat. No. 

43-10005-60)). After a final centrifugation step at 500xg for 5 minutes at 4 °C, the sample was 

resuspended in 1000 µL of PBS containing 0.04% BSA and RNase inhibitor and immediately 

processed as follows. 

Nuclei quality was assessed via brightfield imaging and counted via Trypan Blue and a 

Countess II automated cell counter (ThermoFisher), and up to 12,000 nuclei were loaded onto 

one lane of a 10X Chromium Controller. Single nuclei capture, barcoding and library preparation 

were performed using the 10X Chromium platform87 version 3 chemistry and according to the 

manufacturer’s protocol (#CG00052). cDNA and libraries were checked for quality on Agilent 

4200 Tapestation, quantified by KAPA qPCR, and pooled at 33.33% of an Illumina NovaSeq 

6000 S2 flow cell lane, targeting 6,000 barcoded nuclei with an average sequencing depth of 

100,000 reads per nuclei. 

Illumina base call files for all libraries were demultiplexed and converted to FASTQ files using 

Illumina bcl2fastq 2.20.0.422. A filtered digital gene expression matrix was generated for each 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.04.12.487877doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.12.487877


gene expression library against the 10X Genomics mm10 reference build (version 3.0.0, 

GRCm38.93 including introns for pre-mRNA mapping) using 10X Genomics CellRanger count 

version 3.1.0 for all samples. 

Confirmation of sample identity 

After sequencing data for 56 samples was obtained, as part of quality assessment analysis, we 

checked sample identity to confirm correct sex, transgene status, and strain. Using a strain 

matching tool RNA-strain-match,88 we identified two samples that were prepared and run in 

sequence had flipped strains, which we attribute to a sample swap during sample prep. We re-

assigned correct IDs for these two samples. As well, one other sample transgene status was not 

concordant with initial genotyping results. Genotyping for that mouse tissue was repeated and it 

matched sequencing results, leading to reassignment of transgenic status of that mouse. 

Subsequently, while all samples were used for integration and cell-type assignment analyses, 

due to the lack of full coverage of genotype at each age point, that strain (66) was removed from 

downstream analyses of resilience signatures. 

Single nucleus RNA-seq data for human subjects 

As described in the original report,13 frozen dorsolateral prefrontal cortex (DLPFC) brain tissue 

was profiled for snRNA-seq using 10X Chromium version 2 chemistry for 24 ROSMAP 

individuals, with six donors per group (three male and three female) from four categories: 

cognitively normal with low AD pathology, cognitively normal with high AD pathology (resilient), 

cognitively impaired with low AD pathology, cognitively impaired with high AD pathology 

(susceptible) (Fig. 1A). General QC measures are described in the original study, and all data is 

available on the AD Knowledge Portal hosted on Synapse. 

Mouse data set preparation 
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The mouse data set was combined from individual files using Seurat package89,90 in R91, with 

features retained when expressed in at least 10 nuclei and nuclei kept with at least 200 

features. Then, nuclei with mitochondrial, ribosomal, and pseudo-genes over 5 % and RNA 

count below 500 or above 20,000 were excluded. Thereafter, all mitochondrial genes were 

removed. The data set was batch corrected on sequencing date using harmony package92 with 

30 dimensions and resolution of 0.5. Doublet check was performed with 5 % rate using 

DoubletFinder R package.93 According to pre-set thresholds, three clusters with doublet rates of 

over 40% and one cluster with under 100 nuclei were removed from further analysis, resulting in 

36 clusters for 26,006 genes by 186,900 nuclei. 

Human data set preparation 

The raw human gene counts and the metadata13 were re-processed to ensure same treatment 

as the mouse data set. The human data set was taken through an identical pipeline as the 

mouse data set, with two modifications. One, an additional first step of removing duplicated 

genes after summing counts was done. Two, no batch correction was performed. According to 

the pre-set thresholds, one cluster with both high doublet rate and fewer than 100 nuclei was 

removed, resulting in 22 clusters for 26,805 genes by 168,282 nuclei. 

Integration of Datasets 

An average of 7,012 and 3,338 nuclei per sample for human and mouse samples, respectively 

was obtained after filtering and quality control steps, totaling 168,282 human and 186,900 

mouse nuclei. 

Gene name translation. Mouse gene names were converted into homologous human gene 

names using curated and publicly available, published data sets consisting of 17,629 gene 

names,94,95 resulting in a mouse data set of 16,537 genes by 186,900 nuclei. Raw human and 

mouse data were extracted from processed objects for integration. 
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Optimization and Integration. To select lambda and k parameters, lambda optimization was run 

for k = 20, 25, 30, while k optimization was done with lambda set to 15, 20, and 30 (Fig. 1SA-B). 

For final analyses, the choice was lambda = 30 and k = 20, 25, 30. LIGER14 with R package 

rliger96 was used to integrate raw human and mouse data processed as described above, with 

2,000 variable genes, lambda = 30, k = 20, 25, 30, with 3 restarts and maximum iteration of 100. 

After quantile normalization and UMAP (Uniform Manifold Approximation and Projection) 

dimension reduction for visualization (Fig. S1C), alignment and agreement were calculated, and 

the object was converted to Seurat for downstream analyses. Overall alignment and agreement 

metrics were: 0.7152 and 0.0199, 0.7557 and 0.0298, 0.7193 and 0.0324 for k = 20, 25, and 30, 

respectively. Integrated object with highest alignment metric, k=25, was chosen for downstream 

analyses (with individual cluster alignments in Table S1). 

Integrated dataset analyses 

Cell type identities for each cluster in the integrated data set were assigned using a combination 

of R package MetaNeighbor97 and differential gene expression analysis.13 Reference data set 

previously trained on the Brain Initiative Cell Census Network (BICCN) mouse primary motor 

cortex data sets was utilized in MetaNeighbor as previously described98 to determine best cell 

type match for each cluster. The AUROC (area under the receiver operator characteristic curve) 

was calculated for each cluster, with an average of 0.86 ± 0.10 for highest AUROC (Table S2). 

Neuronal clusters were classified as excitatory or inhibitory based on SLC17A7/SLC17A6, and 

GAD1/GAD2 expression, respectively. 

Stratifying mouse populations based on memory performance 

To define resilient and susceptible groups, transgenic mice at 14 months of age were ranked 

according to their individual CFM performance as reported previously10 (Fig. 1B). Mice that 
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performed below average were classified as susceptible, and mice that performed above 

average were classified as resilient (Fig. 1B). 

Differential gene expression analyses 

Differential gene expression analysis was performed on human and mouse samples separately. 

For analysis of resilience signatures, genes that were expressed in at least 10% of nuclei in 

least one group (resilient or susceptible) were analyzed in the data from 14-month-old 

transgenic mice and human subjects with high pathology. Differential expression statistics for 

each cluster were performed with glmmTMB function99 that uses generalized linear mixed model 

(GLMM) using Template Model Builder (TMB) with family function nbinom2(link = "log") with 

cognition status (resilient or susceptible) as fixed effect and with each individual as the random 

effect, and ANOVA function in the car package.100 Multiple testing adjustment was calculated for 

each cluster with the Benjamini–Hochberg procedure using p.adjust function of the stats 

package in R.91 Upregulated and downregulated genes were those whose log2FC is equal to or 

greater than 0.25, or equal to or less than -0.25, respectively. Gene ontology (GO)101,102 

enrichment analysis on upregulated or downregulated genes was performed with clusterProfiler 

package with all gene set sizes and against all background genes for broad categories, and 

using gene sizes of under 500 for sub-classification.103 

For analysis of resilience genes, the same generalized linear mixed model analysis as above 

was performed on pre-selected candidate genes in four groups: 6-month-old non-transgenic 

mice, 14-month-old non-transgenic mice, 6-month-old transgenic mice, and 14-month-old 

transgenic mice. 

Immunohistochemistry 

The immunohistochemistry study incorporated a different cohort of male and female 14-month-

old AD-BXD mice from the following strains: 14, 16, 22, 32, 44, 55, 56, 60, 61, 66, 68, 75, 77, 
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81, 87, 89, 99, 100, as well as the B6 and D2 F1s. For the female-only dataset, samples from 

the following AD-BXD strains were included: 14, 16, 22, 55, 75, 77, 81, 99, as well as the B6 

and B6*D2 F1s. After CFM testing, mice were anesthetized with isoflurane and decapitated. The 

brains were removed and halved; one hemibrain was placed in 4% paraformaldehyde and kept 

at 4°C until the samples were sent to Neuroscience Associates (NSA, Knoxville, TN) for 

processing. The hemibrains were embedded, processed, and stained simultaneously in blocks 

of 40. The brains were freeze-sectioned coronally at 40 μm intervals (not including the 

cerebellum). Serial sections were stained for neurons using NeuN (anti-NeuN antibody, clone 

A60, biotin conjugated, Millipore Cat. No. MAB377B, 1500 dilution) and visualized using 3,3′-

Diaminobenzidine (DAB), resulting in 22 images per brain on average. Images were taken with 

20x objective on a Huron Digital Pathology TissueScope LE120 (0.4 microns/pixel). 

Image analysis 

Cropped and down-sampled images from hemibrains of 29 mice were systematically registered 

to the Allen Brain Atlas CCFv2017104 and NeuN coverage across layers 4 and 5 of designated 

cortical regions were quantified using the QUINT workflow.105-107 Neuronal coverage in these 

regions was assessed as a measure of the area of stain coverage over the area of the region. 

Regions of the frontal cortex were identified and neuronal coverage within layers 4 and 5 were 

averaged from all sections per brain. Layers 4 and 5 from the following areas of the frontal 

cortex were assessed: prelimbic area, infralimbic area, anterior cingulate area (dorsal part), 

anterior cingulate area, anterior cingulate area (ventral part), agranular insular area (dorsal 

part), agranular insular area (ventral part), primary motor area, secondary motor area, primary 

somatosensory area, somatosensory areas, orbital area (lateral part), orbital area (medial part), 

dorsal peduncular area, and frontal pole. 

Resilient and susceptible status for each strain was assigned using CFM averages across the 

male and female 14-month-old AD-BXD data set.10 Strains that fell below the population 
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average were deemed susceptible while those scoring above the average were deemed 

resilient to cognitive decline. Cognitive status was then correlated with strain averages of 

neuronal coverage from each layer 4 and 5 frontal cortical region using a biserial correlation. 

Deconvolution 

For deconvolution of bulk RNA-seq data to obtain estimates of cluster proportions, we used the 

dtangle R package.17 This analysis consisted of the following steps: 

1) We created pseudobulk samples from the snRNA-seq data set, starting with nuclei 

having >500 genes detected. The counts from these nuclei were then added together in random 

combinations, such that each cluster was represented between 0-30% (in increments of 2%) in 

at least 10 pseudobulk samples.  

2) We then ran dtangle on these pseudobulk samples, with the following combinations of 

parameters: n_markers in [0.01,0.02,0.03,0.05,0.1,0.2], marker_meth in [“ratio”, “diff”, “p.value”], 

and either with or without CPM normalization of the pseudobulk and single-nucleus RNA-seq 

counts. The reference set for dtangle was the full single-nucleus RNA-seq data set. 

3) We selected an optimal set of parameters for dtangle based on which pseudobulk 

predictions had the highest correlation with the ground truth cluster proportions (used to 

generate the pseudobulk samples). The correlation for each cluster was calculated separately 

for each parameter set, and the parameter set yielding the highest minimum correlation value 

over all clusters was chosen. This resulted in n_markers=0.1, marker_meth=”ratio”, and CPM 

normalization. 

4) We ran dtangle using these parameters on the bulk frontal cortex RNA-seq data set to 

obtain final estimates of the clusters. Bulk RNA-seq data for an AD-BXD mouse panel 

comprising of 235 mice of 28 different strains including male, female, 6 and 14 mo, age mice 

were used, with 18 samples filtered for this data set to match the snRNA-seq data set (female, 

5XFAD, and 14 mo) for analysis. CFM data was used as described above to classify all strains 
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in this study as resilient or susceptible, finally resulting in 10 resilient and 8 susceptible samples. 

Frontal cortex RNA-seq data and the corresponding behavioral data is deposited on SAGE 

(https://www.synapse.org/#!Synapse:syn17016211). 

Human references validations 

To evaluate the relevance of resilience candidates to resilience in independent human cohort 

studies, our team leveraged published genomic, transcriptomic, and proteomic data. Both 

human and mouse genes were evaluated, with reported values for mouse genes included in this 

report. First, we leveraged data from a published genome-wide association study (GWAS) of 

resilience to AD neuropathology, defined as better-than-predicted cognitive performance given 

an individual’s amyloid burden.78 PrediXcan108 was used to quantify predicted levels of 61 

candidate genes across 28 tissue types leveraging the GTEx database for model building and 

applied using GWAS data. Tissue-specific expression models were built leveraging elastic-net 

regression in the cis gene region (within 1Mb) and selected based on five-fold cross-validation 

as previously described. We then regressed our published resilience trait (n=5108) on each 

gene model covarying for age and sex. Correction for multiple comparisons was completed 

leveraging the false discovery rate (FDR) procedure (correcting for all gene-tissue 

combinations). 

Next, we leveraged bulk transcriptomic data from the ROSMAP to evaluate whether the 

expression of resilience genes also related to cognitive performance in the years preceding 

death. ROSMAP enrolled older adults without dementia who agree to annual clinical evaluations 

and brain donation at death.109 Bulk RNA sequencing was performed in 3 brain regions: the 

head of the caudate nucleus (CN), dorsolateral prefrontal cortex (DLPFC), and posterior 

cingulate cortex (PCC), all of which were processed following a published protocol.110 A global 

cognitive composite was calculated by averaging z-scores from 17 tests, as previously 

described.111 We evaluated transcript associations with cross-sectional cognition covarying for 
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age at death, post mortem interval, and sex, and we evaluated associations with longitudinal 

cognition leveraging mixed effects regression models with the same covariates and both the 

intercept and slope (years from death) entered as fix and random effects in the model. 

Correction for multiple comparisons was completed with FDR procedure. 

Finally, to identify proteins that shared resilience signatures in the human ROSMAP and Banner 

data set, data from Johnson et al.52 was used (Table 6, considering p- and bicor values for 

MMSE30). Proteins that were upregulated in AsymAD vs AD can be found in Supplementary 

Table S2 of that publication. For both data sets, in cases where multiple values were reported 

per protein, the proteins with the lowest p-values were chosen. 

Druggability rankings 

Druggability of nominated genes were assessed using a protein druggability dataset 

(https://www.synapse.org/#!Synapse:syn13363443) combined with Agora AD gene nomination 

(https://agora.adknowledgeportal.org/genes). R package biomaRt was used to match gene 

names with their ensembl IDs.112,113 

Small molecules targeting genes of interest were identified using https://www.genecards.org/ 

resource. 

Identification of drug repositioning candidates 

To identify drugs that might enable boosting/mimicking a gene expression signature linked to 

resilience mechanisms, we used several drug signature search algorithms as implemented in 

the signatureSearch package114 (v.1.12.0) in R-4.2.2. As reference databases for signature 

searches, we used both the Connectivity MAP (CMAP) database115 and the Library of Integrated 

Network-based Cellular Signatures (LINCS)116 2020 L1000 dataset. We employed four search 

methods for CMAP (the CMAP search method, the LINCS search method, the gCMAP search 

method, and correlation-based) and three for LINCS2020 (gCMAP did not yield meaningful 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.04.12.487877doi: bioRxiv preprint 

https://www.synapse.org/#!Synapse:syn13363443
https://www.genecards.org/
https://doi.org/10.1101/2022.04.12.487877


results). We used default parameters for all methods except for gCMAP, where we set 

higher=0, lower=NULL, and padj=0.05 to limit the search space to (significantly) upregulated 

gene signatures. 

We then first conducted ensemble rank aggregation of results for the different search strategies 

separately for CMAP and LINCS. To this end, we first extracted the most significant hit for each 

compound across screens and separated results into significant and non-significant signature 

matches as follows: 

1) for the CMAP search method, we considered results as significant, if the Kolmogorov-

Smirnov statistic was surpassing the critical value for P = 0.05 for distributions corresponding to 

the overlap of 52 (CMAP) and 53 (LINCS2020), respectively, genes; 

2) for the LINCS search, we performed a post-hoc FDR correction after selecting the best 

result for each compound across screens and considered results with an FDR-corrected P ≤ 

0.05 significant; 

3) for gCMAP, we considered results as significant that surpassed an effect value 

corresponding to the smallest scaled Kolmogorov-Smirnov statistic still significant in the CMAP 

search, thus homogenizing results between the two search methods; 

4) for the correlation-based signature search, we calculated the t-statistic from the 

correlation coefficient and considered results significant that had a two-tailed P ≤ 0.05. 

Significant compounds were ranked according to their effect size in mimicking the resilience 

signature, while insignificant compounds were set to share the highest rank. Ranks were then 

combined using the Dowdall rule, an alternative approach to the Borda Count, where the top 

rank is transformed to 1/1, the second rank to 1/2, and the nth rank to 1/n. We then summed 

these scores separately for CMAP and LINCS, scaled the resulting scores for each to [0,1]-

intervals and summed them up to retrieve the final overall ranking score. All compounds that 

had an overall ranking score ≥ 0.1 were considered overall significant. 
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Finally, we performed drug set enrichment (signatureSearch function dsea_hyperG) analysis for 

the 55 top compounds having target gene annotations available using the three ontologies 

(biological process, molecular function, and cellular component) of the Gene Ontology101,102 

(ExperimentHub version 2.6.0, dataset EH3232, added on 2019/10/22) using the Benjamini-

Hochberg FDR-correction procedure to account for multiple testing. 

Statistical analysis and software 

For Fig. 2A, R package corrplot117 was used on log of average expression + 1. Correlation 

values for Fig. 2B were calculated and graphed with stat_poly_eq() function from R package 

ggpmisc118 on genes with expression in at least one of the groups. 

For Figs. 3A and B and S2D, cluster frequencies (Fig. 3) or cluster proportions (Fig. S2D) were 

calculated with all groups; then, R package rstatix119 was used to compare resilient and 

susceptible groups, t-test was performed for each cluster, with Benjamini-Hochberg multiple 

comparison correction. 

For Fig. S2C, cognitive status of strains based on strain average CFM (resilient or suspectable) 

was correlated with strain averages of neuronal coverage from each of the layers 4 and 5 in the 

frontal brain region using a biserial correlation. Correlations between regions for the heatmap 

were run using rcorr from Hmisc in R.120 The correlation between regions and the binary R vs S 

status was completed using a cor.test (method = pearson) in R. 
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Supplemental Information: Figure Legends 

Fig. S1. Parameter optimization for LIGER integration. A. KL divergence plot varying lambda 

(15, 20, 30) and B. alignment plot varying k (20, 25, 30) for parameter selection for LIGER 

integration; C. Integrated human and mouse data set with lambda = 30, varying k (20 (left), 25 

(middle), 30 (right)): cluster proportion by species, UMAP visualization of the integrated data set 

with cluster numbers, and separate UMAP of the data for mouse (top) and human (bottom). 

 

Fig. S2. A. Log of nuclei numbers in each cluster for each sample; B. Dotplot showing 

expression of pan-neuronal, neuronal subtype, and layer-specific marker genes for neuronal 

clusters in the integrated data set; C. Correlation plot for NeuN coverage among different layer 4 

and 5 regions and cognitive status in AD-BXD strains; D. No differences in cluster proportion 

estimates from bulk RNA-seq data between resilient and susceptible groups in AD-BXDs. 

 

Fig. S3. A. Companion plot for Fig. 5 for each gene membership in top 10 GO:BP pathways. B. 

Expression level for neurogenesis-related genes in excitatory neuronal cluster 20 and inhibitory 

neuronal cluster 5. 

 

Fig. S4. Gene membership in top 20 GO:BP pathways among A. nervous development genes 

from Figs. 5 and S3A and B. transport genes from Figs. 5 and S3A. 

 

Fig. S5. Gene membership in top 20 GO:BP pathways among downregulated genes in A. C1 

endothelial human cluster for resilient group compared to susceptible group and B. C11 immune 

– other mouse cluster for resilient group compared to susceptible group.  
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