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Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a 
signaling–response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 recep-
tor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of all epithe-
lial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It de-
fines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal-cell and secretory-cell 
metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell cycle arrest, 
but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated 
response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 
patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. 

Introduction 
The proper cell type composition of tissues is established 
through the action of extra-cellular signaling pathways, 
and changes in signaling occur ubiquitously in disease1. 
Establishing how different pathways modulate cell-type 
composition, organization and behavior therefore repre-
sents a priority in the fields of developmental biology and 
tissue physiology.  

The question of how a tissue responds to extra-
cellular signals is exemplified in the airway epithelium, a 
regenerative tissue exposed to continuous environmental 
stimuli yet demonstrating substantial long-term stability 
against perturbations2,3 The airway epithelium is com-
posed of a basal stem cell pool that gives rise to six dis-
tinct mature cell types with roles in host defense and mu-
cociliary clearance from the lung: club cells, mucin-rich 
goblet cells, multi-ciliated cells, pulmonary neuroendo-
crine cells (PNECs), tuft cells, and pulmonary iono-
cytes2,4–6. The relative abundance of each of these six cell 
types is actively regulated, and responds to diverse envi-
ronmental insults: infectious and allergic stimuli lead to in-
creased goblet cell numbers, while injury leads to differ-
entiation of squamous cells at the expense of mucociliary 
cells2,7 and some cells undergo an epithelial-to-mesen-
chymal transition (EMT)2,7. Persistence of these cell 
states is associated with lung diseases2. It is a long-stand-
ing goal to identify signals that induce these changes in 
airway epithelial composition, and to better understand 
the effects of different ligands on the different epithelial 
cell types2. 

Multiple extracellular signaling pathways modu-
late the composition of the airway epithelium including 
Notch, Wnt, transforming growth factor beta-1 (TGFB1), 
epidermal growth factor (EGF), bone morphogenetic pro-
tein 4 (BMP4), fibroblast growth factors (FGFs), and inter-
leukins (IL13 and IL17)2,7–12 Other physiological cues, in-
cluding mechanical strain13,14 and epithelial structure15,16 

can also alter tissue composition. Several pathways have 
been shown to drive the primary modes of abnormal dif-
ferentiation: persistent signaling through Notch, IL13, and 
IL17 induce goblet cell hyperplasia; persistent EGF sig-
naling induces squamous metaplasia; and TGFB1 has 
been implicated in EMT and epithelial senescence asso-
ciated with pulmonary fibrosis2,3,12,17–21.  

Building on this extensive work, we set out here 
to construct a signaling–response map that could address 
questions that have until now been difficult to answer: (1) 
we still do not know how all but the best-studied pathways 
alter the abundance of all cell types, including rare cell 
types of the epithelium. The categorization of abundance 
changes into squamous- and secretory-cell metaplasia 
may lose information on how the epithelium re-organizes 
in response to different signals, and few signaling path-
ways have been evaluated for their potential to regulate 
the frequency of pulmonary ionocytes, tuft cells and 
PNECs despite their potential roles in disease5,6,22–25. (2) 
We do not know how each cell type changes in gene ex-
pression in response to different signals, and how plastic 
are the phenotypes of cells. Different ligands could induce 
similar (i.e. canalized or convergent26) phenotypic re-
sponses in a cell type, or not, while individual ligands 
could induce similar responses in different cell types, or 
act in a pleiotropic manner. And finally, (3) tissue atlases 
of human disease have recently identified disease-spe-
cific ‘aberrant’ cell states in tissues by single-cell RNA se-
quencing (scRNA-Seq)27–30 and it would be useful to re-
late these states to signaling pathways that may be po-
tential targets for therapeutic intervention.  A signaling–
response map could address these three questions by de-
fining changes in cell type abundance and gene expres-
sion in an unbiased manner, identifying changes not evi-
dent in the canonical gene repertoire used to study the 
tissue. We here make use of scRNA-Seq to construct 
such a version of such a map, encompassing responses 
to 17 signaling pathways. 
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To facilitate analysis of human disease atlases, it 
is desirable to study signaling responses in primary hu-
man cells. We made use of air-liquid interface (ALI) or-
ganotypic cultures of primary human bronchial epithelial 
cells (hBECs), which form a mucociliary epithelium con-
taining physiological cell types. We evaluated changes in 
cell type composition in response to different signaling 
stimuli, and transcriptional responses to signaling. 
Through these analyses we identified stereotyped axes of 
variation in cell type composition, evaluated change in 
rare cell type abundance, defined convergent and unique 
transcriptional signatures of different pathways, and iden-
tified the cell types transcriptionally responding to different 
stimuli. We then explored the use of this signaling map to 
infer signal activation in lung diseases from patient tissue 
atlases. Thus, this study provides a framework for quanti-
tative characterization of signaling responses, and it 
serves as a resource for predicting tissue-specific signal-
ing signatures in diseases of the airway epithelium. 

Results 
Modeling human airway epithelial regeneration under 
stimulation of signaling pathways 

To prioritize potential signaling pathways regulating the 
airway epithelium, we shortlisted receptors with cognate 
ligands31 and transcript expression enriched in hBECs rel-
ative to other human tissues (Fig. 1A). We did so by com-
paring RNA-Seq data from the GTEx Portal32 with scRNA-
Seq data from human airway epithelial cells5, to identify 
97 candidate receptors. From these we focused on those 
involved in immune, developmental, and hormonal signal-
ing, and shortlisted a subset of 16 ligands and one chem-
ical agonist known to interact with 31 of the 97 receptors 
(Fig. 1A, S1A,B). The selected ligands have previously 
been studied in varying contexts of airway epithelial dif-
ferentiation and disease as summarized in Table S1.   
 

To test the effect of the selected signaling mole-
cules on airway epithelial composition, hBECs from 3 hu-
man donors were treated as shown in Fig. 1B: the cells 
were first differentiated without treatment into a pseudo-
stratified epithelium that recapitulates the physiological 
cell types of the airway5, after which the luminal cell were 
stripped through calcium depletion, leaving the remaining 
basal cells to regenerate the tissue. This was done in the 
presence of a signaling agonist added to each well at sat-
urating dosage (concentrations in Fig. S1B). For 16 path-
ways we applied purified ligands, and for one – the ca-
nonical Wnt pathway – we applied a small molecule ago-
nist, a GSK3 inhibitor (CHIR99021) (Fig. 1A). After 2 
weeks of differentiation, the final composition of the tissue 
was analyzed by scRNA-Seq and imaging.  

 
As a technical control for the efficacy of the lig-

ands, we tested whether the expression of induced tran-
scriptional targets (1-3 per pathway, Table S2) was sig-
nificantly increased (Fig. S1C).  For 14 out of 17 path-
ways, induced transcriptional targets increased after stim-
ulation (family-wise error rate<0.05). Previously reported 
targets of three treatments (ActA, FGF2 and IGF1) did not 

change with statistical significance after multiple hypothe-
sis correction, but they still showed an increase in average 
expression. We cannot rule out the possibility that these 
ligands did not activate their respective pathways. 

Signaling responses extend the transcriptional land-
scape of the airway epithelium 
After filtering for low quality cells, we obtained 77,568 cell 
transcriptomes over the 18 conditions (17 treatments, and 
one control) represented by one donor (IFNG, OSM), two 
donors (ActA, Leptin) or three donors (control, and re-
maining 13 treatments). To obtain a first view of the data, 
we performed batch correction between donors33,34, and 
then generated UMAP embeddings for the control data 
(Fig. 1C) and for the full data set (Fig. 1D,E). In untreated 
controls, we observed clusters representing all major air-
way cell types (Fig. 1C), indicating that the ALI cultures 
after luminal stripping fully regenerate the mucociliary ep-
ithelium. The clusters expressed canonical markers as 
expected (Fig. 1F) – KRT5+ basal cells, MUC5B+ secre-
tory cells, FOXJ1+ multiciliated cells, FOXI1+/CFTR+ ion-
ocytes, ASCL1+/SST+ PNECs and NREP+ tuft cells. The 
untreated cells also defined two additional basal-like 
states: a KRT13+ state that expressed intermediate levels 
of basal and luminal keratins (KRT5 and KRT8 respec-
tively) and variably expressed KRT4; and a separate, rare 
group of cells (138/7564) expressing low levels of both 
basal and luminal keratins (KRT5/8) and enriched for 
KRT17 (Fig. 1C). The KRT13+ state does not relate to 
any classical airway epithelial state but appears transcrip-
tionally transitional (basoluminal) and is homologous to a 
cell state found in mouse and human primary tissue sam-
ples5,6,35. The KRT17+ cell state did not resemble any cell 
state of the mucociliary epithelium sampled from healthy 
mice or humans5,6,35, but KRT17+ cells have recently 
been reported in bronchial samples from patients diag-
nosed with pulmonary fibrosis27,30 and we have previously 
identified these states in HBEC ALI cultures5. In total, the 
transcriptomes of the cell types emerging in the regener-
ating cultures, and their abundances, establish that the 
regeneration assay recapitulates physiological cell types 
and sets a baseline against which to interpret responses 
to signaling pathway stimulation.  

The UMAP visualization of the full data set (Fig. 
1D-E, S1D) offers a simplified first view of the many 
changes in response to the 17 signaling ligands. These 
plots suggest that several treatments (ActA, Leptin, HGF, 
IGF1, and Adiponectin) gave rise to cells that were tran-
scriptionally similar to untreated cells, while others (IFNA, 
IFNG and TGFB1) gave rise to cells that were not. How-
ever, the usage of UMAPs to construct 2D embeddings 
may lead to the loss of axes of variation in complex tis-
sues that are heterogeneous in differentiation state, cell 
cycle state, and signaling response. Hence, we looked at 
the differences between signaling responses by calculat-
ing the average density of untreated cell transcriptomes 
in high-dimensional gene expression space (Fig. 1G). 
This analysis confirmed and quantified the trends seen in 
the UMAP plots: the smallest and largest deviations from 
untreated states were respectively associated with those 
treatments showing the least and greatest separation 
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from untreated states on the UMAP. In what follows, we 
dissect these changes as they manifest (1) in cell type 
abundance, and (2) in altering transcription in response to 
signaling pathway stimulation. 

Mapping changes in cell type abundance upon signal 
pathway stimulation 

To evaluate how pathway stimulation altered the abun-
dance of epithelial cell types, we assigned the cell tran-
scriptomes from treated conditions into annotated cell 
types using a classifier trained on the untreated cells (Fig. 
2A). This classification was refined by k-nearest-neighbor 
voting, and a final filtering step based on a requirement 
that cells classified to each cell type show enriched 

expression for associated marker genes (Figs. 2B, S2A).  
With these annotations, we calculated the frequency of 
cell types in each condition (Fig. 2C). 

The cell type frequencies in Fig. 2C vary across 
multiple treatments as compared to their control values, 
and when considered independently multiple changes are 
found to be statistically significant (85 null hypotheses re-
jected by Fisher’s Exact test at 5% FDR, donors p-values 
integrated by Fisher’s method; Fig. S2B, Table S3). To 
identify patterns in these many changes, we carried out a 
principal component (PC) analysis of the normalized cell 
type frequency matrix (Fig. 2C, Table S3). The first two 
PCs account for 79% of donor-normalized, log-fold- 
change variation in cell type frequencies (Fig. 2D) and  

Figure 1. A single-cell map of receptor mediated signaling induction in human airway epithelial cells. (A) Approach for selection of 
signaling ligands for this study (for analysis details see Fig. S1). Red arrows show cognate ligand-receptor interactions. (B) Schematic of the 
organotypic regeneration assay for evaluating changes in hBEC differentiation under signaling stimulation. (C,D,E) UMAPs of scRNA-Seq data 
from (C) untreated cells, colored by cell type annotations, (D) all cells colored by treatment condition, and (E) all cells with control cells highlighted. 
(F) Expression of marker genes in annotated cell types in the control data quantified by scaled log10(CP10k + 1) where CP10k = Counts per 10k 
total counts. (G) De-mixing of treated cell states from untreated cell states quantified by the observed/expected ratio of nearest-neighbor cell 
fraction coming from control condition (100 nearest neighbors used). Lower values indicate separation of treated from untreated cells. Here and 
in all figures, CHIR = CHIR99021. 
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Figure 2. Distinct modes of basal and secretory cell metaplasia in response to different signals. (A) UMAP of all scRNA-Seq data from 
Fig. 1D, colored by canonical cell-type annotations learnt from untreated controls. (B) Gene expression heatmap showing that the classified cells 
across treatments preserve expression of marker genes for their respective cell types. Each row represents a single meta-cell showing average 
expression of 10 nearest neighbors; classified cell types on left. (C) Frequency of cell types after perturbation. Top:  dynamic range of signaling-
induced changes. Red=maximum; Blue=minimum; Black=untreated baseline. Bottom: heatmap of donor-averaged cell type frequencies in all 
conditions. (D,E) First two Principal Components of the cell type frequency matrix, after per-donor normalization, showing (D) values for each 
treatment, and (E) cell type loadings. PC1 corresponds to basal cell metaplasia, and PC2 corresponds to goblet cell hyperplasia. (F) Fold change 
in cell type frequencies for four conditions with highest PC1 values corresponding to loss of canonical differentiation. ND = Not detected (G) 
Representative immunofluorescence images of cross-sections of differentiated HBEC cultures treated with indicated cytokines and stained for 
KRT5 (white), MUC5B (green), and acetylated alpha-tubulin (red). Scale bars, 25 µm. (H) Fold change goblet cell abundance for four conditions 
with highest PC2 values, all showing >2-fold increase in goblet cell frequency. Points = donors; bar = mean. (I) Comparison of changes in 
frequency of goblet and club cells. Conditions inducing goblet cell hyperplasia are highlighted (black); remaining conditions shown in gray. See 
also Fig. S2C. (J) Comparison of changes in frequency of all secretory cells and multiciliated cells in the context of goblet cell hyperplasia. Colors 
as in (I). See also Fig. S2D. (K) Gene expression heatmap showing differences in goblet cell states induced by IL13 and IL17. Each column is 
a single meta-cell as in panel B. CP10k = Counts per total 10k counts. (L) Comparison of changes in frequency of ionocytes and PNEC+Tuft 
cells across all conditions, indicating tandem variation in the frequency of rare cell types. 
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they spontaneously recapitulate two well-known axes of 
airway epithelial metaplasia: PC 1 (54% of the variation) 
corresponds to expansion of basal-like cells at the ex-
pense of luminal cells, and PC2 (25% of the variation) de-
scribes goblet cell hyperplasia (Fig. 2E). The full observa-
tions, however, reveal differences within each of these 
two conditions, as we describe here. 

PC 1 shows an expansion of basal cells and as-
sociated suppression of normal luminal differentiation with 
increasing severity, CHIR→ 	BMP4→ 	 IFNG→ 	TGFB1 
(Fig. 2D) consistent with prior studies carried out individ-
ually for each of these pathways (Table S1), but with dif-
ferences in the degree of loss of each cell type (Fig. 2F). 
CHIR-treated cells permitted club cell differentiation but 
repressed multiciliated and goblet cells; BMP4 led to a 
modest suppression of mucociliary cells; while TGFB1 
and IFNG led to a near-total loss of all differentiated lu-
minal cells. Whether these pathways only suppress the 
differentiation of secretory and multiciliated cells, or also 
lead to loss of rare cell types (ionocyte, PNEC and tuft 
cells), was until now not known. We found that all the 
above-mentioned conditions led to depletion of rare lu-
minal cell types, and with CHIR and BMP4 depleting the 
rare cell types to a much higher extent than secretory and 
multiciliated cells [6% (CHIR) and 30% (BMP4) reduction 
in total mucociliary cell fraction, compared to 91% (CHIR) 
and 100% (BMP4) loss of total ionocytes, PNECs and tuft 
cell fraction] immunostaining of ALI cultures for luminal 
and basal markers for IFNG, TGFB1, CHIR and BMP4 
(Fig. 2G). 

PC 2 identified several conditions leading to in-
creased goblet cell abundance. As expected, the largest 
increase in goblet cell frequency was observed following 
IL13 treatment (36-fold expansion; FDR < 0.001), and we 
also observed expansion in response to IL17A12, OSM36 
and IFNA12 (Fig. 2H). The effect of IFNA is consistent with 
prior work suggesting it can stimulate secretory cell differ-
entiation12, and contrast with other reports showing re-
duced secretory differentiation in murine airway cells ex-
posed to IFNA37. It is possible that inconsistencies in prior 
work could be explained by differences in how goblet cells 
expanded: IL13-mediated goblet cell expansion occurred 
at the expense of club cells (Fig. 2I), but not multiciliated 
cells (Fig. 2J). By contrast, IL17A increased both club and 
goblet cell frequency while the frequency of multiciliated 
cells was reduced, while IFNA increased goblet cell fre-
quency while both club and multiciliated cell numbers 
were reduced (Fig. 2I,J). Thus, these ligands may act at 
different stages of mucociliary differentiation, and their ef-
fect may be missed by staining for pan-secretory markers. 
The goblet cells produced in each of these conditions 
were transcriptionally distinct and differed in expression of 
canonical goblet cell markers MUC5AC, SPDEF and 
MUC5B, as well as other genes (Fig. 2K). Together, these 
results suggest that goblet cell hyperplasia is not a mon-
olithic phenotype: it encompasses multiple states of tissue 
composition and secretory cell phenotypes. 

We also examined changes in the frequency of 
ionocytes, tuft cells, and PNECs across treatments. Mul-
tiple conditions led to a loss of these rare cell types (Figs. 

2C, F) but it was striking that none of the conditions we 
examined led to statistically significant increases in any of 
these cell types (Fig. S2B). Changes in the rare cell types 
could be hard to evaluate because of their low frequency 
(~1%, Fig. 2L), which reduces statistical power in identi-
fying changes in their abundance in this study; however, 
we noticed that the ratio of ionocyte to tuft and PNECs 
remained roughly uniform across conditions (Fig. 2L, 
Pearson correlation R=0.85), consistent with their fre-
quencies not being modulated independently of each 
other by any of the pathways studied here.  

In summary, the analysis of canonical cell type 
abundances supports that (1) activation of several signal-
ing pathways leads to loss of normal differentiation and 
expansion of basal-like cells with signaling-specific differ-
ences in the loss of different luminal cell types; that (2) 
goblet cells expand in several conditions that induce ma-
jor differences in goblet cell gene expression, as well as 
differences in club and multiciliated cell frequencies; and 
that (3) none of the stimuli studied expanded rare cell 
types. 

Convergent and unique transcriptional responses to 
signaling 

We next sought to evaluate the transcriptional response 
to each signaling stimulus. Discovery of differentially ex-
pressed genes (DEGs) between treated and untreated 
cells for each cell type (rank-sum testing, 5% FDR; Table 
S4) revealed that the cell state consistently showing the 
largest changes after stimulation were those classified as 
basal (Fig. 3A). This bias in transcriptional response 
across all treatments may reflect the plasticity of undiffer-
entiated basal cells to undergo alternative modes of dif-
ferentiation. Among all conditions, the largest responses 
were seen upon treatment with IFNG, IFNA, IL13, CHIR 
and TGFB1 (> 100 genes, FDR < 0.05). IFNA stood out 
as inducing a response in all cell types, whereas five of 
the 17 ligands (ActA, Adiponectin, IGF1, HGF, FGF10) in-
duced few differentially-expressed genes in any cell type. 

To gain insight into the nature of these transcrip-
tional responses, we factorized the full scRNA-Seq data 
matrix into programs with variable usage across cells by 
consensus non-negative matrix factorization (cNMF)38 
(Fig. 3B). Unlike DEG identification, matrix factorization is 
agnostic to both perturbations and cell types and so it of-
fers a tool to define gene programs that recur across mul-
tiple cell types or stimuli, without the typical loss of sensi-
tivity seen in DEG analysis for rare cell types. We defined 
20 cNMF programs from our dataset, of which 9 were as-
sociated with unperturbed mucociliary epithelium (Fig. 
S3A-C) and 11 programs induced by signaling perturba-
tions (Figs. 3C-E, Table S5). We do not discuss the con-
trol programs further, and instead focus on the transcrip-
tional programs induced by the signaling perturbations.  

The 11 perturbation programs collectively de-
scribe transcriptional changes in response to all signaling  
stimuli. Their usage pattern across conditions reveals a 
logic that is simple: of these programs, three were induced 
by multiple perturbations (Fig. 3C, shared programs 1-3). 
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Figure 3. Evidence of convergent and pathway-specific transcriptional responses including loss of canonical cell identity. (A) Number 
of genes showing >2-fold differential expression in basal, secretory (club, goblet), multiciliated and rare (ionocyte, tuft, PNEC) cells following 
each treatment. Empty boxes = no genes; N/A = no cells present. (B) Schematic for gene program analysis of signaling responses. (C) Mean 
usage of eleven treatment-induced gene programs across all cells from each treatment condition the presence of convergent (Shared-1-3) and 
pathway-specific programs (remaining programs). A further nine control programs are shown in Fig. S5A. The heatmap is first column-normalized 
(sum=1) and then row-normalized (max= 1). (D) Transcriptional responses vary across cell types as seen from the mean usage of signaling 
programs. For shared programs, usage is averaged across all treatments; for perturbation-specific programs, usage is calculated for cells from 
one perturbation. (E) Loadings of top 10 genes for each of the signaling induced program (left) and of epithelial KRT genes (right) across all 
signaling programs; full table for gene loadings is provided in Table S5. (F) Putative loss of canonical basal cell identity, but not mucociliary cell 
identities, is observed by the near-complete replacement of control transcriptomic programs (grey) in basal cells by induced programs (red) in 
response to CHIR, IFNG, and TGFB1. Other treatments are shown for contrast. (G) Representative immunofluorescence images of whole-mount 
differentiated HBEC cultures treated with indicated cytokines and stained for F-actin (white), acetylated-alpha-tubulin (red), and DNA (Hoechst; 
blue). Scale bars, 50 µm. Bottom row conditions, corresponding to loss of basal cell identity in panel F, show cytoskeletal disorganization. 
(H) Quantification of epithelial permeability measured by transit of lucifer yellow dye across the epithelial surface of cultures treated with indicated 
cytokines. Bars represent mean ± SEM, n = 3 HBEC donors (IFNG: n=2; IFNA: n=1) biological replicates shown as points, normalized to untreated 
fluorescence = 1. * = p-value ≤0.05 by Wilcoxon rank sum test.  
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The remaining programs appeared only in response to 
one or two signaling conditions. We named these pro-
grams by the signaling condition that induces them (Fig. 
3C).  

The cNMF analysis also defines which cell types 
induced each of the different response programs (Fig. 3D, 
S3C), and the genes that define them (Fig. 3E, Table S6). 
The three shared programs were most enriched in basal 
cells (Fig. 3D). One of these programs (shared-3) was de-
fined by increased expression of laminin genes, metallo-
theinin (MT2A), and inhibitors of TGF family members 
(Follistatin and Inhibin A), potentially indicating changes 
in extracellular matrix (ECM) properties and signaling 
(Fig. 3E). The two other convergent programs (shared-1 
and shared-2) were enriched in genes observed in squa-
mous epithelial tissues and which have been used as 
markers of squamous metaplasia in the airway: the Small 
Proline Rich Protein (SPRR) family in shared-1, and 
SPRR, DSP and KRT6A in shared-2 (Fig. 3E, Table S6). 
These shared programs may thus represent distinct forms 
or progressive stages of basal cell differentiation into a 
squamous-like epithelium, and indeed they were induced 
by ligands that led to loss of luminal cell types and emer-
gence of squamous-like morphologies (BMP4, IFNG, 
TGFB1) (Fig. 2G, 3C).  

For the ligand-specific programs, the response 
across cell types was more varied (Fig. 3D): the two pro-
grams induced by TGFB1 (TGFB1-1, TGFB1-2), the pro-
gram induced by CHIR (CHIR), and one of the programs 
induced by IFNG (IFNG-2) were most strongly induced in 
basal cells. However, the IFNG programs were also in-
duced in the luminal cells still present after IFNG treat-
ment, with one (IFNG-3) showing maximal expression in 
secretory cells. For IL13, the transcriptional response was 
maximal in goblet cells but the same program was also 
induced in club cells, multiciliated cells and basal cells. 
Thus, the IL13 transcriptional response is not directly a 
measurement of increased goblet cell numbers; it in-
cludes a large number of genes including the lipoxygen-
ase ALOX15, whose activity promotes goblet cell differ-
entiation in human airway39. For IFNA, the specific re-
sponse was induced across all cell types, as expected 
from the DEG analysis (Fig. 3A). Of the genes upregu-
lated by these programs (Fig. 3E, Table S6), we highlight 
that program TGFB1-2 identifies cells that induced canon-
ical markers of epithelial-to-mesenchymal transition 
(SPARC, CDH2, FN1), whereas TGFB1-1 did not and cor-
responds to induction of diverse genes including cell cycle 
inhibitors (CDNK2B, GADD45A). Thus, these programs 
clarify the complexity in the responses to the different lig-
ands, and they decouple convergent squamous-like re-
sponses from TGFB1-induced EMT-associated pheno-
types and other pathway-specific phenotypes. The pro-
grams also clarify the pattern of expression of common 
markers used in tissue staining. Both TGFB1 programs, 
for example, induced expression of the cytokeratin KRT17 
(Fig. 3E), but the map revealed KRT17 to also be induced 
by several other programs including the convergent pro-
gram shared-2 (Fig. 3E, Table S6). 

Loss of basal cell identity correlates with loss of epi-
thelial barrier integrity 

A question that can be asked from a systematic analysis 
of signaling responses is whether some ligands induce 
programs that qualitatively change cell identity. Defini-
tions of canonical cell types historically depended on cell 
and tissue morphology, and on expression of marker 
genes including lineage-specifying transcription factors or 
unique structural proteins such as keratins. With access 
to whole-transcription information, we wondered whether 
the extent of remodeling of the cell transcriptome could 
offer an alternative and unbiased way of defining depar-
tures from canonical cell types. To formalize this idea, one 
can examine the expression of ‘control’ programs – those 
that specify the transcriptional state of cells in absence of 
treatment. Without treatment, control cNMF programs 
(defined in Fig. S3A and Table S5) composed >90% of 
the median transcriptome of luminal cells, and >80% of 
the median basal cell (Fig. 3F), while after treatment, con-
trol programs in basal cells exposed to TGFB1 and IFNG 
was almost entirely lost (median usage 13% and 11% re-
spectively). BMP4, IFNA also led to somewhat reduced 
basal cell control program usage, but to a lesser extent, 
and CHIR represented an intermediate case. The residual 
luminal cells in all conditions continued to express control 
programs (>50% median usage in multiple conditions) 
(Fig. 3F) suggesting that luminal cells tend towards a 
more canalized identity in the face of perturbations as 
compared to basal cells. The near-complete loss of un-
treated transcriptional programs in basal cells suggests 
that TGFB1 and IFNG lead to a qualitative change in cell 
identity.  

We expected that these large changes in whole-
transcriptome state in response to TGFB1 and IFNG, to-
gether with the loss of luminal cells in these conditions, 
might be readily evident in the morphology and epithelial 
barrier function of the tissue after treatment with these lig-
ands, but not after BMP4 or IFNA treatment. Staining the 
treated tissues for F-actin indeed revealed disorganiza-
tion of the epithelial tissue in response to IFNG and 
TGFB1 (Fig. 3G). Further, dye-transport assays revealed 
a loss of epithelial integrity in response to these two treat-
ments, while BMP4- and IFNA-treated cells had intact bar-
rier function (Fig. 3H). As tight junctions form at the apical 
surface of polarized cells, this is consistent with 
BMP4/IFNA permitting differentiation of sufficient polar-
ized luminal cells40,41. CHIR showed loss of epithelial in-
tegrity comparable to that seen for IFNG and TGFB1 (Fig. 
3G). The loss of basal cell identity as seen from whole-
transcriptome analysis together with alterations in luminal 
cell abundance thus correspond to changes in epithelial 
cell organization. 

Loss of differentiation induced by multiple pathways 
is accompanied by cell cycle arrest 

Commonalities in the responses to perturbations can be 
used to identify shared mechanisms of action42. Here, we 
noticed that the conditions that led to loss of luminal dif-
ferentiation (TGFB1, IFNG, BMP4 and CHIR) showed a 
downregulation in a control cNMF program associated 
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with cell cycle (Fig. S3A, 4A), and an upregulation of CDK 
inhibitors (Fig. 4B). One hypothesis is therefore that cell 
cycle arrest is associated with loss of mucociliary differ-
entiation. Indeed, it has previously been observed that cell 
proliferation in airway epithelial cells is suppressed by 
BMP443, TGFB144,45, and IFNG37. We tested here whether 
the decrease in cell cycle gene expression and increase 
in CDK inhibitor expression during regeneration after lu-
minal stripping was indeed concurrent with cell cycle ar-
rest by assaying cell number and EdU incorporation in 
these four conditions. Within 48 hours of epithelial strip-
ping, we observed decreased epithelial cell density and 
loss of EdU incorporation (Figs. 4C-E) upon treatment 
with TGFB1, IFNG, BMP4 but not CHIR. Given this asso-
ciation between loss of normal differentiation and cell cy-
cle arrest in three out of four conditions, we next asked 
whether cell cycle arrest is sufficient to alter differentia-
tion. We inhibited the cell cycle in hBEC cultures following 
epithelial injury at the S phase using aphidicolin, an inhib-
itor of DNA synthesis, and at the G1 phase via selective 
CDK4/6 inhibition (PD0332991). While both compounds 
inhibited cycling as measured by EdU incorporation 11-14 
days following epithelial injury (Fig. 4F), neither com-
pound completely abrogated differentiation in regenerat-
ing cultures, as seen by immunostaining and qPCR (Fig. 
4G-H) nor resulted in an upregulation of markers of the 
convergent programs associated with squamous epithelia 
(Fig. 4H). Aphidocolin-mediated S phase inhibition did 

result in a loss of multiciliated cells (Fig. 4G-H), potentially 
related to reported co-option of cell and centrosome cy-
cles in multiciliation46–49. While further studies could help 
to determine this cell cycle phase-dependent mechanism, 
we may conclude that the loss of mucociliary differentia-
tion induced by multiple ligands is not induced by reduced 
proliferation, and that proliferation is not a general require-
ment for normal luminal cell differentiation in ALI cultures 
regenerating after injury. 

Predicting signatures of signaling in human disease 

Systematic maps of signaling in human tissues could help 
identify pathways that induce tissue disorganization in dis-
ease. This can be done by comparing the features of pri-
mary patient tissues to unique signatures associated with 
each pathway. Such features could be based on imaging, 
but transcription has many advantages in being scalable 
and offering multiple dimensions through which to identify 
signaling responses. Conventionally, transcriptional 
changes observed in disease have been studied by gene 
set enrichment analysis, but universal gene sets50–52 do 
not account for tissue-specific differences in signaling re-
sponses.  We explored the use of transcriptional  re-
sponses to signaling to generate hypotheses for signaling 
pathway activity in disease. 

We developed a strategy to identify enrichment of 
the signaling-associated programs learnt from our data by  

Figure 4. Cell cycle arrests during signal-
ing-induced loss of airway epithelial mu-
cociliary differentiation, but is not re-
quired for differentiation. (A) Fold change 
in cell cycle transcriptional program usage 
(defined in Fig. S5A) predicts a reduction in 
cell cycle in response to several signaling 
conditions. (B) Expression of cell cycle in-
hibitor genes in control, BMP4, CHIR, IFNG 
and TGFB1 induced cells. (C) Representa-
tive immunofluorescence images of whole-
mount undifferentiated hBEC cultures 
treated with indicated cytokines and stained 
for DNA (Hoechst; white) indicate reduced 
cell densities in conditions showing reduced 
cell cycle programs and increased cell cycle 
inhibitor gene expression. Scale bars, 50 
µm. (D) Quantification of areal cell density 
from panel C. Bars represent mean ± SEM, 
n = 3 HBEC donors (BMP4: n=2), calculated 
from 1 mm stitched images. *p≤0.05 by Wil-
coxon rank-sum test. (E,F) Fraction of cells 
incorporating EdU after 48 hours of continu-
ous EdU incubation (E) 48-hours following 
epithelial stripping and treatment with the in-
dicated cytokines, or (F) 11-14 days follow-
ing epithelial stripping and treatment with 
aphidicolin (2 ug/mL) and PD0332991 (100 
nM). Bars represent mean ± SEM, n=3 
HBEC donors. (G) Representative immuno-
fluorescence images of whole-mount differ-
entiated hBEC cultures treated with aphidic-
olin and PD0332991 and stained for 
MUC5AC (blue) and acetylated-alpha-tubu-
lin (red). Scale bars, 100 µm. (H) Fold 
change of mRNA expression in differenti-
ated HBEC cultures treated with aphidico-
lin/PD0332991 over untreated differentiated 
HBECs. Bars represent mean ± SEM, n=3 
HBEC donors. 
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Figure 5: Evidence of direct signaling-induced states in lung disease at-
lases. (A) Schematic to infer signaling signatures in disease data by comparing 
matched cell states between disease and control samples. A signaling score is 
calculated using gene loadings from Fig. 3E for each cell state, and then com-
pared by rank-sum testing with random downsampling of genes to ensure no 
single gene dominates the score. See Methods for detailed approach. (B) List 
of disease datasets used for the analyses. Each dataset is assigned a color that 
is used to represent these datasets in the subsequent figure panels. (C) Fold 
change increase in signaling program usage in disease versus control states 
across all diseases. Colors indicate dataset of origin for each cell state, as in B. 
(D) Fold change expression in immune signaling programs in Covid-19 cells. 
Each point represents a cell state. (E) Induction of TGFB1 signaling programs 
in cells identified as aberrant in the original papers, compared to other cells. 
Aberrant states include Krt17+/5-, aberrant basaloid, aberrant basaloid and 
ECM-high states in the 4 disease datasets respectively. 
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gene signature enrichment53, here adapted to compare 
matched cell types from disease samples to their counter-
parts in control samples (Fig. 5A). We applied this strat-
egy to published datasets of three lung diseases covering 
a total of 124 control or patient tissue samples from idio-
pathic pulmonary fibrosis (IPF), chronic obstructive pul-
monary disease (COPD), and Covid-19 (Fig. 5B)27–30.  

This strategy revealed a statistically significant 
enrichment of all eleven signaling-induced programs, rel-
ative to matched control samples, in a range of cell types 
across the four data sets (Fig. 5C). We highlight two ob-
servations that build confidence in the analysis. First, in 
the COVID-19 samples in particular, multiple cell types 
showed upregulation of inflammatory programs as ex-
pected during a viral response. However, in this disease 
not all immune programs were expressed: the IFNA and 
IFNG-1/2 programs were upregulated across multiple cell 
types after COVID-19 infection, but IL13 and IFNG-3 pro-
grams were not (Fig. 5D, S4). These observations sug-
gest that our map indeed captures specific epithelial re-
sponses to viral infection and predicts which inflammatory 
pathways are most active. Second, the IPF and COPD 
disease data sets studied here have reported the pres-
ence of an aberrant cell state high in KRT17 expression. 
These cells have been suggested to locally activate TGF-
beta through their expression of integrin αvβ6 subunits and 
through their localization directly lining myofibroblast 
foci30,54,55. In addition, analyses of these data suggested 
an enrichment of TGFB1 signaling responses across the 
entire data set based on Gene Ontology enrichment50, 
consistent with a central role for TGFB1 in fibrotic disease 
progression. We found here that the while TGFB1 pro-
grams were indeed broadly induced across airway cell 
types in IPF (Fig. 5C), the aberrant cells in these data sets 
expressed the two TGFB1-induced programs much more 
strongly than canonical cell types (Fig. 5C,E), and almost 
entirely recapitulated the program induced by TGFB1 in 
vitro (Fig. 5F). Notably, the gamut of genes enriched in 
this aberrant state including fibronectin (FN1), collagen 
1A1 (COL1A1) and TGF-beta induced (TGFBI) arise 
uniquely from TGFB1 stimulation out of the pathways that 
we evaluated (Fig. 3E, 5F). This analysis also shows en-
richment for other signaling pathway signatures in these 
aberrant cell state, with very similar patterns between the 
different IPF samples and COPD. By contrast, in COVID 
patient samples, an aberrant ‘ECM-high’ state has been 
reported. This state was enriched for only one of the two 
TGFB1 programs as compared to healthy lungs, and 
showed strong enrichment for an IFNG response that was 
absent in IPF and COPD. Thus, mapping signaling re-
sponse in airway epithelium may provide a gateway to 
identifying direct cellular signaling responses in disease. 
The approaches used in this study can be expanded be-
yond airway epithelium to understand how signaling acts 
on other complex tissues, and drives the changes induced 
in disease. 

Discussion 
In this study, we constructed a map of changes in cell type 
composition and cell type-specific gene expression in a 

regenerating culture of the human airway epithelium, in 
response to stimulation of 17 signaling pathways. We ob-
served that the two principal axes of variation in cell type 
abundance after treatment recapitulate the primary forms 
of tissue metaplasia seen in diseases of the airway (Fig. 
2): the loss of luminal differentiation, and goblet cell hy-
perplasia. However, the detailed changes in cell type fre-
quencies and the gene expression programs induced by 
perturbation (Fig. 3) revealed far more granular pheno-
types induced by signaling, including both convergent re-
sponses and unique signatures of several pathways eval-
uated here. In some cases, a single stimulus induced var-
iable responses in different cells, as seen in the case of 
IFNG that induced three independent programs charac-
terized by peak expression of either IL1RL1, or CXCL11, 
or B2M; and in the case of TGFB1 that induced an EMT 
response (FN1-hi) as well as a second program 
(CDKN2B-hi), and CHIR that induced both a convergent 
squamous-like program (Shared-1, high in SPRR genes) 
and a specific KRT6C-hi response (Fig. 3, Table S6). We 
showed that the near-total loss of control transcriptional 
programs in IFNG and TGFB1 is associated with changes 
in epithelial organization seen by loss of epithelial integ-
rity. We further demonstrated that multiple perturbation 
programs associated with loss of normal differentiation in-
duced cell cycle inhibition, but that the latter is not suffi-
cient to arrest differentiation (Fig. 4). 

These maps also offer an opportunity to investi-
gate the regulation of rare cell types including the FOXI1+ 
pulmonary ionocyte, which have not so far been evalu-
ated in almost any signaling context. Previously we 
showed a requirement for Notch signaling in ionocyte dif-
ferentiation5, however, little is known about the role of 
other signaling pathways in maintenance and differentia-
tion of this or other rare cell types. Here, we found that no 
signals clearly led to increased differentiation into iono-
cytes, PNECs or tuft cells, and indeed the proportion of 
these cells was maintained across multiple signaling con-
ditions, suggesting that their differentiation may be under 
shared control not explored here. However multiple sig-
nals led to loss of this population alongside a global re-
pression of luminal cell differentiation. The approaches 
utilized here could help to identify signaling conditions that 
modulate rare cell type abundance in the lung, with poten-
tial therapeutic relevance. 

Together, these results offer a birds-eye view of the major 
axes by which the airway epithelium can be remodeled. 
They also provide a platform by which to interpret 
changes observed in scRNA-Seq atlases of human tis-
sues. In the context of lung disease, our map established 
that a recently identified disease-specific (‘aberrant’) cell 
state directly recapitulates the expression response of air-
way basal cells to TGFB1. These cells have previously 
been suggested to locally activate TGFB1 through their 
expression of αvβ6 integrin subunits. Our results support a 
view that these cells not only have   a potential to activate 
TGFB ligands, but that  they are directly induced by these 
ligands, a signature of a positive feedback loop in TGFB 
signaling54,55. This supports the hypothesis that lung fibro-
sis is sustained by a fibrotic cascade where abnormal 
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signaling is perpetuated by the altered niche environment, 
and that epithelial cells may remodel their own niche54,55. 
We expect that this map will be useful to interpret further 
studies of lung disease, and to generate hypotheses for 
how signaling pathways maintain aberrant cells states in 
these diseases.  

Limitations of study 
This study offers a strategy to define signaling responses 
during stem cell differentiation and identify these re-
sponses in disease. It has two types of limitations. First, it 
studies only the epithelium in isolation from its native en-
vironment, and lacking interactions with immune cells, fi-
broblasts, smooth muscle cells and extracellular matrix. 
For human tissues, the possibility to assay complete 
physiological responses is practically limited, but some of 
the responses identified here could be evaluated in ani-
mal models, albeit at lower throughput. Second, the num-
ber of pathways evaluated is not exhaustive, and we have 
not evaluated the response of the ligands over a range of 
concentrations or durations of exposure. We have also 
not evaluated their combinatorial effects, or the effects of 
inhibiting signaling pathways, or the contribution of sec-
ondary stimulation of one pathway by another by simulta-
neously activating and inhibiting pairs of pathways. As 
single cell analytical tools have advanced in the last few 
years, and allow for systematic sample multiplexing, one 
can now consider extending the map in these directions 
to define the range of signaling responses occurring in hu-
man tissue maintenance, regeneration, and disease. 
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