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Abstract 

A recent investigation was aimed at obtaining structural information on a highly 

extended protein via SEC-MALS-SAXS. Significantly broadened elution peaks were 

observed, reminiscent of a phenomenon known as viscous fingering. This phenomenon 

is usually observed above 50 mg/mL for proteins like bovine serum albumin (BSA). 

Interestingly, the highly extended protein (Brpt5.5) showed viscous fingering at 

concentrations lower than 5 mg/mL. The current study explores this and other non-ideal 

behavior, emphasizing the presence of these effects at relatively lower concentrations 

for extended proteins. BSA, Brpt5.5, and a truncated form of Brpt5.5 referred to as 

Brpt1.5 are studied systematically using size-exclusion chromatography (SEC), 

sedimentation velocity analytical ultracentrifugation (AUC), and viscosity. The viscous 

fingering effect is quantified using two approaches and is found to correlate well with the 

intrinsic viscosity of the proteins – Brpt5.5 exhibits the most severe effect and is the 

most extended protein tested in the study. By AUC, the hydrodynamic non-ideality was 

measured for each protein via global analysis of a concentration series. Compared to 

BSA, both Brpt1.5 and Brpt5.5 showed significant non-ideality that could be easily 

visualized at concentrations at or below 5 mg/mL and 1 mg/mL, respectively. A variety 

of relationships were examined for their ability to differentiate the proteins by shape 

using information from AUC and/or viscosity. Furthermore, these relationships were also 

tested in the context of hydrodynamic modeling. The importance of considering non-

ideality when investigating the structure of extended macromolecules is discussed. 
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Introduction 

There is a long history of interest in the structure of proteins. High-resolution techniques 

such as X-ray crystallography, NMR, and more recently cryo-EM, are common practice 

among protein structure labs. Many proteins, however, are not amenable to 

crystallization, while NMR and cryo-EM require very expensive instrumentation. 

Additionally, crystallography and cryo-EM approaches require removal of the protein 

from its native solution environment. This can potentially lead to artifacts related to 

crystal packing or issues with sample freezing that may provide misleading information 

regarding tertiary or quaternary structure. 

 

Hydrodynamic approaches may often be neglected, despite their proven usefulness in 

providing structural insights, and perhaps more importantly, biophysical and mechanistic 

details. For example, analytical ultracentrifugation (AUC) was developed in the 1920’s 

by Theodore Svedberg, when he performed sedimentation equilibrium experiments to 

determine the molecular weight of ovalbumin, hemoglobin, phycocyanin, and 

phycoerythrin in various buffers (Svedberg and Fåhraeus 1926; Svedberg and Lewis 

1928; Svedberg and Nichols 1926; Svedberg and Nichols 1927). There also exists a 

rich history in the use of viscosity to determine macromolecular shape and flexibility 

parameters, dating back to Einstein in the early 1900’s (Einstein 1906; Einstein 1911; 

Harding 1995; Harding 1997). 

 

During a previous structural investigation of a fibril-like protein, very broad and 

abnormally shaped SEC elution peaks were observed, despite a highly pure and 
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homogeneous sample (Yarawsky et al. 2022). The elution behavior was reminiscent of 

a phenomenon known as viscous fingering, which is often observed at high 

concentrations (~50 mg/mL) for proteins like bovine serum albumin (BSA) (Plante et al. 

1994). This phenomenon can also be observed when the injected sample is spiked with 

dextran to increase the viscosity of the sample (Flodin 1961). The root cause of the 

effect is the fingering that occurs at the interface between a more viscous solution and a 

less viscous solvent. 

 

To better understand why this protein showed such prominent viscous fingering while at 

relatively low concentrations (Yarawsky et al. 2022), a systematic analysis of several 

proteins was performed. The protein construct with which the observations were made 

previously – Brpt5.5 – is part of the B-repeat superdomain of the biofilm-related 

accumulation-associated protein (Aap) from Staphylococcus epidermidis. The Brpt5.5 

construct contains 5 full B-repeats and a C-terminal half-repeat. For comparative 

purposes, an additional construct containing one and a half B-repeats (Brpt1.5) is also 

examined here. The Brpt1.5 construct has been extensively studied to show that it 

exists in solution as an extended monomer (Chaton and Herr 2017; Conrady et al. 

2008; Conrady et al. 2013; Shelton et al. 2017). The Brpt5.5 construct has been 

characterized by extensive hydrodynamic analyses and small-angle X-ray scattering 

(SAXS), which demonstrated that Brpt5.5 is monomeric and lacked any significant 

flexibility (Yarawsky and Herr 2020; Yarawsky et al. 2022; Yarawsky et al. 2020). It is 

worth noting that the biological function of the B-repeat superdomain is to assemble in 

the presence of Zn2+ into amyloid-like fibrils that contribute toward the strength and 
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stability of S. epidermidis biofilms. This self-association often requires millimolar 

concentrations of Zn2+ in the context of purified protein in solution and does not 

assemble as an apo-protein (Chaton and Herr 2017; Shelton et al. 2017; Yarawsky and 

Herr 2020). In the current study, Brpt1.5 and Brpt5.5 were only studied in the 

monomeric form. In addition, bovine serum albumin (BSA) was examined as a protein 

with a globular conformation. This is in stark contrast to the Brpt1.5 and Brpt5.5 

proteins, as seen in Figure 1. 

 

This study investigates the impact of shape on hydrodynamic behavior, especially as it 

relates to size-exclusion chromatography, sedimentation velocity AUC, and viscosity. It 

demonstrates the clear ability of hydrodynamic techniques to provide structural insights. 

Additionally, the importance of considering and measuring non-ideality in sedimentation 

velocity experiments is discussed. Oftentimes, proteins are assumed to behave ideally 

in “dilute” solutions. However, it is difficult to know at what point it is reasonable to 

assume that non-ideality is not impacting the data without having collected data at 

multiple concentrations. Brpt5.5 provides an excellent example of a protein that 

behaves non-ideally at concentrations below 1 mg/mL – where many investigators may 

assume an ideal species. 
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Fig. 1 Proteins investigated in the current study. Ribbon models are shown for BSA 

(PDB: 4f5s), Brpt1.5 (PDB: 4fun), and Brpt5.5 (SASBDB: SASPD43). These images 

were generated using PyMOL (The PyMOL Molecular Graphics System, version 2.4, 

Schrödinger, LLC). 
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Results 

 

Viscous fingering at low concentrations 

Each protein was purified and dialyzed into matching 20 mM Tris, 150 mM NaCl (pH 

7.4) buffer. Next, the proteins were analyzed by SEC using a Superose 6 (24 mL) 

column with an injection volume of 250 µL and flow rate of 0.5 mL/min at 4°C. Figure 2 

shows the elution profile for (A) BSA, (B) Brpt1.5, and (C) Brpt5.5. While BSA required a 

25 mg/mL loading concentration before significant peak broadening occurred, Brpt1.5 

and Brpt5.5 showed a similar effect at 10 mg/mL and 4 mg/mL loading concentrations, 

respectively. To better quantify the severity of the viscous fingering, the height 

equivalent of a theoretical plate (HETP) and asymmetry factor (As) were calculated for 

each elution (Figure 2D and Figure 2E). These are parameters commonly used to 

evaluate column performance. Higher values indicate peak broadening and tailing 

associated with poor column performance. However, the HETP parameter has also 

been used to quantify viscous fingering effects (Plante et al. 1994). From the results 

shown in Figure 2, it is very apparent that Brpt5.5 displays viscous fingering effects at 

much lower concentrations than BSA. 
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Fig. 2 Proteins were analyzed by size-exclusion chromatography. SEC chromatograms 

are shown for (A) BSA, (B) Brpt1.5, and (C) Brpt5.5 at multiple concentrations. The (D) 

HETP and (E) asymmetry factor (As) were calculated based on each SEC elution profile 

as described in the Materials and Methods section. Brpt5.5 SEC data (C) were 

previously published (Yarawsky et al. 2022). 

 

 

Intrinsic viscosity correlates with shape 

Given that the viscosity of the injected solution is relevant to the severity of viscous 

fingering, it could be inferred that a solution of Brpt5.5 would have a higher viscosity 

than a solution of BSA at the same protein concentration. The viscosity of protein 

solutions may also be directly measured using a capillary viscometer. Figure 3A shows 

the measured relative viscosity (ηrel) of solutions of BSA, Brpt1.5, and Brpt5.5. A trend 
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was observed that reflected the HETP results very closely, confirming that the viscous 

fingering effects observed by SEC were in fact due to increased viscosity of Brpt1.5 and 

Brpt5.5. 

 

The reduced specific viscosity (ηred), inherent viscosity ((ln ηrel)/c), and intrinsic viscosity 

([η]) were determined at multiple concentrations, as plotted in Figure 3 for each protein. 

Extrapolation to zero concentration removes concentration-dependent effects and 

provides the fundamental macromolecular information. The intrinsic viscosity is 

particularly useful in its relationship to macromolecular conformation, flexibility, and 

hydration. Macromolecules that exhibit high axial ratios also show high intrinsic 

viscosities (Creeth and Knight 1965; Harding 1997). The intrinsic viscosities measured 

for Brpt1.5 and Brpt5.5 are indeed much greater than BSA, correlating well with the 

more extended shapes of Brpt1.5 and Brpt5.5. 
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Fig. 3 Viscosity was measured for each protein at several concentrations. Panel (A) 

shows the relative viscosity data for all three proteins, with markers colored in 

accordance with the panel legend (BSA = black, Brpt1.5 = grey, Brpt5.5 = red). The 

reduced viscosity (black), inherent viscosity (blue), and intrinsic viscosity (red) is plotted 

for BSA in panel (B), Brpt1.5 in panel (C), and Brpt5.5 in panel (D). In all cases, the 

dotted lines represent linear fits of each dataset. 
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Hydrodynamic non-ideality measured by sedimentation velocity AUC 

High intrinsic viscosity is correlated with an increase in hydrodynamic non-ideality term, 

ks, for extended macromolecules (Creeth and Knight 1965; Harding 1997). The 

hydrodynamic non-ideality term is related to the backflow of solvent displaced by the 

macromolecule as it sediments through solution in a closed system, and it is a 

concentration-dependent phenomenon (Correia and Stafford 2015). Sedimentation 

velocity experiments were performed across a concentration range to determine the 

hydrodynamic non-ideality of each protein. 

 

Figure 4 shows g(s*) distributions and WDA (wide distribution analysis) distributions 

obtained from sedimentation velocity experiments. The g(s*) analysis requires a short 

time span of data to be used, while the WDA uses all scans collected during the 

experiment. Both are based on the time-derivative of the concentration profile and are 

considered model-independent analyses of the data (Philo 2000; Sherwood and 

Stafford 2016; Stafford 1992). For a case such as this, where non-ideality is of interest, 

a model-independent approach is preferred over the c(s) analysis that assumes ideal, 

noninteracting species (Schuck 2000). In both the g(s*) and WDA distribution, the effect 

of hydrodynamic non-ideality is visually apparent. In accordance with Equation 1 and 

Equation 2, an increase in the ksc term results in a slowing and sharpening of the 

sedimentation boundary (Correia et al. 2020). 

 

                                                        𝑠(𝑐) =  
𝑠0

(1 + 𝑘𝑠𝑐)
                                          (Equation 1) 
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                                                     𝐷(𝑐) =  
𝐷0(1+2𝐵𝑀1𝑐)

(1 + 𝑘𝑠𝑐)
                                      (Equation 2) 

 

Once again, the concentration of Brpt1.5 and Brpt5.5 required to observe a similar 

effect to BSA is much lower. For example, a significant shift in the g(s*) distribution is 

observed for BSA at 3 – 8.7 mg/mL, while just 0.68 mg/mL of Brpt5.5 showed a 

significant shift. 

 

 

 

 

 

 

Fig. 4 Sedimentation velocity AUC data were analyzed by DCDT+ to obtain a g(s*) 

distribution (panel A-C) or by SEDANAL WDA (panel D-F). Each panel lists the target 

loading concentration. 
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Two basic approaches exist to quantify the ks value. The first approach directly fits the 

relationship between the sedimentation coefficient (s20,w) and the loading concentration 

(Correia et al. 2016; Correia et al. 2020; Winzor et al. 2021). The 1/s20,w vs 

concentration plots are shown in Figure 5, along with a standardized plot to show the 

relative impact of hydrodynamic non-ideality on the sedimentation coefficient. The 

extreme effect of hydrodynamic non-ideality on the sedimentation of Brpt5.5 is easily 

visualized in Figure 5D. 

 

A more rigorous approach is to globally fit the data using direct boundary fitting in 

SEDANAL (Correia et al. 2020; Sherwood and Stafford 2016). Because sedimentation 

and diffusion both impact the sedimentation boundaries, a model containing both the 

hydrodynamic non-ideality (ks) and thermodynamic non-ideality (BM1) terms should be 

fitted. The thermodynamic non-ideality term is expected to be on the same order of 

magnitude as ks but is less well-determined by velocity experiments – especially when 

experiments are run at a high speed to minimize the impact of diffusion with respect to 

sedimentation. The results of SEDANAL fitting to a non-ideal model are listed in Table 1 

and are comparable to the result from linear fitting of the s20,w vs concentration data. 

Figure S1 – Figure S3 shows the quality of fit for each global analysis. Characterization 

of the concentration-dependence of the sedimentation coefficient also yields the s0
20,w 

value. The ks values are again increasing with protein shape (BSA < Brpt1.5 < Brpt5.5). 
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The especially high ks value of Brpt5.5 helps explain why the g(s*) distribution shows 

significant slowing and sharpening even below 1 mg/mL (Figure 4). 

 

 

 

 

Table 1 Analysis of non-ideal sedimentation 

 SEDNTERP SEDANAL 

 s0
20,w ks (mL/g) s0

20,w ks (mL/g) BM1 (mL/g) 

BSA 4.43 

(4.41 – 4.45) 

14.5 

(14.1 – 14.9) 

4.29 

(4.28 – 4.30) 

14.7 

(14.6 – 14.9) 

3.0 

(2.5 – 3.5) 

Brpt1.5 1.57 

(1.57 – 1.58) 

25.5 

(25.0 – 26.0) 

1.54 

(1.54 – 1.54) 

23.5 

(23.5 – 23.6) 

12.5 

(12.4 – 12.7) 

Brpt5.5 2.48 

(2.46 – 2.50) 

84.0 

(77.8 – 90.2) 

2.30 

(2.30 – 2.31) 

68.0 

(67.5 – 68.5) 

4.4 

(0.5 – 8.6) 

SEDNTERP error limits are ± 1 standard deviation. 

SEDANAL error limits are an estimate of the 95% confidence interval using F-statistics. 
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Fig. 5 Determination of the concentration-dependence of the sedimentation coefficient 

was performed within SEDNTERP. Sedimentation coefficients used were those 

reported by integration in DCDT+ after converting to s20,w. 
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Determination of shape from AUC 

A parameter of interest for biophysicists and structural biologists alike is the shape of 

the macromolecule. In the absence of high-resolution structural data, sedimentation 

velocity AUC experiments can provide very reliable indications of the macromolecule’s 

global conformation in solution. The Svedberg Equation and Stokes-Einstein Equation 

relate the sedimentation coefficient (s), the diffusion coefficient (D), the buoyant mass 

(Mb), and the frictional coefficient (f) (Chaton and Herr 2015; Correia and Stafford 2015; 

Rocco and Byron 2015b). Rather than reporting the frictional coefficient, the more useful 

parameter is the frictional ratio (f/f0). This is the ratio of the frictional coefficient of the 

solute to the frictional coefficient of an ideal sphere of the same volume and offers a 

shape description that is independent of the macromolecule’s size. Accurate 

determination of the f/f0 relies on accurate fitting of the concentration-dependence of s 

and D. Where non-ideality is present, this means also fitting both the hydrodynamic and 

thermodynamic non-ideality terms. 

 

A common approach to determining f/f0 is to utilize the c(s) analysis implemented in 

SEDFIT. However, considering the major concentration-dependence of both s and D 

due to non-ideality, global fitting to a non-ideal model is required. For illustrative 

purposes, Table S1 lists the s, M, and f/f0 for each individual dataset analyzed by c(s). 

The higher concentration datasets could be interpreted as highly extended dimer or 

trimers. A similar discrepancy is observed when fitting g(s*) distributions in DCDT+. This 

is simply due to the impact of ksc (and BM1c) on s and D. It should be noted that the 
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quality of these fits to ideal models is quite poor, so careful analysis by the user should 

avoid such erroneous results from being reported. 

 

Direct boundary fitting performed in SEDANAL to the non-ideal model used previously 

was therefore used to determine the f/f0 (at infinite dilution). An alternative approach 

would be to use the fitted s0
20,w and M to calculate f/f0. The SEDANAL-fitted f/f0 was 

incorporated into Table 2 with error estimates for each protein. Using X-ray 

crystallography structures of BSA and Brpt1.5, and a SAXS-validated structure of 

Brpt5.5, a comparison of the experimentally determined f/f0 and theoretical f/f0 from 

hydrodynamic modeling could be compared. Good agreement with hydrodynamic 

modeling via HullRad (Fleming and Fleming 2018) (Table 3) indicates that AUC can be 

effectively used to estimate the shape of highly non-ideal macromolecules. 

 

Evaluation of shape parameters using viscosity and AUC data 

Many studies have been performed utilizing either hydrodynamic data from AUC or 

viscosity data have been utilized to gain structural insights into macromolecules. 

Because both sets of data have been collected and structures have already been 

determined for the proteins of interest, the current study provides an excellent 

opportunity to evaluate various relationships often used in the field. Creeth and Knight 

published a seminal review focused on estimation of shape from sedimentation and 

viscosity data (Creeth and Knight 1965). Since then, additional work has been focused 

on further developing these approaches and has been summarized by Harding (Harding 

1995). 
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The ratio of intrinsic viscosity ([η]) over partial specific volume (�̅� or “v-bar”) known as 

the viscosity increment (v) is expected to yield a ratio of 2.5 for spheres but increases 

with asymmetry. The f/f0 has already been discussed above, where a value of 1.0 would 

indicate an anhydrous, ideal hard sphere. Globular proteins often are expected to 

exhibit a f/f0 ~1.2-1.3. More specific shape information can be obtained from the Perrin 

function (P). This parameter distinguishes between contributions of molecular shape 

and hydration (requiring hydration information), and it can be used to define the axial 

ratio (a/b) of a prolate or oblate ellipsoid (Harding 1995) using the ELLIPS1 software 

(Harding et al. 1997). Equations describing both the viscosity increment and f/f0 can be 

used to produce the Scheraga-Mandelkern β function. The result is independent of 

hydration, but requires very accurate experimental determination of s, [η], M, and �̅�, and 

is often considered to be rather insensitive to shape (Creeth and Knight 1965; Harding 

1995). 

 

Analyses of ks and [η] by Wales and van Holde indicate that ks/[η] provides a shape 

parameter that is sensitive to global conformation and does not require any 

assumptions about hydration. A ratio of ~1.6 is expected for globular proteins, while 

asymmetry pushes the ratio lower. The Wales-van Holde ratio is a highly attractive 

parameter to describe shape, given that both ks and [η] can be readily measured. 
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Table 2 Shape parameters determined in the study 

 M (Da) �̅� (mL/g) [η] v s0
20,w f/f0 

BSA 66,398.00 0.7325 3.8 5.2 4.29 1.3 

Brpt1.5 22,217.26 0.7292 18.1 24.8 1.54 1.8 

Brpt5.5 78,030.99 0.7280 75.1 103.2 2.30 2.7 

 Hydration 

(g/g) 

P a/b (P) β (x106) a/b (β) ks ks/[η] 

BSA 0.441 1.1 3.0 1.96 1.0 14.7 3.9 

Brpt1.5 0.516 1.5 9.3 2.45 11.7 23.5 1.3 

Brpt5.5 0.526 2.3 26.9 2.53 15.1 68.0 0.9 

M is the theoretical molar mass based on amino acid composition. 

�̅� and hydration are based on amino acid composition and reported by SEDNTERP. 

For experimental values, a/b (P) was based on the Perrin function, while a/b (β) was 

based on the Scheraga-Mandelkern β function. 

s0
20,w and ks values reported by SEDANAL global fitting to a non-ideal monomer model. 

 

 

With high-resolution structures or SAXS-based models available for the three proteins, it 

is possible to perform hydrodynamic bead modeling (Bujacz 2012; Conrady et al. 2013; 

Yarawsky et al. 2022). This allows for comparison of predicted vs experimental s0
20,w, 

f/f0, and a/b values from HullRad (Fleming and Fleming 2018). An additional approach 

was taken using the AtoB bead modeling approach with ZENO hydrodynamic 

calculations, as implemented in US-SOMO (Brookes et al. 2010; Byron 1997; Juba et 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521448
http://creativecommons.org/licenses/by-nc-nd/4.0/


al. 2017; Kang et al. 2004; Rocco and Byron 2015a). Overall, the hydrodynamic 

predictions are in reasonable agreement with the experimental parameters. The major 

discrepancy is in the a/b ratio derived from the Perrin (P) function, which severely 

overestimated the degree of extension in the molecules in reference to the estimate by 

the Scheraga-Mandelkern β function and hydrodynamic modeling. Hydrodynamic 

predictions tend to be especially useful when evaluating the plausibility of several 

different conformational models, rather than describing the exact shape and dimensions 

of a given molecule in solution (Brautigam et al. 2020; Marx et al. 2020; Monsen et al. 

2021; Rocco and Byron 2015b; Yarawsky et al. 2022). Despite minor inconsistencies in 

the hydrodynamic predictions and experimental data, it is very clear that there is 

increasing extension from BSA to Brpt1.5 and Brpt5.5. 

 

Table 3 Comparison of experimental results to hydrodynamic modeling 

 Experimental HullRad AtoB/ZENO 

 s0
20,w f/f0 a/b 

(P) 

a/b 

(β) 

s0
20,w f/f0 a/b s0

20,w f/f0 a/b [η] 

BSA 4.29 1.3 3.0 1.0 4.39 1.3 1.5 4.59 1.3 1.4 3.9 

Brpt1.5 1.54 1.8 9.3 11.7 1.64 1.7 7.3 1.71 1.7 7.0 13.7 

Brpt5.5 2.30 2.7 26.9 15.1 2.58 2.6 16.0 2.47 2.7 15.6 92.1 

Models shown in Figure 1 were used for hydrodynamic modeling. 

For experimental values, a/b (P) was based on the Perrin function, while a/b (β) was 

based on the Scheraga-Mandelkern β function. 

For AtoB/ZENO calculations, �̅� was based on amino acid composition (SEDNTERP). 
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Discussion 

The goal of this study was to examine the interplay between viscous fingering in 

chromatography and non-ideal sedimentation. Viscosity measurements demonstrated 

that the aberrant elution profiles observed, especially for Brpt5.5 at concentrations 

below 5 mg/mL, were indeed due to high solution viscosity. The increased viscosity of 

Brpt5.5 also correlated with strong hydrodynamic non-ideality measured by 

sedimentation velocity AUC, which presents itself via a slowing and sharpening of the 

g(s*) distribution. An advantage of including Brpt1.5 in this study was to demonstrate 

the effect of increased axial ratio, without significantly changing the secondary structure 

or amino acid composition of the protein. Similar comparisons have been performed 

with fractionated collagen (Nishihara and Doty 1958), however, the present study is able 

to ensure homogeneity in the samples. In agreement with the collagen data, the longer 

molecules exhibited higher intrinsic viscosity and hydrodynamic non-ideality (Creeth and 

Knight 1965). BSA acted as a globular reference and showed results more consistent 

with a spherical particle. Indeed, the direct ratio of ks/[η] provided a simple indication of 

extended shape in Brpt1.5 and Brpt5.5, compared to BSA. 

 

Not only does this study demonstrate the effects of shape on non-ideality and viscosity, 

but it also provides an opportunity to evaluate the usefulness of certain shape 

parameters and relationships that have been previously proposed and used within the 

field. A common result presented with sedimentation velocity data is the f/f0. A value of 

~1.3 is expected for globular proteins, while higher values are expected with higher 

asymmetry. A more explicit shape parameter for ellipsoids is the a/b (axial) ratio. Table 
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2 lists the a/b ratio derived from the Perrin function and the Scheraga-Mandelkern β 

function. In comparison with hydrodynamic modeling based on the protein structures, 

the a/b ratio from the hydration-independent β function is in better agreement than that 

derived from the Perrin function. Though the β function itself has been considered 

relatively insensitive to shape changes (for example, 2.45 x 106 vs 2.53 x 106 for Brpt1.5 

and Brpt5.5) the a/b ratio derived can still prove to be quite useful. Nevertheless, both 

derivations of the a/b ratio indicate much greater extension in the Brpt1.5 and Brpt5.5 

proteins than in BSA. 

 

While hydrodynamic approaches are unable to provide high-resolution structural 

information like X-ray crystallography or cryo-EM, they do provide relatively easy access 

to lower-resolution information. In many cases, it may be sufficient to simply exclude 

given conformations or models for a protein of interest. To demonstrate this concept, 

hydrodynamic modeling was performed using HullRad and AtoB/ZENO. Both 

approaches yielded a/b ratios similar to those derived from the β function and f/f0 values 

similar to those experimentally determined. Nonetheless, it is evident how 

hydrodynamic modeling may be able to provide sufficient information to exclude certain 

structural models. With the recent advent of new computational approaches for 

structure prediction such as AlphaFold (Jumper et al. 2021) or Rosetta (Du et al. 2021), 

it may become more important than ever to understand the capabilities of hydrodynamic 

approaches like AUC and viscosity measurements, as these provide a relatively simple 

and effective platform to validate predicted structures. 
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Materials and Methods 

 

Protein Purification 

Bovine serum albumin Fraction V (BP1605-100) was resuspended in 20 mM Tris pH 

7.4, 150 mM NaCl and purified via Superdex 200 16/600 pg (Cytiva) to yield pure 

monomeric BSA. Brpt1.5 was composed of amino acids 2017-2223 from Aap 

(accumulation-associated protein) from S. epidermidis strain RP62A. The protein was 

expressed as a fusion with a His-MBP tag, which was cleaved via TEV protease as 

previously described (Conrady et al. 2008). Brpt1.5 was additionally purified by anion 

exchange using a HiTrap ANX FF 5 mL column (Cytiva). The running buffer was 20 mM 

Tris pH 7.4, 50 mM NaCl, and an elution gradient was produced using 20 mM Tris pH 

7.4, 1 M NaCl. Brpt5.5 was composed of amino acids 1505-2223 from Aap from RP62A 

and contained an N-terminal His-MBP tag and a C-terminal Strep-II tag. A TEV protease 

cleavage site was present downstream of the N-terminal tags and upstream of the C-

terminal tag (Yarawsky et al. 2022; Yarawsky et al. 2020). The purification of Brpt5.5 

was performed as previously described (Yarawsky et al. 2022). 

 

Size Exclusion Chromatography 

All SEC data presented were collected using a Superose 6 Increase 10/300 24 mL 

column (Cytiva) connected to an ÄKTA FPLC system (Cytiva) at 4°C. The column was 

equilibrated in running buffer (20 mM Tris pH 7.4, 150 mM NaCl). The flow rate was set 

to 0.5 mL/min and a 250 µL sample was injected. Samples were diluted from a 

concentrated stock that had been dialyzed overnight into running buffer at 4°C. SEC 
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data were exported from UNICORN and the HETP and As values determined manually 

using Excel and GUSSI (Brautigam 2015). The HETP value was calculated according to 

Equation 3, where L is the column length (300 mm) and N is the number of theoretical 

plates, calculated according to the Exponentially Modified Gaussian Model shown in 

Equation 4 (Jeansonne and Foley 1991). 

 

                                                      𝐻𝐸𝑇𝑃 =  𝐿 𝑁⁄                                              (Equation 3) 

 

                                                      𝑁 =
41.7(𝑡𝑟 𝑤⁄ )2

(𝑎 𝑏⁄ )+1.25
                                            (Equation 4) 

 

The calculation of N used was chosen over other methods to best accommodate 

asymmetric peaks observed in the presence of viscous fingering. The retention time (tr) 

was taken as the weight-average time of the peak of the least concentrated sample. 

The peak width (w) was the width at 10% of the peak height, with a and b being the 

distance from tr and the leading (a) or trailing edge (b) of the peak at 10% max height. 

The ratio of b/a determined the asymmetry (As) value. SEC protein standards (BioRad; 

#1511901) were used to ensure Superose 6 column performance was adequate (Figure 

S4). A 100 µL aliquot was injected, while all other parameters were kept equivalent to 

other the experiments. 

 

Analytical Ultracentrifugation 

A Beckman Coulter ProteomeLab XL-I was used to collect interference data at multiple 

concentrations. Meniscus-matching centerpieces (SpinAnalytical) were used. Data was 
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collected at 48,000 rpm on 4 cells per experiment in an 8-hole rotor (An 50Ti). A radial 

calibration was performed prior to each experiment. Data collection was monitored 

using SEDVIEW (Hayes and Stafford 2010). Experiments were carried out until there 

was no further sedimentation occurring by visual evaluation. To ensure the highest scan 

frequency and best possible data for g(s*) and SEDANAL fitting, no time delay between 

scans was used. To ensure scans be collected throughout the entire sedimentation 

process, the Equilibrium option was chosen rather than the Velocity option within 

ProteomeLab. A Method schedule of 100 steps of 99 scans, totaling 9900 scans per 

cell, instead of the standard 999 scans maximum would be collected. The experiment 

was stopped manually once sufficient data were collected. Analyses were performed in 

DCDT+ (Philo 2000; Stafford 1992), SEDANAL (Sherwood and Stafford 2016; Stafford 

and Braswell 2004; Stafford and Sherwood 2004), and SEDFIT (Schuck 2000). Linear 

fitting of 1/s20,w vs concentration to determine ks and s0
20,w was performed in 

SEDNTERP v3 (Laue et al. 1992)[cite J. Philo SEDNTERP paper, current issue]. 

SEDNTERP v3 was also used to estimate buffer density and viscosity, as well as the �̅�, 

mass, and extinction coefficients for each protein. Within DCDT+, the g(s*) distributions 

were converted to s20,w, and the concentration (fringes) and weight-average s value 

from the time of analysis (�̂�(s*)) were used for ks and s0
20,w determination. The resting 

rotor temperature of the AUC was determined using a NIST-calibrated DS1922L iButton 

(iButtonLink) following a procedure previously described (Ghirlando et al. 2014). The 

measured temperature was incorporated into SEDNTERP for more accurate estimates 

of the buffer and solute parameters. Error analysis of SEDANAL fits was performed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.22.521448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521448
http://creativecommons.org/licenses/by-nc-nd/4.0/


using F-Statistics at a 95% confidence level. The following parameters were allowed to 

fit: loading concentration, s, ks, BM1, and the molar mass or frictional ratio. 

 

Viscosity Measurements 

A semi-automated U-tube Ostwald capillary viscometer (Schott Geräte, Hofheim, 

Germany) was used to measure buffer (t0) and sample solution (ts) flow times. Aliquots 

of 2 mL were prepared at multiple concentrations from dilution of a stock solution, and 

the relative viscosity (ηr) was calculated according to Equation 5: 

 

                                                     𝜂𝑟 =
𝜂𝑠

𝜂0
= (

𝑡𝑠

𝑡0
) ×

𝜌𝑠

𝜌0
                                      (Equation 5) 

 

which includes the buffer (ρ0) and solution (ρs) density and the buffer (η0) and solution 

(ηs) viscosity. The buffer and sample solution density values were assumed to be 

equivalent. All viscosity experiments were performed at 20°C using samples dialyzed 

into the same buffer (20 mM Tris pH 7.4, 150 mM NaCl). 

 

The reduced viscosity (ηred) was determined according to the Huggins Equation 

(Huggins 1942) by extrapolation to zero concentration (c). 

 

                                                             𝜂𝑟𝑒𝑑 =
𝜂𝑟−1

𝑐
                                          (Equation 6) 

 

The Kraemer Equation (Kraemer 1938) was used to describe the inherent viscosity 

(ηinh) at each concentration: 
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                                                             𝜂𝑖𝑛ℎ =
𝑙𝑛(𝜂𝑟)

𝑐
                                         (Equation 7) 

 

Lastly, the Solomon-Ciuta Equation (Solomon and Ciutǎ 1962) was used to determine 

the intrinsic viscosity ([η]), where ηsp is the reduced specific viscosity (ηrel – 1): 

 

                                                   [𝜂] ≅
1

𝑐
(2(𝜂𝑠𝑝) − 2 ln(𝜂𝑟))

1 2⁄
                        (Equation 8) 
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