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In this study, we investigated the effect of specific noise realizations on the discrimination of two consonants,
/b/ and /d/. For this purpose, we collected data from twelve participants, who listened to the words /aba/
or /ada/ embedded in one of three background noises. All noises had the same long-term spectrum but
differed in the amount of random envelope fluctuations. The data were analyzed on a trial-by-trial basis
using the reverse-correlation method. The results revealed that it is possible to predict the categorical
responses with better-than-chance accuracy purely based on the spectro-temporal distribution of the random
envelope fluctuations of the corresponding noises, without taking into account the actual targets or the
signal-to-noise ratios used in the trials. The effect of the noise fluctuations explained on average 8.1%
of the participants’ responses in white noise, a proportion that increased up to 13.3% for noises with a
larger amount of fluctuations. The estimated time-frequency weights revealed that the measured effect
originated from confusions between noise fluctuations and relevant acoustic cues from the target words.
Substantially similar conclusions were obtained from simulations using an artificial listener. We argue that
this token-specific effect of noise is a form of informational masking.

I. INTRODUCTION

Studies of speech-in-noise perception often rely on
speech reception thresholds (SRTs) as a measure of the
participant’s intelligibility. An SRT is defined as the
signal-to-noise ratio (SNR) at which a specific phoneme,
word, or sentence score is achieved for a specific set of
speech sounds (e.g., Plomp and Mimpen, 1979). SRTs
are typically obtained from many trials to neutralize the
response variability that is assumed to be non-relevant for
the study (Green, 1964), including the “external variabil-
ity” introduced by the randomness in the noise stimuli
(e.g., Ewert and Dau, 2004). Following the rationale from
some existing studies (Jürgens and Brand, 2009; Zaar and
Dau, 2015), we will refer to this classical approach as
providing a macroscopic view on speech perception per-
formance. The term macroscopic refers to the fact that
speech intelligibility is assumed to be based on long-term
characteristics of the masking sounds rather than on their
detailed waveforms. In contrast, a microscopic view on
speech perception is obtained from approaches where in-
telligibility is assessed on a trial-by-trial basis. For the
purposes of this study, specific noise realizations having
the same long-term characteristics will be referred to as
noise tokens. In this sense, a macroscopic estimate of
speech intelligibility will be influenced by an “overall ef-
fect” of noise, whereas a microscopic estimate will be
related to a “token-specific effect” of noise.

A. Macroscopic approach: Overall effect of noise

Speech intelligibility measured using macroscopic ap-
proaches can be seen as reflecting an overall effect of noise
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that is not expected to change when different noise tokens
are used, as long as enough noise tokens are used during
the experiments. As a consequence, this overall effect is
related to the fixed, long-term noise statistics and does
not depend on the specifics of the noise tokens. Macro-
scopic intelligibility estimates are usually interpreted in
terms of energetic masking (EM) and modulation mask-
ing (MM).

The concept of EM refers to a masking effect that oc-
curs when the target and the (undesired) masker sounds
overlap in a set of frequency bands (French and Stein-
berg, 1947). In such cases, the weakest elements in the
speech sounds become less audible when the SNR is de-
creased, causing more and more recognition errors, until
the sounds are no longer detected (see, e.g., Li et al.,
2010, their Fig. 1). The conception of noise as primarily
an energetic masker forms the basis for several objective
intelligibility metrics, including the articulation index
(AI) (French and Steinberg, 1947) and the speech trans-
mission index (STI) (Houtgast and Steeneken, 1985; Pay-
ton and Braida, 1999). With these metrics, two noises
that have the same long-term distribution of energy with
respect to the speech signal are assumed to produce the
same EM effect and, hence, the same intelligibility.

The concept of MM is similar to EM but operates in
the temporal modulation domain. Here, the long-term
property that determines the amount of masking is the
amplitude of noise envelope fluctuations within each of
the analyzed frequency bands. Random envelope fluc-
tuations have been shown to be detrimental to listening
performance. As stated by Drullman (1995), they in-
duce a “sorting problem” because the weak elements in
the signal are likely to be confused with irrelevant fluctu-
ations from the masker. Importantly, this phenomenon
is present even for steady-state masking noise, such as
white noise or speech-shaped noise, due to the intrinsic
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random envelope fluctuations present in the masker sig-
nal (Dau et al., 1999; Stone et al., 2011, 2012; Varnet and
Lorenzi, 2022). In terms of speech performance, Dubbel-
boer and Houtgast (2008) and Jørgensen and Dau (2011)
proposed that the MM effect is related to the amount of
envelope fluctuations in the signal relative to the fluctua-
tions in the noise, in different modulation bands, an idea
that was formalized into the signal-to-noise ratio in the
envelope domain (SNRenv).

In summary, the overall impact of noise on intelligi-
bility using the concepts of EM and MM is determined by
long-term statistics of the noise masker, based on either
band-level energy or the amplitude of random fluctua-
tions, respectively. A macroscopic approach provides an
efficient way to measure the impact of EM and/or MM on
speech intelligibility, for example by comparing the SRT
or the mean intelligibility scores between noise maskers
with different long-term characteristics, measured across
a large number of noise tokens (e.g., Francart et al., 2011;
Stone et al., 2011).

B. Microscopic approach: Token-specific effect of noise

A macroscopic approach may not provide a complete
picture of the mechanisms involved in speech-in-noise in-
telligibility, because the averaging operation obscures in-
formation about how individual speech tokens are per-
ceived (see, e.g., Singh and Allen, 2012; Zaar and Dau,
2015). For instance, the concepts of AI, STI, or SNRenv

predict that different tokens of the same noise process
should be approximately the same. However, this is not
the case as it can be shown by adopting a microscopic
approach that looks at speech intelligibility at a trial-by-
trial level.

More specifically, in speech-in-noise tasks, two noise
tokens that have the same long-term statistical proper-
ties may not necessarily yield the same intelligibility, as a
consequence of the specific sample-by-sample differences
between their waveforms. Namely, when a target has
to be recognized in a noise background, one particular
noise token may mislead the listener while other tokens
may not, depending on the specific configuration of ran-
dom envelope fluctuations in the masker envelope. This
phenomenon is referred here to as “token-specific effect”
of noise. This microscopic view on speech intelligibility is
best illustrated in an experiment by Zaar and Dau (2015),
using a fixed set of (frozen) noise tokens. Their partic-
ipants had to identify consonant-vowel words embedded
in white noise at six SNRs. The authors were particularly
interested in assessing the effect of various sources of vari-
ability in the task. They found that a 100-ms temporal
shift of the masking noise waveform could induce a signif-
icant perceptual effect, that was well above the assessed
within-listener variability. Thus, a given speech utter-
ance was found to be either more or less robust, eliciting
a different pattern of confusions, depending on whether
the utterance was presented along one specific noise to-
ken or its time-shifted version. In their interpretation
of this finding, Zaar and Dau noted that “[...] the com-

mon assumption in various previous studies of an invari-
ance of consonant perception across steady-state noise
realizations cannot be supported by the present study.
In fact, the results obtained here suggest that the in-
teraction between a given speech token and the spectro-
temporal details of the ‘steady-state’ masking noise wave-
form matter in the context of microscopic consonant per-
ception. When analyzing responses obtained with indi-
vidual speech tokens, averaging responses across noise
realizations thus appears problematic” (p. 1263).

In order to get a more physiologically-informed in-
sight into the token-specific effect of noise, the variabil-
ity across tokens may not be considered at the level of
the waveform, but rather at the output of the auditory
cochlear processing (e.g., Dau et al., 1999). The random
envelope fluctuations, that is, the fluctuations in energy
induced by the noise at the output of each cochlear chan-
nel, vary from one realization to the other, potentially
inducing a token-specific effect.

For instance, using steady-noise maskers, Varnet and
Lorenzi (2022) showed that the exact temporal distri-
bution of random envelope fluctuations in a trial has a
systematic influence on the detection of an amplitude-
modulated target. Namely, it can bias the participant’s
response towards perceiving a 4-Hz modulation (or not)
depending on the token-specific configuration. We found
comparable conclusions in two of our previous studies
on phoneme discrimination in white noise (Varnet et al.,
2013, 2015a). The microscopic approach used in these
studies was based on a fine-grained statistical analysis
that relates the random envelope fluctuations in a given
trial to the corresponding response of the listener. The
outcome of this analysis is a time-frequency (T-F) matrix
of perceptual weights, named auditory classification im-
age (ACI), which highlights the T-F regions of the stim-
ulus where an increase of random envelope fluctuations
induces a systematic bias in the listener’s phonetic deci-
sion. These conclusions have not only been obtained for
different phonetic contrasts (/b/-/d/, Varnet et al. 2013;
/d/-/g/, Varnet et al. 2015a; /a/-/i/ Brimijoin et al.
2013), but also for different groups of listeners (Varnet
et al., 2019, 2016, 2015b), and different maskers (white
noise, Varnet et al. 2013; speech-shaped noise, Osses and
Varnet 2021; bubble noise, Mandel et al. 2016).

The above set of findings based on microscopic ap-
proaches (frozen noise or ACI) confirms that EM and
MM effects must be further complemented by the assess-
ment of a token-specific effect, although the size of this
effect remains an open question. For example, Régnier
and Allen (2008) measured the variance caused by the
masker in an auditory representation of the phoneme /t/
embedded in white and speech-shaped noises, concluding
that the SNR range in which noise and speech informa-
tion interacted was in fact very limited and that differ-
ent noise tokens should not significantly impact phonetic
judgments. Nevertheless, the T-F representations or “AI
grams” adopted by Régnier and Allen are based on the
concept of EM, and therefore they actually did not con-
sider the potential effect of random envelope fluctuations
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into their analyses. More generally, token-specific effects
are usually considered negligible by researchers in the
case of stationary maskers, probably because two tokens
of a steady noise generated by the same statistical pro-
cess are often considered as perceptually indistinguish-
able. However, there is evidence that this is not generally
true, as particular tokens of white noise can be discrimi-
nated (Goossens et al., 2009) and memorized (Agus et al.,
2009; Pfafflin, 1968).

Below, we discuss two research areas where, from
a different perspective, token-specific effects on speech
perception have already been considered. The first ex-
ample is related to simulations of listening performance
using human-inspired auditory models. These models are
composed of a front-end that accounts for the sound pro-
cessing between the outer ear and the early stages of
brain processing (Osses et al., 2022) followed by a deci-
sion back-end module that selects a response among a set
of predefined alternatives (e.g., Jürgens and Brand, 2009;
Zaar and Dau, 2017). This decision back end often com-
pares processed internal representations with prototyp-
ical representations (templates) of the possible answers
executed on a trial-by-trial basis. The resulting simula-
tion data are often analyzed macroscopically, e.g., to pre-
dict overall SRT in different listening situations (Holube
and Kollmeier, 1996; Steinmetzger et al., 2019), they may
also be analyzed microscopically to examine, e.g., pat-
terns of phoneme confusions (Jürgens and Brand, 2009).
These models are particularly sensitive to the variability
in the stimuli (e.g., the noise maskers), causing variabil-
ity in the model internal representations. Thus, auditory
models of this type are sensitive to token-specific infor-
mation.

The second example where token-specific effects have
received considerable attention is related to dip listen-
ing (Cooke, 2006). Dip listening refers to a listeners
ability to catch brief glimpses of a speech target when
the level of the fluctuating masker momentarily drops.
The dip listening benefit, sometimes referred to as mask-
ing release, depends critically on the exact T-F loca-
tion of the glimpses and this varies from trial to trial
(Mandel et al., 2016). However, stationary or quasi-
stationary noise maskers, such as the ones investigated in
the present study, produce a very limited number of effec-
tive glimpses, thus allowing only a marginal dip-listening
effect (Cooke, 2006).

C. Objectives and preregistered hypotheses

The present study investigated the token-specific ef-
fect of random envelope fluctuations introduced by noise1

on the perception of speech acoustic cues in a consonant-
in-noise discrimination task using nonsense words of the
structure vowel-consonant-vowel (VCV). More specifi-
cally, the task is tested using the utterances /aba/ and
/ada/ presented in three types of background noises. All
noises have the same flat long-term averaged spectrum
but differ in the amount of random envelope fluctuations:
A Gaussian white noise, a noise with a band-limited

modulation spectrum, or a noise with randomly-imposed
bursts of energy. The overall effect of noise on the par-
ticipants’ performance is quantified from the SNR re-
quired to successfully discriminate the target sounds with
a 70.7% correct response rate. Additionally, the token-
specific effect of noise on performance is quantified from
an analysis of the exact trial-by-trial random envelope
fluctuations that is inherent to the reverse-correlation
method used to derive ACIs.

In this context, our working hypotheses (H1–H4) are:
H1 : Using the derived ACIs and the specific set of

noises used during the experiments, we can predict the
response (“aba” or “ada”) of each participant with an
accuracy that is significantly above chance. The predic-
tion performance metrics will provide us with a measure
of the strength of the token-specific effect in this speech-
in-noise task. Our expectation is that the effect should
be small (Zaar and Dau, 2015) but large enough to yield
predictions significantly above chance.

H2 : Noise conditions differing only with respect to
their modulation content will induce a different non-EM
effect. More specifically, for a given overall performance
level, noises with a larger amount of random envelope
fluctuations will yield a higher ACI prediction perfor-
mance. We will investigate this hypothesis by comparing
the ACIs derived from three noise conditions at their cor-
responding (overall) SNR thresholds.

H3 : The ACIs will be globally similar for all indi-
viduals and conditions. Not only the token-specific effect
should be measurable in each listener, but it should im-
pact the same cues for every participant, as the individual
listening strategies should be globally similar. This will
be confirmed by measuring the correlation between in-
dividual ACIs and the cross predictions in within-noise
and between-noise conditions. If indeed the ACIs be-
tween participants are sufficiently similar, we will be able
to use the ACI from one participant/condition to predict
the responses of another participant/condition with sig-
nificantly better-than-chance accuracy.

H4 : Noises with a larger amount of random envelope
fluctuations should yield better predictions when ACIs
are derived using simulated responses from an artificial
listener. This hypothesis is used to check the underly-
ing assumptions of using ACI prediction performance as
a proxy for the magnitude of the token-specific effect.
The artificial listener is a perceptually-based model of
the human auditory system, that adopts a fixed strategy
to perform the /aba/-/ada/ discrimination. We chose a
model framework that is based on the work by Dau et al.
(1997a) and has been shown successful in simulating the
overall effect of noise for a number of classical psychoa-
coustic tasks (e.g., Dau et al., 1997b; Jepsen et al., 2008;
Osses, 2018; Osses and Kohlrausch, 2021). Given that the
artificial listener strongly relies on signal-driven (bottom-
up) cues using a fixed decision strategy, we will show that
the specific set of noises used by the different participants
has no effect on the shape of the ACI.

All hypotheses (H1–H4) were preregistered before
data collection (osf.io/4ju3f/).
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II. MATERIALS AND METHODS

All stimuli and procedures described in this section
were preregistered (osf.io/4ju3f/) and can be reproduced
with the fastACI toolbox (Osses and Varnet, 2022b),
which in the following we refer to as “the toolbox.”

A. Apparatus and procedure

The experiments were conducted in one of the two
doubled-walled soundproof booths at ENS. The exper-
iment utilized a within-subject design. In each trial,
the words /aba/ or /ada/ were presented diotically via
Sennheiser HD 650 circumaural headphones (Sennheiser,
Wedemark, Germany) in one of three background noises.
The task of the participant was to indicate whether they
heard the word “aba” or “ada” by pressing “1” or “2” on
the computer keyboard, respectively.

1. Experimental protocol

The participants completed 4000 trials using each
noise type (total of 12000 trials), organized in thirty test
blocks of 400 trials. The evaluation of a block took be-
tween 12 and 15 minutes. The order of the test blocks
was pseudo-randomized with the only constraint that the
three noise conditions were presented in permuted order
in the first three blocks. Subsequently, all blocks were
randomly assigned. Each participant required five or six
two-hours sessions to complete the experiment.

For each test block only one type of noise was eval-
uated and one independent adaptive track was mea-
sured: After a correct or incorrect response, the level
of the target word in the subsequent trial was decreased
or increased, respectively, following a one-up one-down
weighted adaptation rule (Kaernbach, 1991). We used
up- and down-steps in a ratio of 2.41 to 1 that lead to a
target a score 70.7% according to Kaernbach (1991, his
Eq. 1). Participants received feedback on the correctness
of the trial. Furthermore, they were explicitly instructed
to minimize their response bias as much as possible with
a warning message displayed on screen when the response
ratio was higher than 60% or lower than 40%.

For each trial, we stored the participant’s response,
the corresponding SNR, the target actually presented,
and the exact waveform of the noise. After completing
each block, participants were encouraged to take a short
break.

2. Training session

Before the first test block, the participants completed
a short training to make sure that they correctly under-
stood the task. This training session was similar to the
main experiment except that participants were able to
repeat the noisy speech stimuli or to listen to /aba/ or
/ada/ samples in silence. The training ended when the
participant was ready to start the main experiment. The
training results were excluded from any further analysis.

B. Participants

Twelve participants (S01–S12) aged between 22 and
43 years old (4 females, 8 males) took part in our study,
with eight of them being native French speakers. This
information is presented in Appendix A 1. The partic-
ipants provided their written informed consent prior to
the data collection and were paid for their contribution.

The participants’ hearing status was measured using
pure-tone audiometry at six frequencies (250, 500, 1000,
2000, 4000, and 8000 Hz) and had average thresholds
of 20 dB HL or better in their best ear. The obtained
hearing thresholds are shown in Fig. A.1.

The total number of N = 12 participants exceeds
the preregistered number of participants (N = 10). By
the time we completed the data collection for N = 10,
twelve participants had been recruited, and we therefore
decided not to interrupt the data collection for the last
two subjects (S06 and S12). The results reported in this
study are based on all twelve participants. The same
analysis using the preregistered sample size can be found
in Appendix A 3 b and yielded very similar results.

C. Simulated participant: The artificial listener

In addition to the experimental data collection, we
used an auditory model to simulate the performance of
an average normal-hearing listener who uses a fixed de-
cision criterion to compare sounds. This “artificial lis-
tener” assesses the internal representations of each sound
using signal-driven (bottom-up) information based on
a modulation-filter-bank approach (Dau et al., 1997a).
The internal representations were subsequently compared
using a (top-down) decision back-end based on template
matching, with two stored templates, one for each target
sound (Osses and Kohlrausch, 2021). The artificial lis-
tener was treated as an additional participant, meaning
that its results were subjected to the same data analysis
as applied to the experimental data.

The auditory model is composed of a front-end and
a back-end processing using default parameters in our
toolbox. In short, the front-end processing is very similar
to the model described by Osses and Kohlrausch (2021),
except that the middle-ear module is implemented as a
linear phase filter and that the modulation filter bank
uses a Q factor of 1. The two templates were derived at
a supra-threshold SNR of −6 dB where each target was
embedded and subsequently averaged across 100 newly-
generated white noise realizations. This fixed white-noise
template was used for the simulations in all three noise
conditions. The trial-by-trial decision was based on a
template-matching where a decision bias was introduced
to allow the model to balance the number of “aba” and
“ada” choices (Osses and Varnet, 2021). All details about
the model configuration and the decision scheme can be
found in Appendix A 4.
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FIG. 1. T-F representations of the two targets used in the

experiment, /aba/ and /ada/. The time and frequency res-

olutions are the same as those used for the analysis (see

Sec. II E 3 a). Lighter regions indicate higher amplitudes in

a logarithmic scale. The white traces indicate the fundamen-

tal frequency (f0) and formant trajectories (F1–F2).

D. Stimuli

1. Target sounds

We used two male speech utterances from speaker
S43M taken from the OLLO speech corpus (Meyer
et al., 2010) (words /aba/: S43M L007 V6 M1 N2.wav;
/ada/: S43M L001 V6 M1 N1.wav). We preprocessed
these speech samples to align the time position of the
vowel-consonant transitions, to equalize their energy per
syllable, and to have the same waveform duration. The
stored sounds have a duration of 0.86 s, a sampling fre-
quency fs of 16 kHz, and an overall level of 65 dB sound
pressure level (SPL). The time-frequency (T-F) represen-
tation of the stored sounds is presented in Fig. 1, together
with their fundamental-frequency (f0) and formant (F1–
F4) trajectories.

Prior to the stimulus presentation and the addition
of noise, the sounds were adjusted in level depending on
the corresponding SNR.

2. Background noises

Three types of background noise conditions were
tested. These conditions were chosen to include a sta-
tionary noise condition using white noises and two ad-
ditional noises with stronger envelope fluctuations below
35 Hz, that correspond to non-stationary noise condi-
tions. To increase the low-frequency fluctuations in the
envelope domain, we designed an algorithm to generate
a white noise with superimposed Gaussian bumps and
an algorithm to generate noises with limited modulation
power spectrum. We abbreviate these two types of noises
as bump and MPS noises, respectively. The noises were
generated at an fs of 16 kHz, were set to have an overall
level of 65 dB SPL and were subsequently gated on and
off with 75-ms raised-cosine ramps before being stored
on disk.

The acoustic characteristics of the noises are shown
in Fig. 2 and the algorithm details are given in the next
paragraphs. For each noise we show the T-F representa-
tion of one arbitrarily-chosen noise realization (Fig. 2A),
followed by an acoustic analysis of the noises derived from
1000 noise realizations (Fig. 2B–C) using (1) critical-
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FIG. 2. Summary of the acoustic characteristics of white

(left), bump (middle), and MPS noises (right). A. T-F

representation of one arbitrary-chosen noise representation.

B. Critical-band levels within 1-ERB wide filters. C. Enve-

lope (modulation) spectrum. More details are given in the

text. In Panels B–C, the gray curves indicate the percentiles

5 and 95 of the corresponding estimate.

band levels within 1 ERB for bands centered between
87 Hz (or 3 ERBN ) and 7819 Hz (or 33 ERBN ) in
Fig. 2B; and (3) assessing the broadband envelope spec-
trum obtained from the absolute value of the Hilbert en-
velope, downsampled to fs,env =1000 Hz. The envelope
spectrum after DC removal is shown in Fig. 2C2.

The generated white noises had a spectrum level of
26 dB/Hz with an effective bandwidth between 0 and
fs/2, resulting in critical-band levels between 40.7 dB
and 56.2 dB (Fig. 2B). The envelope spectrum (Fig. 2C)
was approximately constant with a median amplitude of
22.2 dB, although a theoretical monotonic decrease up to
fs/2 is expected (Dau et al., 1999). This decrease is not
visible due to the 0–60 Hz limit of the abscissa.

The bump noises were generated using an algorithm
similar to that described by Varnet et al. (2019). The
bumps are regions of excitation that have a Gaussian
shape defined by a temporal width of σt = 0.02 sec and
a spectral width of σf = 0.5 ERB, emphasized up to
10 dB. The time and frequency locations of the bumps
were randomly spread across the entire duration of the
waveform and through the whole T-F space, i.e., between
80 Hz and 7158 Hz (i.e., 1 ERBN below 8000 Hz). Each
waveform contained 30 newly drawn Gaussian bumps.
The generated bump noises had critical-band levels be-
tween 40.5 and 55.8 dB (Fig. 2B). The envelope spectrum
(Fig. 2C) had a triangular shape going from an ampli-
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tude of 31.4 dB at fmod = 3 Hz down to 23.5 dB at
fmod = 31.1 Hz with an approximately constant spec-
trum thereafter (median amplitude of 23.7 Hz).

Finally, the MPS noises were generated by limiting
their spectrum in the modulation frequency domain us-
ing a set of temporal and spectral rate cut-off frequen-
cies. We chose a temporal cut-off of 35 Hz and a spec-
tral cut-off of 10 cycles/Hz, based on the study by El-
liott and Theunissen (2009) and some pilot tests. The
MPS bandwidth was limited using the phase reconstruc-
tion approach from the PhaseRet toolbox (Pr̊uša, 2017).
Inspired by Venezia et al. (2016), we first generated a
white noise that is multiplied in the MPS domain by
a low-pass envelope with the desired characteristics de-
fined by the temporal and spectral cut-off frequencies.
The MPS-limited representation is then converted back
to a time-domain waveform and stored on disk. The gen-
erated MPS noises had critical-band levels between 38.1
and 56.0 dB (Fig. 2B). The envelope spectrum (Fig. 2C)
had a constant value of 26.3 dB starting after the DC
and up to about 35 Hz, an amplitude that decreases to
a constant value of 23.0 Hz thereafter.

In summary, all noises originate from white noises
with or without emphasized envelope fluctuations, shar-
ing nearly the same long-term spectral content (Fig. 2B).
However, the noises have a different amount and distribu-
tion of random envelope fluctuations in the modulation-
frequency domain (Fig. 2C). White noises have low enve-
lope fluctuations, MPS noises have a rectangular-shaped
low-pass envelope fluctuations (cut-off fmod=35 Hz), and
bump noises have a triangular-shaped low-pass envelope
fluctuations (for fmod<31.1 Hz).

For each participant a new set of 4000 noises with
a level of 65 dB SPL was generated, resulting in 36 sets
of noises (12 participants × 3 noise conditions). The
simulated participant, the artificial listener (Sec. II C),
was tested on the same 36 sets of experimental noises.
The waveforms in each noise were stored and can either
be retrieved from Zenodo (Osses and Varnet, 2022c) or
be reconstructed using the toolbox (see Appendix A 2).

3. Noisy trials

In each trial, the level-adjusted target sounds were
arithmetically added to the corresponding noise accord-
ing to the adopted staircase rule. Before the trial was ad-
ministered to the listeners, an additional but small varia-
tion in the total presentation level (level roving) between
−2.5 and +2.5 dB (continuous range, uniform distribu-
tion) was applied to partly discourage the use of loudness
cues during the experiment. For the simulations using
the artificial listener that were run with all 36 noise data
sets, the same order of trials and level roving were applied
as used for each participant.

E. Data analysis

The experimental data collection resulted in 36 stair-
cases for twelve participants in the three noise conditions
and 36 staircases for the simulations with the artificial

listener. In this section we describe the analyses that
were applied to the experimental trials to obtain the di-
rect behavioral results and to derive the individual ACIs.

1. Preregistered data exclusion criteria

For a more efficient data processing, the ACI method
requires a minimization of response biases. Next to the
explicit instruction to balance “aba” and “ada” choices
(Sec. II A 1), we preregistered two criteria for trial exclu-
sion.

The first criterion is related to the exclusion of all
starting trials of each test block before reaching the
fourth turning point or reversal. Those trials correspond
to the so-called approaching phase of the staircase proce-
dure, where the adjustable parameter, the SNR, is con-
sidered to be at a supra-threshold level with a percentage
correct that is well above the target 70.7%. The fourth
reversal was considered to be the staring point of the
measuring phase of the staircase.

The second criterion is an explicit control of the bal-
ance between “aba” and “ada” responses in our dataset.
During the data processing, the responses of the target
sound that obtained more preferences were sorted in in-
creasing SNR. Subsequently the trials with most extreme
values (minima or maxima) were discarded until the same
number of “aba”-“ada” preferences was achieved. In
other words, if a participant indicated “aba” 53% of the
times and “ada” 47% of the times, the trial exclusion was
applied to the “aba” trials.

2. Measures of behavioral performance

The listeners’ performance in the different noise con-
ditions was assessed using a number of measures derived
from the trial SNRs. The percentage of correct responses
and SNR thresholds were obtained for each block of 400
trials, after data exclusion (Sec. II E 1). Then, the rate of
correct responses in /aba/-trials and in /ada/-trials were
expressed in histograms using SNR bins of 1 dB. Note
that these values correspond to the rate of hit and cor-
rect rejection if we arbitrarily identify /aba/- and /ada/-
trials as target-present and target-absent trials, respec-
tively. Finally, using the same 1-dB wide bins, the clas-
sical discriminability index (d′) and criterion (c) metrics
were obtained from the hit, false alarm, correct rejection,
and miss rates (Harvey, 2004) as a function of SNR.

The behavioral measures d′, c, and the block-by-
block SNR threshold were tested for a group-level effect
using a mixed analysis of variance (ANOVA) with two
fixed factors, block number and noise condition. Partici-
pants were treated as a random effect, meaning that dif-
ferences in baseline performance for individual listeners
were taken into account. A second mixed ANOVA with
two fixed factors, SNR and condition, was run to confirm
the effect of SNR on d′. Similarly, a mixed ANOVA was
also run on the criterion c.
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3. Auditory classification images (ACIs)

a. Time-frequency (T-F) representations.

Following the same rationale as in previous stud-
ies, the ACIs were derived and interpreted in a T-
F space (Osses and Varnet, 2021; Varnet et al., 2013,
2015a). Here, we chose to use a Gammatone-based rep-
resentation rather than a spectrogram. The 0.86-s long
monaural noises were decomposed into 64 bands equally
spaced in the ERB-number (ERBN ) scale (Glasberg and
Moore, 1990) between 45.8 Hz (1.69 ERBN ) and 8000 Hz
(33.19 ERBN ), spaced at 0.5 ERB. The filters had a
width of 1 ERB, resulting in a 50% overlap. The 64 band-
passed signals were then low-pass filtered using a Butter-
worth filter (fcut-off=770 Hz, fifth order), which roughly
simulates the inner-hair-cell envelope extraction process-
ing (see, e.g., Osses et al., 2022, their Sec. 2.4). Finally,
one estimate every 0.01 s (amplitude mean) was obtained
for each of the frequency bands along the time dimension
resulting in a final T-F noise representation stored in a
86-by-64 matrix. We denote the T-F representation of
the noise presented to participant k in trial i as N

k,i
,

while Nk,i refers to the vectorization of this matrix. In
the following sections, we use the same formalism to refer
to the ACI in its matrix form (ACI, 86-by-64) or vector
form (ACI, 5504-by-1).

b. Generalized linear model.

The core principle of the ACI approach is to assess
how the random envelope fluctuations in the stimulus
(N

k,i
) affect the behavioral response of the participant

(denoted rk,i) on a trial-by-trial basis. For this purpose,
we relied on a stimulus-response transformation based
on a generalized linear model (GLM) to produce a T-F
matrix of decision weights (Varnet et al., 2013, 2015a).
As the objective of our study was to isolate the effect
of random envelope fluctuations on phoneme perception,
the GLM did not include any complementary predictor
like the target actually presented or the SNR. We define
the vectorized ACI for participant k, ACIk, such that:

P (rk,i = “aba”) = Φ(NT
k,i ·ACIk + ck) (1)

where P (rk,i = “aba”) = 1 − P (rk,i = “ada”) is the
predicted probability of choosing “aba” and Φ(x) stands
for the sigmoid function Φ(x) = 1/ (1 + e−x). Equation 1
relates the specific content of the noise in trial i to the re-
sponse given by the participant, with ACIk and ck being
the GLM parameters that need to be fitted to each partic-
ipant’s data. The ACIk in Eq. 1 is expressed as a vector
of perceptual weights, with each element corresponding
to one T-F point of the noise representation Nk,i. There-
fore, they are more easily interpreted as a matrix ACI

k
that has the same size as the N

k,i
matrix. The parameter

ck corresponds to the fitted intercept value that indicates
the overall bias of the participant towards one response
or the other.

c. Sparseness prior in a Gaussian pyramid basis.

An ACI is typically composed of many non-zero
weights. However, these weights are often grouped into
positive or negative clusters matching the location of
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ment used in the Pyramid decomposition represented in a T-

F space, as used for the ACIs. Thanks to the multi-resolution

matrices of the decomposition method, narrower and wider

cues can be extracted from the input noise matrix Sk,i. Two

stereotypical basis elements are indicated by the blue lines.

acoustic cues in the targets, while the rest of the T-F
space is close to zero. Therefore, a more compact way of
describing an ACI would be as a linear combination of
Gaussian-shaped elements centered at different T-F loca-
tions, such as the ones shown in Fig. 3. Here, formulat-
ing the problem in a space where ACIs can be expressed
with a limited number of coefficients allows us to enforce
“sparse” solutions, that is, ACIs that are non-zero only
in a few localized T-F regions.

The Gaussian pyramid consists of four successive lev-
els (1 to 4) corresponding to decreasing T-F resolutions.
Each level is composed of Gaussian elements of the same
width (standard deviation = 1, 2, 3, or 4 bins, respec-
tively) and spaced every 1, 2, 3, or 4 bins. This means
that the first level is not subsampled in contrast to the
gradually more subsampled levels 2 to 4.3 The coeffi-
cients of the Gaussian elements from all four levels are
normalized to have a norm equal to 1, vectorized, and
stored into a single matrix B. An ACI is then expressed
as a linear combination of Gaussian elements:

ACIk = B · β
k

(2)

which represents a change of basis that relates the coor-
dinates of the ACI in the new multi-resolution Gaussian-
pyramid space (β

k
), to its coordinates in the T-F space.

By replacing ACIk in Eq. 1 we obtain:

P (rk,i = “aba”) = Φ(NT
k,i ·B · βk

+ ck) (3)

Instead of estimating the ACI directly in the T-F
space, using Eq. 1, we actually estimated the β

k
coef-

ficients of Eq. 3. Although Eqs. 1 and 3 are mathe-
matically equivalent, the latter allows the prior assump-
tion about the simplicity of the ACI to be expressed
by looking for as few non-zero β

k
coefficients as possi-

ble (Mineault et al., 2009). In statistical terms, this is
achieved by penalizing the classic maximum-likelihood
estimator with a L1-regularized (lasso) regression ap-
proach, which enforces sparse solutions. The weight and
bias for each participant (β

k
and ck) were fitted individ-

ually with a lasso regression, then transformed back into
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the T-F space using Eq. 2 to obtain the final ACI
k
. Fol-

lowing the standard lasso procedure, the hyperparameter
λ that controls the strength of the regularization was se-
lected to minimize the deviance through a 10-fold cross-
validation approach. We tested twenty plausible λ values
logarithmically spaced between 1.1 · 10−3 and 0.1, with
larger values enforcing more sparse candidates, as shown
in Fig. A.7 (see also Varnet et al., 2015a, their Fig. 2).
The choice of this range of values ensured that the low-
est amount of regularization was low enough to produce
a very noisy ACI, while the highest amount of regulariza-
tion was high enough to produce a flat ACI, as shown in
the left-most and right-most panels of Fig. A.7, respec-
tively. A flat or “null” ACI, only contains weights that
are equal to zero, meaning that an ACI prediction is only
defined by the bias ck. This statistical-fitting procedure
is the same as we have used in our last studies (Osses
and Varnet, 2021, 2022a).

4. Out-of-sample prediction

a. Performance metrics.

Following the standard hyperperameter selection
procedure for GLMs (e.g., Mineault et al., 2009; Var-
net et al., 2015a; Wood, 2017), the out-of-sample predic-
tive performance of the fitted ACIs was assessed during
the 10-fold cross-validation using the cross-validated de-
viance. To allow a direct comparison between different
ACIs, that differ in the exact number of test trials due to
the criteria for trial exclusion (see Sec. II E 1), we report
the cross-validated deviance per trial (CVDt).

We adopted a second complementary metric that we
defined as prediction accuracy (PA). PA is a “noisier” but
more intuitive measure of prediction performance that is
assessed as the coincidence between predicted and actual
responses. PA relates the predicted and actual responses,
expressing “aba” (or “ada”) predictions when /aba/ (or
/ada/) was actually chosen by the participant. Assuming
that a probability P equal to or above 0.5 in Eq. 1 (or
Eq. 3) would be related to a predicted choice of “aba”,
the PA metric can be formalized as:

PAi =


1 if P (rk,i = “aba”|/aba/ presented) ≥ 0.5

1 if P (rk,i = “aba”|/ada/ presented) < 0.5

0 otherwise

(4)
This metric was summed across trials and expressed

as a percentage and can adopt values between chance
(∼50%) and 100%.

To facilitate the interpretation of the previous per-
formance metrics, we define the deviance-per-trial bene-
fit ∆CVDt and the percent accuracy benefit ∆PA as the
difference between prediction performance using the opti-
mal ACI (Eq. 3) and that of the corresponding null ACI.
For ∆PA we further scaled the metric by 1/(1−PAnull).
This way, PA values that can range between ∼50 and
100% are mapped to ∆PA values between 0 and 100%.

Given that lower ∆CVDt values indicate better pre-
dictions, for individual evaluations we provide one-sided

95% confidence intervals, obtained as 1.64 times the stan-
dard error of the mean (SEM), reporting a significant
benefit if the confidence interval is below zero. For the
group evaluation, mean ∆CVDt values across folds were
obtained for each participant and the significance was
assessed at the group level following a similar criterion.

With the ∆PA metric, the benefit of using the op-
timal ACI with respect to the null ACI is expected to
increase. As a reference, we show the boundaries at 2.6%
or 4.78% above chance for evaluations using all experi-
mental trials or incorrect trials only, respectively.4

For the purposes of this study, the metrics of pre-
diction accuracy are not only a way to validate ACIs,
but they also provide a proxy for the size of the token-
specific effect on phoneme perception with better val-
ues when more of the participant confusions are due to
random envelope fluctuations. Strictly speaking, the pre-
dictability gives us a lower boundary of the token-specific
effect, as responses that are correctly predicted using
a model that by design is only based on random enve-
lope fluctuations—as it is the case here for the T-F rep-
resentations transformed using the fitted GLMs—must
be caused by those random envelope fluctuations. On
the contrary, incorrect predictions could either be due to
token-specific effects that are not accounted for in our
GLM approach, such as interactions between separate
T-F regions or effects where non-linear processes are in-
volved, or to other causes. For these reasons, we also
report the performance metrics only using data from in-
correct trials. In this case, the metrics are labeled as
∆CVDt,inc and ∆PAinc, respectively.

b. Cross predictions.

The selected performance metrics measure the abil-
ity of the ACI, fitted on a subset of the participant’s
data, to predict unseen data from the same participant
in the same condition. Complementary to these “auto
predictions,” we also derived “cross predictions” where
the fitted ACI was evaluated on a test set extracted from
a different participant or a different condition. We as-
sessed two types of cross predictions: (1) within par-
ticipant but between conditions, and (2) between par-
ticipants but within conditions. While the auto predic-
tions were used to assess the goodness-of-fit of the ob-
tained ACIs, the cross predictions were used to evalu-
ate the similarity between listening strategies across par-
ticipants or across maskers. To test the significance of
the cross predictions, two ACIs were considered as “sim-
ilar” if we could exchange them and reach a significantly
better-than-chance prediction accuracy, i.e., with newly
obtained ∆CVDt being significant according to the crite-
ria defined above. We also report the correlation across
ACIs, but this complementary analysis is only presented
in Appendix A 3.

III. RESULTS

For each participant, the experimental data collec-
tion was completed across different days, mostly requir-
ing five two-hour sessions. All the recruited participants
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FIG. 4. (Color online) Mean SNR thresholds for the group in

blocks of 400 trials for each of the three masker conditions. We

show the individual thresholds for the twelve participants av-

eraged across conditions (gray dashed lines), emphasizing the

overall thresholds of the participants with lowest and highest

values (thick gray continuous lines). The error bars indicate

one standard error of the mean (SEM).

(N = 12) were able to complete the task, although par-
ticipant S10 showed highly variable results with scores
that were clearly below the group average.

A. Measures of behavioral performance

In the course of the experiment, the level of the
speech target (/aba/ or /ada/) was adapted using a one-
up one-down weighted adaptation rule that targeted a
70.7% of correct responses (see Sec. II A 1). In practice,
after excluding the approaching phase of the staircases
(see Sec. II E 1), the exact percentage of correct responses
averaged across noise conditions and test blocks ranged
between 71.0% (S10) and 71.6% (S03), with session by
session scores between 69.5% and 74.2%.

To provide an overview of the participants’ perfor-
mance, the obtained SNR thresholds as a function of
test block are shown in Fig. 4. In this figure, we show
the overall performance (averaged across participants)
for white- (blue), bump- (red), and MPS-noise conditions
(green). Additionally, the SNRs for each participant were
averaged across noise conditions obtaining twelve gray
traces, also shown in Fig. 4. The thresholds of partici-
pants S04 and S10 are shown in solid lines and correspond
to the (overall) best and worst performing participants
in the task, respectively. The SNR evolution given by
the gray traces suggests that there was a small learning
effect during the course of the experiment, with slightly
better (lower) thresholds in the last test blocks. This
small learning effect was confirmed by a two-way mixed
ANOVA with the factors masker and test block. Both
factors were found to have a significant effect on the ob-
tained SNR thresholds with F (2,345) = 15.87, p < 0.001
and F (1,345) = 36.63, p < 0.001, respectively. A post-
hoc analysis revealed that the effect of masker type was in
fact due to a difference in the bump-noise condition com-
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pared to the other two, while SNR thresholds for white
noise and MPS noise were not significantly different.

In order to measure the effect of speech level on per-
formance, trial-by-trial responses were converted to mean
scores, d′, and criterion values (c) as a function of SNR.
These metrics are shown in Fig. 5. We then ran three
two-way mixed ANOVAs, independently applied to the
factors masker, SNR, and criterion. For these tests we
only used the data for the SNR bins centered between
−16 and −12 dB, where data for all participants in all
conditions had been obtained. The ANOVAs supported
a significant effect of the factors masker and SNR on d′

(masker: F (2,165) = 10.39, p < 0.001; SNR: F (1,165) =
1017.65, p < 0.001), while only the factor SNR had a sig-
nificant effect on criterion (masker: F (2, 165) = 1.75, p =
0.178; SNR: F (1, 165) = 9.77, p = 0.002). According to
a post-hoc test, the effect of masker type on d′ was due
to a difference in the white-noise condition compared to
the other two.

B. ACIs

The ACIs that were derived from the collected data
are shown in Fig. 6 using white, bump, and MPS noise
maskers. Panels A–F contain the individual ACIs, while
a group average is shown in the bottom-most panels
(Fig. 6G–I). Overall, the individual ACIs bear some sim-
ilarities, although for two participants (S09 and S10) the
hyperparameter selection in white noise did not yield a
minimum, resulting in a null ACI (dashed pink boxes
in Fig. 6). Large weights were found at t ≈ 0.3 s, the
time of the onset of the second syllable, which are more
clearly visible in the group ACIs. More specifically, we
found a clear pattern of positive (red) and negative (blue)
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FIG. 6. (Color online) Top panels: ACIs for the 12 participants using (A,D) white, (B,E) bump, and (C,F) MPS noises. For

comparison purposes, the weights in each ACI are normalized to their maximum absolute value. The values in gray in the top

right corner of each ACI indicate the corresponding mean SNR threshold expressed in dB. The dashed pink boxes indicate the

two ACIs that only contain zero weights. Bottom-most panels (G–I): mean ACI across all participants, in each condition. The

formant trajectories for /aba/ (red solid lines) and /ada/ (blue dotted lines) are superimposed.

weights matching the location of the F1 and F2 onsets of
the /aba/ and /ada/ sounds. Additionally, in a subset of
ACIs, weak but consistent perceptual weights were also
found around the time of the first-syllable F2 offset (e.g.,
in the ACIs of S03, all conditions), or near the release
burst of the plosive consonant at around 8 kHz (e.g.,
ACI of S07, white-noise condition).

The group ACIs were obtained as the arithmetic av-
erage of all non-normalized individual ACIs for white
(Fig. 6G), bump (Fig. 6H), and MPS noises (Fig. 6I)
and are only shown for visualization purposes. In these
panels we superimposed the f0 and formant trajectories
of /aba/ and /ada/. The group ACIs were not normal-
ized to emphasize the fact that the (blue and red) weights
have different limits for the different noises.

C. Out-of-sample prediction accuracy

Auto predictions at the individual level: The
out-of-sample metrics of prediction accuracy, ∆CVDt

and ∆PA, at the individual and group level are shown
in Fig. 7, where the metrics for the individual ACIs are
shown as open diamond markers.

The results based on ∆CVDt (Fig. 7A) show that
9 ACIs out of 36 did not yield predictions significantly
higher than chance. Those non-significant estimates are
marked in gray in Fig. 7A. From these 9 ACIs, two corre-
sponded to the conditions where a null ACI was obtained
(dashed pink boxes in the figure), which, by definition,
are related to performance metrics equal to zero.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2022. ; https://doi.org/10.1101/2022.12.27.522040doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.27.522040
http://creativecommons.org/licenses/by-nc-nd/4.0/


-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

D
e

v
ia

n
c
e

 /
 t

ri
a

l 
b

e
n

e
fi
t 

(a
d

im
)

All trials

A

Incorrect trials only

B

white bump MPS

Masker

0

10

20

30

40

P
e

rc
e

n
t 

a
c
c
u

ra
c
y
 b

e
n

e
fi
t 

(%
)

C

white bump MPS

Masker

D

FIG. 7. (Color online) Metrics of performance benefit, ∆CVDt (top panels) and ∆PA (bottom panels), for each of the obtained
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that were found to be non significant, based on the boundaries at 0 (Panels A and B, dashed lines).

For the analysis of incorrect trials, the results are
shown in Fig. 7B and 7D for ∆CVDt,inc and ∆PAinc, re-
spectively. Although the improvement in ∆CVDt,inc was
rather small (compare Fig. 7B with 7A), there was a sys-
tematic improvement of ∆PAinc values (compare Fig.7D
with 7A).

Auto predictions at the group level: At the
group level, white noise yielded a smaller prediction per-
formance compared to the bump and MPS noise condi-
tions with ∆CVDt values of −0.657 ·10−2, −1.490 ·10−2,
and −1.207 · 10−2 (filled maskers in Fig. 7A) and ∆PA
values of 8.1, 13.3, and 11.8%, respectively (filled maskers
in Fig. 7C). Additionally, a significant effect was found
for the factor “masker” in a mixed ANOVA on ∆CVDt

(F (2, 22) = 7.73, p = 0.003).
When restricting the test set to incorrect trials only

(Fig. 7B, 7D), the prediction accuracy was found to be
systematically higher: From the participants’ incorrect
answers a larger proportion of these errors is explained
using the ACIs in bump- (∆CVDt,inc = −3.390 · 10−2;
∆PAinc = 18.5%) and MPS-noise conditions (∆CVDt,inc

=−2.920·10−2; ∆PAinc = 17.1%) compared to the white-
noise condition (∆CVDt,inc = −1.485 · 10−2; ∆PAinc =
11.3%). These group benefits are indicated by filled
markers in Fig. 7D and are all significantly above chance.

Cross predictions between participants: The
procedure to obtain cross predictions between partici-
pants (see Sec. II E 4 b) resulted in three 12-by-12 matri-
ces of cross-prediction values when the data of one partic-
ipant in one noise condition was predicted using the ACI
from another participant in the same condition. The ob-

tained ∆PA values are shown in Fig. 8A–C and ranged
between −1.4% and 19.5%. The main diagonal of these
matrices correspond to the same auto-prediction values
that are shown as open diamond markers in Fig. 7C. As
expected, the ∆PA values were overall lower (or overall
higher using ∆CVDt) than the auto-prediction values,
with on-diagonal averages of 8.1, 13.3, and 11.8% for
white-, bump-, and MPS-noise conditions, respectively,
and corresponding off-diagonal averages of 4.7, 6.0, and
5.9%. From the off-diagonal metrics and only consider-
ing the ACIs that produced significant predictions, i.e.,
excluding auto predictions and the cross predictions in-
dicated by the red arrows in Fig. 8A–C, 42 (out of 66),
67 (out of 132), and 57 (out of 99) cross predictions led
to a performance that was significantly above chance for
white-, bump-, and MPS-noise conditions, respectively.
Those cross predictions are enclosed in pink dashed boxes
in the figure. With this significance analysis, we can iden-
tify the ACIs that better predict the data or the data
that are better predicted by other ACIs, by looking at
the vertical or horizontal direction of the corresponding
matrix, respectively. For instance, the ACI from S11 in
Fig. 8C produced significant predictions using the data
of two participants (S01, S05, vertical direction) and the
ACI from S05 produced significant predictions using the
data of all participants except one (S11). In the cross
prediction of data using other ACIs, the data from S09
for white noise was significantly predicted only using the
ACI from S08 (Fig. 8A, horizontal direction), while the
data from S05 in the bump and MPS noise conditions
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FIG. 8. (Color online) A–C. Between-subject cross-

prediction matrices for the three conditions using ∆PA, ex-

pressed as corrected-for-chance percentages. The main diag-

onals are enclosed in colored squares and correspond to the

same auto-prediction values as in Fig. 7C. The pink dashed

boxes indicate the ACIs from the abscissa that are able to

predict significantly above chance the data of the participant

indicated in the ordinate. See the text for details and also

Fig. A.3. From this analysis, we excluded the ACIs that did

not lead to significant auto predictions (red arrows), which

were marked in gray in Fig. 7A. D–F. Same cross-prediction

analysis but using the simulation data. In this case, all cross

predictions led to significant predictions. Note the different

(higher) range of ∆PA values with respect to the top panels.
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FIG. 9. Between-noise cross predictions using ∆PA values av-

eraged across (A) participants or (B) simulated participants.

The off-diagonal values were overall lower than the within-

noise predictions. See the text for further details.

(Fig. 8B, 8C), were significantly predicted using eight
(of 11) other ACIs.

Cross predictions between noises: The pro-
cedure to obtain cross predictions between noises but
within participant (see Sec. II E 4 b) resulted in twelve
individual 3-by-3 matrices, that are shown in Fig. A.4A.
We focus on the cross predictions averaged across par-
ticipants and using ∆PA, which we present in Fig. 9A.
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FIG. 10. (Color online) ACIs derived from the simulations

using the artificial listener (ACISIs) for (A) white, (B) bump,

and (C) MPS noises using the set of noises from participants

S01–S03 (top to bottom rows). The values in gray indicate

the corresponding mean simulated SNR threshold expressed

in dB. The ACIs derived from simulations for the remaining

set of noises (S04–S12) are shown in Fig. A.6.

The global results show that the auto (within-noise) pre-
dictions of the main diagonals gave overall ∆PA values
of 8.1, 13.3, and 11.8% for the white, bump, and MPS
noises (the same group values as in Fig. 7C) that de-
creased to (at most) 5.0, 5.2, and 5.9%, respectively,
when using an ACI to estimate the collected data be-
tween noises (compare the elements of Fig. 9 in the ver-
tical direction). Along the horizontal direction, i.e., when
exchanged ACIs are used to predict the data within noise
condition, the auto predictions decreased to (at most)
5.2, 5.0, and 6.2%, respectively.

D. Simulations

Simulations were obtained from an artificial listener
(Sec. II C and Appendix. A 4), using the same experi-
mental set of noises from participants S01 to S12 and the
same methods outlined earlier to derive ACIs. To dis-
tinguish the ACIs from the artificial listener from those
of the participants, we refer to the first ones as ACISI.
The ACISIs derived from the waveforms of participants
S01–S03 are shown in Fig. 10. The remaining ACISIs,
are shown in Fig. A.6.

The ACISIs have more clusters of cues, compared
to the experimental ACIs (Fig. 6). These clusters seem
to be independent of the specific set of noises and are
mainly located below 3000 Hz, and between t =0.1 and
0.5 s. All ACISIs have large weights in the F1 and F2

regions at t ≈ 0.3 s.
To quantify the similarity between ACISIs we as-

sessed the cross predictions across “participants,” i.e.,
across noise sets of the same condition. These cross pre-
dictions, using ∆PA, are shown in Fig. 8D–F. The ob-
tained ∆PA values were much higher than for the exper-
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imental ACIs (Panels A–C), ranging between 33.0 and
43.4% and were always significant. The significant cross
predictions are enclosed by dashed pink boxes and are
superimposed to all matrix elements in Fig. 8D–F.

The ∆PA cross predictions derived from exchanging
ACISIs across noise conditions for the group are shown
in Fig. 9B. Similar results were found within simulated
individuals, as can be found in Fig. A.4, where all cross
predictions were significantly above chance.

Based on the cross-prediction values averaged across
data sets in Fig. 9B, the auto-predictions were 36.0, 37.6,
43.4% in the white-, bump-, and MPS-noise conditions,
respectively. The high values of the cross predictions
in the off diagonal, that differ by no more than 4.4%
with respect to the on-diagonal values of Fig. 9B, again,
support the similarity among the obtained ACISIs.

IV. DISCUSSION

The objective of our study was to measure the token-
specific effect of noise on the phonetic discrimination be-
tween the words /aba/ and /ada/. For this purpose, we
predicted the listeners’ judgements using a microscopic
(trial-by-trial) approach, the reverse-correlation method.
The results allowed us to derive both macroscopic met-
rics of speech intelligibility and a microscopic character-
ization of the participants’ listening strategies by means
of the time-frequency information in the ACIs.

We start this section by contextualizing the general
performance results (Sec. IV A). We then focus on the in-
terpretation of the microscopic ACI analysis to estimate
the size of the token-specific effect of noise in our task,
going through each of our study hypotheses (Sec. IV B–
IV G). We conclude this section by indicating the limita-
tions of the adopted approach (Sec. IV H).

A. General performance in the task

The behavioral performance for each participant av-
eraged across conditions was very similar, although there
were participants with lower or higher overall perfor-
mance, as indicated by the vertical shift of gray traces
in Fig. 4 and as also seen in the SNR thresholds reported
in Fig. 6, that ranged between −15.7 and −10.3 dB.
When expressing the same data as a function of SNR
we observed that, first of all and as expected, the diffi-
culty of the task increased for lower SNRs. More pre-
cisely, the percent correct rates for /aba/ (Fig. 5A) and
/ada/ trials (Fig. 5B) decreased from about 90% (for
SNRs> −10 dB) to chance level (for SNRs< −17 dB).
This strong effect of SNR was also visible using the
discriminability index d′ (Fig. 5C) and the criterion c
(Fig. 5D). The d′ values were lower for bump and MPS
noises than for white noises at any SNR. Given that all
three noise types have approximately the same long-term
spectrum (Fig. 2B) and thus should produce a similar
EM effect, the lowered discriminability—that leads to
an increased number of incorrect answers—can be at-
tributed to the additional random fluctuations between 0

and 30 Hz in the bump and MPS noises (Fig. 2D, middle
and right panels). In other words, the lowered discrim-
inability can be partly linked to the MM effect and, as
we discuss in the next subsection, to the increased token-
specific effect in these two non-stationary maskers. An-
other observation that can be inferred from the lowered
discriminability of bump and MPS noises is that there
was a marginal, if any, effect of listening in the dips.
In fact, a significant effect of this phenomenon should
have resulted in better performance for more modulated
maskers, an effect that we did not observe. In Fig. 5D,
we observed a bias towards “aba” answers for SNRs be-
low −15 dB, where the criterion values c were higher
than 0, in contrast to the nearly constant c values for
the SNR bins centered at or above −15 dB. In line with
previous work on confusion patterns (Régnier and Allen,
2008), this might be an indication that below this level,
some critical cue for discriminating /ada/ is no longer
audible, while /aba/ is still correctly perceived. This is
consistent with the argument that the acoustic cues for
/d/ are typically located in a higher frequency range than
that for /b/, being more likely to be effectively masked by
white-noise-like maskers that have more energy in high
frequency regions.

B. ACIs and token-specific effect

The trial-by-trial (microscopic) analysis based on re-
verse correlation resulted in a total of thirty-six ACIs
(Fig. 6), that characterized the listening strategy of the
twelve participants in each background noise condition.
In terms of prediction performance, the obtained ACIs
were able to predict the categorical response in each trial
(“aba” or “ada”) with a better-than-chance accuracy us-
ing 27 (out of 36) ACIs (Fig. 7A, open diamond). Addi-
tionally, the group results were significantly above chance
(Fig. 7A, filled circles), indicating that the exact within-
trial noise configuration had a significant influence on the
participants’ responses or, in other words, that the three
types of noises elicited a measurable token-specific effect.
This effect was measured to be on average ∆PA=11%
across all participants and conditions and ranged be-
tween 4.9 and 19.6% for the individual results (open dia-
monds in Fig. 7, diagonals in Fig. 8A–C). These results
agreed with our preregistered expectations about the sig-
nificance of ACI-based predictions and the size of their
effect. Given that the GLM-fitted ACIs only relied on the
T-F distribution of random noise envelope fluctuations,
without using any explicit information from the targets,
these results are supportive of Hypothesis H1 (Sec. I C).

The idea that different noise tokens produce a differ-
ent amount of masking is not new. This has been shown
in the context of, e.g., tone-in-noise detection (Ahumada
and Lovell, 1971; Pfafflin, 1968), AM-in-noise detection
(Varnet and Lorenzi, 2022), but also in psycholinguistic
tasks (Varnet et al., 2013; Zaar and Dau, 2015). Using
frozen noise, Zaar and Dau (2015) demonstrated that two
particular white-noise tokens elicited different confusion
patterns. They showed that, when presented with one
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specific frozen noise token at SNRs below 0 dB, the sound
/gi/ was confused with /di/ or /bi/, but when the same
sound was presented with a different frozen-noise token,
/gi/ was robustly perceived for SNRs down to −15 dB.

A further exploration of the participants’ ACIs indi-
cates that the random noise envelope fluctuations that
can trigger a token-specific effect are concentrated in
small but non-uniformly distributed T-F regions. These
regions overlap with the position of acoustic cues in the
target sounds, as emphasized in Fig. 6G–I. For example,
the presence of a burst of energy in the random envelope
fluctuations in the vicinity of the F2 onset will induce a
response bias in favor of “aba” or “ada” depending on
whether its spectral position matches the F2 onset fre-
quency of /aba/ (1298 Hz) or /ada/ (1722 Hz). Similarly,
subtle differences in the random envelope fluctuations in
the region of the F1 onset, the F2 offset in the initial
syllable, as well as in the plosive burst, located in the
high-frequency region at the consonant onset, affected
the listeners’ responses in a systematic way. The impor-
tance and relative weights of F2-transition cues and burst
cues in the pereption of voiced plosive consonants has al-
ready been discussed in length elsewhere (e.g., Delattre
et al., 1955; Ohde and Stevens, 1983) in particular in the
presence of background noise (e.g., Alwan et al., 2011; Li
et al., 2010). References to a possible role of F1 transi-
tions are more seldom (Alwan et al., 2011; Delattre et al.,
1955) but this cue was already found in our previous ACI
studies (Varnet, 2015; Varnet et al., 2015a).

As noted above, there seems to be a correspondence
between the T-F regions from Fig. 6, where the pres-
ence of random envelope fluctuations was particularly
detrimental to the listener, and the acoustic cues from
the targets. Arguably, this token-specific effect of noise
can be seen as the counterpart of the MM effect de-
scribed in Sec. I, as in both cases random envelope fluc-
tuations induce confusions to the listeners, or a “sort-
ing problem” using Drullman’s words. For the MM ef-
fect, weak elements of the speech targets are confused
with non-relevant noise envelope fluctuations. For the
token-specific effect of noise, in contrast, it is the large
random noise envelope fluctuations that are confused
with relevant elements of the targets if the correspond-
ing T-F locations overlap, affecting the listeners’ pho-
netic decisions. This is reminiscent of the conflicting
cues that have been reported from the detailed analy-
ses of phoneme confusions (Li and Allen, 2011; Régnier
and Allen, 2008; Singh and Allen, 2012). These stud-
ies showed that some speech utterances present inciden-
tal acoustic cues that can be confused with characteris-
tic cues of other phonemes, making the targets prone to
confusions. In the case of our experiment, the conflicting
cues are induced by the background noises.

C. Token-specific effect in white noise

To estimate the token-specific effect of noise and dis-
sociate it from the overall effect that is related to EM and
MM, we used the metrics of out-of-sample prediction ac-

curacy (Sec. II E 4 a) applied to the obtained ACIs. More
specifically, we used the prediction accuracy (∆PA) to
measure the size of the effect and the cross-validated de-
viance per trial (∆CVDt) to test its significance. Both
metrics were compared to a null ACI, where the weights
associated to the T-F noise distributions are set to zero,
producing “aba”-“ada” predictions at the participant’s
chance level.

The contribution of the token-specific effect to the
overall effect in white noise was small but significantly
above chance for 6 of the 12 participants (Fig. 7A, blue
open markers), with an auto-prediction benefit ∆PA of
8.1% at the group level (Fig. 7C, blue filled marker).
This estimate considers trials where conflicting cues mis-
led the participants, as well as trials where the cues rein-
forced their correct answers. If we restrict this analysis
to incorrect trials only, the auto-prediction benefit was
significant for 7 participants (Fig. 7B, blue open mark-
ers) with an increased benefit of ∆PAinc= 11.3% at the
group level (Fig. 7D, blue filled marker). This small ef-
fect agreed with our preregistered expectations (Hypoth-
esis H1), which were based on the few studies that have
tried to disentangle between the different effects of noise
(Drullman, 1995; Dubbelboer and Houtgast, 2007; No-
ordhoek and Drullman, 1997). These studies investigated
the role of random envelope fluctuations, including MM
and token-specific effects, using special types of signal
manipulations to isolate EM from non-EM effects. Drull-
man (1995) and Noordhoek and Drullman (1997) per-
formed listening experiments using vocoded sentences,
and found that between 15% and 19% of errors can be at-
tributed to the presence of random envelope fluctuations
in the masker. Dubbelboer and Houtgast (2007) reached
a somewhat similar conclusion for a word (consonant-
vowel-consonant) recognition using steady-noise maskers.
They were able to evaluate the effect of EM and non-EM
independently using a wavelet-transform-based stimulus-
resynthesis approach. Their results indicated that EM
was the most detrimental type of interference, estimat-
ing a cumulative impact of all non-EM effects related to
19.7% of recognition errors.

Finally, a relatively small token-specific effect of
noise or “noise-induced effect” was reported by Zaar and
Dau (2015). The authors compared different sources
of variability in the recognition of consonant-vowel-
consonant words presented at different SNRs. In their
analysis of source-induced variability they found that the
variability in the background noises induced a significant
perceptual effect, but that the effect was smaller than the
variability in the speech sounds, between- and within-
talkers. Although Zaar and Dau’s analysis of within-
participant variability was based on an analysis of con-
fusion matrices that is not directly comparable to our
out-of-sample metrics, their results are aligned with our
ACI results.
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D. Token-specific effect in more fluctuating noises

The /aba/-/ada/ discrimination using “white-noise-
like” bump and MPS noises with emphasized envelope
fluctuations, was included to investigate a potential in-
crease of the token-specific noise effect, as they were sup-
posed to mask more efficiently the relevant elements of
the speech targets. This is related to our preregistered
Hypothesis H2 (Sec. I C). H2 is supported by the out-of-
sample performance results, where ∆PA increased from
8.1% for white noises to 13.3 and 11.8% in the bump-
and MPS-noise conditions, respectively (Fig. 7C, filled
markers) and from ∆PAinc= 11.3% to 18.5 and 17.0%
for the corresponding analysis with incorrect trials only
(Fig. 7D, filled markers). At the individual level, all
(12 of 12) ACIs produced a significant prediction in the
bump-noise condition and 9 of 12 ACIs did so in the
MPS-noise condition (Fig. 7A, red and green open mark-
ers). In other words, with respect to the white noises,
bump and MPS noises did not only lead to an increased
MM effect as a consequence of their strong envelope fluc-
tuations below 30 Hz (Fig. 2D), but they also led to an
increased token-specific effect, with respect to the white-
noise condition.

E. Between-subject variability

Due to the nature of our experimental task, that used
two vowel-consonant-vowel words (/aba/ and /ada/) pre-
sented without semantic context, we expected that the
ACI method should have resulted in globally similar lis-
tening strategies for all our participants. This was related
to our preregistered Hypothesis H3 (Sec. I C). However,
in contrast to this expectation, we obtained very hetero-
geneous ACIs (Fig. 6A–F). We assumed that two ACIs
were globally similar when they could predict data sig-
nificantly above chance when they were exchanged with
each other. The results of this analysis were presented
in Fig. 8A–C, where significant cross predictions using a
specific ACI (shown along the abscissa) to predict the
participants’ data (shown along the ordinate) are en-
closed in dashed pink boxes. This analysis revealed that
only 42, 67, and 57 (out of 132) cross predictions led to
a performance that was significantly above chance in the
white-, bump-, and MPS-noise conditions, respectively.
This low number of significant cross predictions seems to
be enough evidence to reject H3.

When analyzing the heterogeneity of the obtained
ACIs (Fig. 6A–F) we did not find a direct link between
the participants’ overall performance or any other infor-
mation about them (e.g., language background, age, or
audiometric thresholds) and the exact distribution of ob-
tained T-F cues. For instance, the very good performing
participants S04 and S08, who reached SNR thresholds
below −15 dB showed significant cross predictions in all
conditions, although the participants differ in their lin-
guistic background. In another example, the bump ACIs
from S03 and S10 produced significant cross predictions
despite the difference in overall SNR threshold of 3.2 dB

during the experiments, while we did not find a signifi-
cant similarity in their strategy for the other two noise
types.

Differences in listening strategies were also reported
by Singh and Allen (2012), who observed a non-negligible
between-subject variability in the perception of noisy /b/
and /d/ sounds compared to, e.g., /t/ and /g/. They re-
lated this finding to the observation that /b/ and /d/
involve multiple cues (Alwan et al., 2011; Dorman et al.,
1977) unlike /t/ and /g/ which have an identifiable sin-
gle feature that makes them noise robust (Li et al., 2010).
Similarly, for our task, the redundancy of available cues
noted in Sec. IV B may have enabled our participants to
use different listening strategies, as supported by visual
inspection of the obtained individual ACIs (Fig. 6). The
most logical explanation for such “disparity” in the use
of cues may be due to the diversity of listeners’ linguis-
tic backgrounds (e.g., Pallier et al., 1997), however, this
contrasts with results of other studies where cue dispari-
ties have also been found in participants with a common
linguistic background (Clayards, 2018; Singh and Allen,
2012; Zaar and Dau, 2015). Our results do not provide
any evidence supporting any of these two possibilities.
Further studies are required to investigate the origin of
the inter-individual variability observed in the ACIs.

F. Artificial listener

In this study, the artificial listener was used as a base-
line for human performance, under the assumption that
measurable changes in auditory-model responses due to
changes in the signals—for us, when using different noise
maskers—reflect an effect that might be observable by
human listeners (Green and Swets, 1966). More con-
cretely, the artificial listener was used to confirm that
(1) a higher out-of-sample prediction is reached for more
fluctuating noises (bump and MPS noises) with respect
to the steady-state white noises, and (2) the specific set
of generated noises of the same type does not influence
significantly the obtained ACIs. This last point is im-
portant because the algorithms for the noise generation
were developed and adjusted to particularly influence the
modulation frequency content below about 30 Hz and we
wanted to confirm that these manipulations do not bias a
specific set of responses in the “objective” auditory model
decision. At the same time, we expected that the deci-
sions of the artificial listener should elicit a measurable
token-specific effect due to the trial-by-trial (microscopic)
nature of the template-matching approach.

The results of the simulations were presented in
the bottom panels of Figs. 8–9 (out-of-sample metrics),
Fig. 10 and Fig. A.6 (obtained ACISIs). All the obtained
ACISIs produced a measurable token-specific effect of
noise with predictions significantly above chance. The
average token-specific effect using ∆PA, averaged across
the 12 data sets, was estimated to be 36.0, 37.6, and
43.4% for white, bump, and MPS noises, respectively.
These results confirm that a reliable token-specific effect
can be measured using the artificial listener and that a
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mild but systematic increase in ∆PA was observed for the
bump and MPS noises with respect to the white noises,
supporting the validity of Hypothesis H4 (Sec. I C). Fur-
thermore, the significance analysis showed that all auto
and cross predictions produced significant out-of-sample
metrics (see the pink dashed squares in Fig. 8D–F), sup-
porting the statement—also contained in H4—that the
specific set of noises did not influence the ACIsim esti-
mation. Despite this support to H4, we observed that
the ACISIs contain many more T-F cues than the exper-
imental ACIs, suggesting that the underlying strategies
between “this” artificial listener and the participants are
differently weighted and that, on average, less T-F cues
were used by the participants.

G. Token-specific effect as a form of informational masking

As discussed in Sec. I, the token-specific effect is not
encompassed in the traditional definition of EM and MM
effects. In this section we argue that the token-specific
effect is a form of informational masking (IM).

IM has been defined using different, partly-
overlapping notions proposed over decades of research.
While IM effects are often defined as any masking effect
that cannot be attributed to EM, or as a masking oc-
curring at a “central” level, these simple definitions have
been criticized for their lack of precision (e.g., Durlach
et al., 2003; Watson, 2005). In particular, from these
perspectives, it is unclear whether MM should be identi-
fied as EM or IM (Conroy and Kidd, 2021; Durlach et al.,
2003). For these reasons, several authors have proposed
alternative and more operational definitions of IM that
have led to a trichotomy between EM, MM, and IM ef-
fects (Durlach, 2006; Stone et al., 2012). According to
these more refined views, IM effects are responsible for
a reduction in perceptual thresholds due to (1) masker
uncertainty, or (2) similarity between masker and target.

IM is often linked to the notion of masker uncer-
tainty (Alexander and Lutfi, 2004; Micheyl et al., 2000;
Neff and Green, 1987), with higher levels of uncertainty
maskers causing larger IM effects. In tasks as the one
presented in this study, uncertainty arises from the trial-
by-trial variability induced by random envelope fluctu-
ations in the noise maskers. Contrary to EM and MM
effects, which reflect the inaudibility of some critical cues
from the speech target due to the “saturation” of the
corresponding cochlear- or modulation-frequency chan-
nels, the token-specific effect results from the sensitivity
of listeners to fine T-F details in the masker waveforms,
that are susceptible to be confused with relevant speech
cues. In this respect, our /aba/-/ada/ experiment can
be regarded as a detection of specific acoustic cues in the
presence of randomly-occurring conflicting cues, a task
that is reminiscent of classic IM experimental paradigm
with uncertainty introduced in the spectral (Alexander
and Lutfi, 2004), temporal (Conroy and Kidd, 2021), or
spectro-temporal domains (Kidd et al., 2002). This par-
allel may seem surprising as researchers studying IM ef-
fects have often considered broadband stationary noise

(as our white-noise masker) as a low-uncertainty con-
dition (Lutfi et al., 2003), using it as a no-IM baseline
(e.g., Agus et al., 2009; Neff and Green, 1987). However,
other authors have considered the possibility that a rel-
atively small amount of uncertainty can already induce
some form of IM (Goossens et al., 2008; Lutfi, 1990),
which is in line with our findings.

Previous work has indicated that masker-target simi-
larity influences the amount of IM masking. This can be
evidenced, for instance, using maskers that share some
lexical or phonetic information with the speech targets,
as in speech-in-speech tasks (Brungart, 2001; Hoen et al.,
2007). This is obviously not the case for the three types
of maskers investigated in our study. However, given
that the derived ACIs were obtained from the informa-
tion contained in the noises only, it can be inferred that
random envelope fluctuations from these maskers induce
small but consistent perceptual biases towards one or the
other response alternatives. In turn, this indicates that
the conflicting cues present in the noise did not just pro-
vide a distraction, but were actually confused with rele-
vant speech cues from the target. In this sense, we can
consider that the maskers do share information with the
speech target at the acoustic cue level: when the noise to-
ken presents some acoustic characteristics similar to one
of the two targets, by chance, it is more likely to elicit
the corresponding response.5

More recently, uncertainty and similarity have been
merged into the notion that IM effects originate from
a more general source-segregation problem (Kidd et al.,
2002; Lutfi et al., 2013; Shinn-Cunningham, 2008). Fur-
thermore, several studies have revealed large individual
differences in susceptibility to IM, that may reflect differ-
ences in listening strategies (Alexander and Lutfi, 2004;
Durlach et al., 2005). In line with these results, as high-
lighted in Sec. IV B, the interference of noise envelope
with the perception of a speech target can be seen as a
“sorting problem,” because listeners erroneously use the
confounding cues from the masker as part of the speech
target. These ideas seem to offer an explanation to the
large non-negligible variability in our estimates of the
token-specific effect, that led us to reject Hypothesis H3.
In other words, the measured token-specific effect using
the ACI approach is reminiscent of classic IM definitions,
as the ACIs suggest the existence of a processing that is
modulated by a central (top-down) prior that may differ
from participant to participant.

H. Limitations of the approach

The prediction performance of our ACI approach was
used to quantify the token-specific effect of noise on an
/aba/-/ada/ discrimination. For this quantification, we
assumed that the participants’ responses could be pre-
dicted purely based on the random envelope fluctuations
of the noises that were used to mask the target words.
Under this strict assumption, we believe that the re-
ported performance metrics represent only a lower bound
of the actual token-specific effect because:
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1. We considered the envelope of noise-alone wave-
forms instead of the envelope of the noisy speech
sounds. We assumed this to ensure that the es-
timated token-specific effect came from the noise
maskers and not from the speech targets them-
selves. Nevertheless, given that envelope extrac-
tion is a highly nonlinear process, this assumption
implies that the effect of spurious modulations aris-
ing from speech-noise interactions (Dubbelboer and
Houtgast, 2008; Stone et al., 2011) is negligible.

2. The transformation of noise waveforms into T-F
representations—the inputs to the GLM—is based
on a set of linear cochlear filters followed by a
simplified envelope extraction (e.g., Osses et al.,
2022), ignoring the potential influence of more cen-
tral stages of auditory processing on the estimated
token-specific effect. In this study, we decided to
keep the T-F transformation as simple as possible.

3. Following a similar principle of simplicity as in the
T-F transformation, the GLM approach we used as
a statistical model back-end to relate noise (T-F)
representations with the participants’ responses did
not consider interactions between GLM predictors.
It is possible, however, that listeners make their
decisions based on a non-linear combination of cues.

V. CONCLUSIONS

In this study, we conducted a microscopic (ACI)
analysis of participants’ responses in an /aba/-/ada/ dis-
crimination task, using three different white-noise-like
and contextless maskers. We demonstrated that:

1. The detailed noise structure has a measurable effect
on a phoneme-in-noise discrimination task. A par-
ticular noise token can bias the participants’ choice
towards one alternative or the other depending on
its exact time-frequency (T-F) content. We argued
that this token-specific effect of noise is a form of
informational masking (IM) that can be elicited by
any random masker, including white noise.

2. At low SNRs (≈ −14 dB), this effect accounts for
at least 8.1% of the participants’ responses in white
noise (or 11.3% of the errors). When considering
other maskers that have larger amounts of random
envelope fluctuations, this percentage increased to
13.3% (or 18.5% of errors) and 11.8% (or 17.1% of
errors) for the bump and MPS noises, respectively.

3. Substantially similar results were obtained using
an auditory model that is based on a microscopic
(template-matching) approach. The model was
used to simulate the same /aba/-/ada/ discrimi-
nation task as our study participants. In this case,
the token-specific effect of noise was estimated to
be between 33.0% and 43.4% of the the model cor-
rect responses. Based on these results, the model

adopted, as expected, a more optimal and consis-
tent decision strategy, given that the model relied
on more T-F cues than our participants with better
(and always significant) cross predictions.

4. Contrary to Hypothesis H3 (Sec. I C), we observed
a large variability in listening strategies, both be-
tween participants and between masker types. A
close investigation of the results revealed that, al-
though the primary F2 cue is seen in almost every
individual ACI, the weights attributed to secondary
acoustic cues appear to differ between participants.
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FOOTNOTES
1Noise maskers are known to degrade target sounds in terms of tem-
poral fine structure (e.g., Drullman, 1995) and temporal envelope.
In the present paper we focus on degradations due to temporal en-
velope information, which are typically assumed to have a larger
impact on speech perception (e.g., Shannon et al., 1995).

2The DC removal was applied to the absolute value of the Hilbert
envelope, just before applying the FFT. The DC removal was ap-
plied to better visualize the spectrum levels in Fig. 2C. Without
this processing, the DC amplitudes were going to have an ampli-
tude of approximately 65 dB for all three noise types.

3We tested different sets of Gaussian-pyramid parameters, explor-
ing the required number of levels and the inclusion of level 0 (i.e.,
the inclusion of the original N

k,i
matrix). The specific configu-

ration of the pyramid did not seem to affect critically the overall
shape of the resulting ACIs.

4To get an indication of the level of ∆PA that can be attributed to
chance only, we assumed that the predictions in each set of 4000
noises follow a binomial distribution ∼ B(4000, 0.5), i.e., we as-
sumed that the success of the prediction is determined by chance
with P (ri = “aba”) = 0.5. Considering the one-sided 95% con-
fidence interval, PA needs to be equal to or greater than 51.3%
(or ∆PA≥ 2.6%, after correcting for guessing). This boundary is
increased to 52.39% (∆PA≥ 4.78%) for the analysis of incorrect
trials, where only 29.3% of the trials are used (B(1172, 0.5)). This
“significance test” should only be considered as referential because
(1) due to data exclusion, the number of trials is reduced by ≈10%,
so 4000 and 1172 are not the exact numbers that should be used in
the binomial approximation, and (2) the probability of successful
prediction by chance deviates slightly from 0.5 depending on the
exact ratio of “aba” and “ada” responses in the participant data.
To avoid unnecessary confounds, we refrained from including the
exact number of trials and chance levels, and we just presented
the estimated chance boundary as a visual aid in Fig.7.

5In line with this interpretation, several participants reported being
very confident in their answer to some trials, and very surprised
to find out that their response was in fact incorrect. This is the
kind of perceptual experience that we would expect to see if the
masker was indeed confused with the speech targets.
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Régnier, M., and Allen, J. (2008). “A method to identify noise-
robust perceptual features: Application for consonant /t/,” J.
Acoust. Soc. Am. 123, 2801–2814, doi: 10.1121/1.2897915.

Shannon, R., Zeng, F., Kamath, V., Wygonski, J., and Ekelid,
M. (1995). “Speech recognition with primarily temporal cues,”
Science 270(5234), 303–304, doi: 10.1126/science.270.5234.
303.

Shinn-Cunningham, B. (2008). “Object-based auditory and visual
attention,” Trends Cogn. Sci. 12, 182–186, doi: 10.1016/j.tics.
2008.02.003.

Singh, R., and Allen, J. (2012). “The influence of stop consonants’
perceptual features on the articulation index model,” J. Acoust.
Soc. Am. 131, 3051–3068, doi: 10.1121/1.3682054.

Steinmetzger, K., Zaar, J., Relaño-Iborra, H., Rosen, S., and Dau,
T. (2019). “Predicting the effects of periodicity on the intel-
ligibility of masked speech: An evaluation of different mod-
elling approaches,” J. Acoust. Soc. Am. 146, 2562–2576, doi:
10.1121/1.5129050.
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APPENDIX A: SUPPLEMENTARY MATERIALS

1. Participants’ details

Twelve participants took part in our study aged be-
tween 22 and 43 years old. Further details of the par-
ticipants are given in Table I. We characterized their
hearing status by measuring audiometric thresholds and
their performance in a speech-in-noise test, whose de-
tails are given next. While the hearing thresholds were
used as the only inclusion criterion, the speech-in-noise
thresholds were planned to give an indication of the par-
ticipants’ supra-threshold hearing status, to be used as
referential data for the design of future studies.

a. Audiometric thresholds

Audibility thresholds were measured using pure-tone
audiometry at six frequencies (250, 500, 1000, 2000, 4000,
and 8000 Hz) and had average thresholds between 0.8
(S07) and 12.5 dB HL (S02) in their best ear, meeting
our inclusion criterion of having thresholds of 20 dB HL
or better. The obtained hearing thresholds are shown in
Fig. A.1.

b. Intellitest

The participants’ supra-threshold hearing status was
measured using the Intellitest speech-in-noise test (Gnan-
sia et al., 2014). The Intellitest is a closed-set speech
material of 16 words of the structure VCVCV contain-
ing three takes of each word (total of 48 samples). The
dataset was split into three single lists of 16 non-repeated
words. Three single lists were evaluated twice, either us-
ing a speech-shaped noise (SSN), or using an 8-Hz am-
plitude modulated version of the SSN. In these exper-
iments the speech level was adjusted targeting a 50%
score. The threshold estimate for each noise condition
obtained from the median of the three single list runs

TABLE I. Participants’ details. The age is expressed in years

at the time of testing. Participants S06 and S12 were the

two last participants to complete the experimental sessions.

Their data were excluded in Sec. A 3 b for the analysis with

the preregistered number of N = 10.

Subject Age Gender Mother tongue Speaks French

S01 33 M French Yes

S02 36 M Spanish No

S03 31 F French Yes

S04 38 M French Yes

S05 24 F Italian No

S06 43 M French Yes

S07 23 M French Yes

S08 27 F Turkish Yes

S09 25 M French Yes

S10 22 F French Yes

S11 36 M Spanish No

S12 22 M French Yes
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FIG. A.1. Audiograms for all participants. Left and right ear

thresholds are shown in Panels A and B, respectively. The

participant’s best-ear thresholds are connected by continuous

traces, and the subject ID is indicated in the corresponding

panel legend. Average thresholds across participants are indi-

cated by the black traces and the average audiometric thresh-

old for all tested frequencies between 250 and 8000 Hz are

indicated by the right-most markers (filled symbols are used

when those averages are from the participant’s best ear).
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FIG. A.2. Results for the evaluation of the Intellitest speech

material using a steady SSN background noise or an 8-Hz

100% amplitude-modulated version of it. We present sepa-

rately the results for French speakers (blue) and non-French

speakers (red). The filled symbols indicate the group mean

thresholds and the error bars represent one SEM.

in each condition are shown in Fig. A.2. In this figure
we grouped the participants into native French speakers
(N = 8, blue traces, “French”) and the rest of the par-
ticipants (N = 4, red traces, “Non-French”). The speech
reception thresholds (SRTs) for the French group had
median thresholds of −10.4 and −27.7 dB in the steady-
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noise and 8-Hz AM noise, respectively. The threshold
using the modulated masker was 17.3 dB lower (better)
than the threshold in the steady-noise condition. The
results for non-French group were −7.3 and −23.1 dB in
the steady-noise and 8-Hz AM noise, respectively. These
thresholds were higher (worse) than the thresholds ob-
tained for the French speakers, by 3.1 and 4.6 dB for
the two noise conditions. The difference between perfor-
mance in steady and modulated noise was 15.8 dB.

2. Retrieving the experimental sounds stimuli

The thirty-six sets of noises and the two speech sam-
ples (/aba/ and /ada/) used in the experiments can be
retrieved either from Zenodo (Osses and Varnet, 2022c)
or using our in-house fastACI toolbox. To retrieve the
sounds using the toolbox, the script publ osses2022b -
preregistration 0 init participants.m needs to be
run. Note that for recreating the MPS noises, the
PhaseRet toolbox (Pr̊uša, 2017) needs to be installed and
compiled. No extra dependencies are required to repro-
duce the white and bump noises.

Once generated, the noises will be stored in separate
folders named NoiseStim-white, NoiseStim-bump, and
NoiseStim-MPS, each of them containing 4000 waveforms
using a numbered labeling (Noise 00001.wav–Noise -
04000.wav).

3. Complementary information to the data analysis

a. Analysis using the data of all participants: Extra
figures

Figure A.3 is complementary to Fig. 8 and contains
the cross-prediction values using the deviance per trial
(CVDt). This information had been omitted in Fig. 8.
The panels (A–C) show the CVDt values obtained from
the experimental data, whereas the bottom panels (D–F)
show the corresponding values for the artificial listener.
In this case, the insets ‘S01’ to ‘S02’ indicate the set of
waveforms used to run the fixed normal-hearing auditory
model (Sec. A 4).

Figure A.4 is complementary to Fig. 9 and shows the
individual 3-by-3 matrices for each participant for the
cross predictions between noises. The top and bottom
panels show ∆PA values derived from the experimental
data and from the artificial listener, respectively. The
arithmetic average of ∆PA values across participants,
corresponds to the 3-by-3 matrix presented in Fig. 9.

Figure A.5 (top panels, A–C) shows the correlations
across ACIs (from Fig. 6). Figure A.5 (middle panels, D–
F) shows the correlations across ACISIs (from Fig. 10 and
A.6). The global results in both rows of panels is similar
to the results obtained using the ∆PA metric: The corre-
lations across experimental ACIs (top panels) are lower
than the correlations across ACISIs obtained from the
simulations. The off-diagonal correlations are 0.33, 0.20,
0.29 for white, bump, and MPS noises in the top panels.
The corresponding values in the middle panels are 0.70,
0.70, and 0.74. The results in the bottom panels indicate

FIG. A.3. (Color online) A–C: Between-subject cross-

prediction matrices for the three conditions using CVDt.

The matrices contain the deviance benefit plus 1.64 SEM

(∆CVDt+1.64 SEM). When this quantity is less than 0, the

cross predictions using the ACIs from the participants indi-

cated in the abscissa are able to predict significantly above

chance the data from the participants indicated in the or-

dinate. Those cases are enclosed in pink boxes. The main

diagonals are enclosed in colored squares and correspond to

the same auto-prediction values that are shown as open mark-

ers in Fig. 7A. The red arrows indicate the ACIs that did not

achieve significant auto predictions. In such a case, the signif-

icance of the cross predictions was not evaluated. D–F: Same

as the top panels, but using the ACISIs derived from the ar-

tificial listener.

the average results for the Pearson correlations within
participant but between noises, comparable to Fig. 9. In
agreement with Fig. 9, the off-diagonal correlations had
an average of 0.33 (Panel G, experimental data) and 0.69
(Panel H, simulation data).

b. Analysis using the data of ten participants

Here we replicated the reported mixed ANOVAs and
the assessment of group averaged performance excluding
the data of the two last completed participants (S06 and
S12), i.e., only using data from the preregistered number
of participants (N = 10).

Behavioral performance (as in Sec. III A):
Two-way mixed ANOVA on SNR: This analysis

was run to test the learning effect on SNR (comparable
results as with N = 12). There was a significant ef-
fect of the factors masker (F (2, 287) = 15.82, p < 0.001)
and test block (F (1, 287) = 33.06, p < 0.001). As with
N = 12, a post-hoc analysis confirmed that the effect
of masker type was due to a difference in the bump-
noise condition compared to the other two types of noise,
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FIG. A.4. (Color online) Between-noise cross-prediction (3-

by-3) matrices for (A) each participant and for (B) each ar-

tificial listener, using ∆PA. The pink boxes indicate cross

predictions that provided significant better-than-chance ∆PA

values. In each 3-by-3 matrix, the main diagonal takes values

that were overall higher than those from the off-diagonals.

with white and MPS noises having statistically the same
SNRs.

Two-way mixed ANOVA on d′ (comparable re-
sults as with N = 12): There was a significant effect of
the factors masker (F (2, 137) = 10.24, p < 0.001) and
SNR (F (1, 137) = 788.09, p < 0.001).

Two-way mixed ANOVA on c (comparable
results as with N = 12): There was a significant effect
for the factor SNR (F (1, 137) = 13.12, p < 0.001), but
not for the factor masker (F (2, 137) = 1.41, p = 0.249).

Out-of-sample prediction accuracy (as in Sec. III C):
This analysis is comparable to the results shown in Fig. 7.
The group results for the ∆PA metric are 8.4, 13.3, and
12.0%, for the white, bump, and MPS noises, respec-
tively. For the analysis of incorrect trials only, the corre-
sponding values were 12.3, 18.3, and 16.9%.

4. The artificial listener

As briefly described in Sec. II C, an auditory model
was used to simulate the performance of an average
normal-hearing listener who uses a fixed decision crite-
rion to compare sounds. In this sense, the model is used
as an artificial listener.
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FIG. A.5. Pearson correlation values for ACIs between par-

ticipants obtained from the experimental data (top panels,

A–C) or obtained from simulations (middle panels, D–F).

The correlation values in the bottom row were obtained from

the ACIs between noise conditions for each participant, and

then the values were averaged across participants. All matri-

ces in this figure are symmetric with respect to their diagonal.

a. Model description

The model consists of a front-end and a back-end
processing. The front-end processing converts an in-
coming sound waveform into an internal representation,
i.e., into a representation that is believed to reflect how
sounds are actually transformed along the ascending au-
ditory pathway (e.g., Osses et al., 2022).

a. Front-end processing.

The auditory model accepts monaural input wave-
forms and delivers a three-dimensional signal in time,
audio frequency, and modulation frequency, that are ex-
pressed in model units (MU), an arbitrary amplitude unit
(e.g., Kohlrausch et al., 1992). Most of the model stages
have been previously described in detail (Osses, 2018;
Osses and Kohlrausch, 2018, 2021). Here, we provide a
short description of each stage, emphasizing some small
implementation updates.

Outer- and middle-ear filtering (updated):
Two cascaded 512-tap FIR filters are used to produce
a combined bandpass frequency response (Osses et al.,
2022, their Fig. 3). In contrast to the previous model
version (Osses and Kohlrausch, 2021), the middle-ear fil-
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FIG. A.6. ACIs derived from the simulations using the ar-

tificial listener (ACISIs) for white (column A), bump (col-

umn B), and MPS noises (column C) using the set of noises

from participants S04–S12 (top to bottom rows), which were

not shown in Fig. 10. The values in gray indicate the corre-

sponding mean simulated SNR threshold expressed in dB.

ter is implemented using the linear-phase version instead
of its minimum-phase implementation. A group delay
compensation is applied to the filtered signal.

Gammatone filter bank: Set of 31 audio fre-
quency bands with fc between 86.9 Hz and 7819 Hz,
spaced at 1 ERBN , as described by Hohmann (2002).
Only the real part of the complex-valued outputs of the
filter bank is used.

Half-wave rectification and LPF: The half-wave
rectification is followed by a chain of five cascaded first-
order IIR filters with f cut-off= 2000 Hz. This chain pro-
duces a filter response with a −3-dB point at 770 Hz.

Adaptation loops: This stage approximates the
effect of auditory adaptation at the level of the au-
ditory nerve by using five feedback loops based on a
resistor-capacitance analogy (full details in Osses and
Kohlrausch, 2021, App. B) with time constants τ = 5,
50, 129, 253, and 500 ms. We used the parameter config-
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FIG. A.7. ACI for participant S01 for the MPS condition

using different hyperparameter λ values. During the fitting

procedure, the higher the λ value the fitting procedure looks

for less and smoother time-frequency cue candidates. The

right-most ACI corresponds to the null ACI, where the only

non-zero parameter is the intercept ck. The lambda values in

this figure range between λ1 = 1.1 · 10−3 and λ20 = 0.1.

uration indicated by Osses and Kohlrausch (2021) that
uses a limiter factor of 5 instead of 10.

Modulation filter bank (updated): The imple-
mentation was mainly based on the filter banks by Osses
and Kohlrausch (2021) and Jepsen et al. (2008). How-
ever, (1) the first-order 150-Hz LPF was implemented as
an attenuation gain (see, Osses and Kohlrausch, 2021,
their Fig. 14C), and (2) the filters were designed using a
Q factor of 1, resulting in 7 modulation filters centered
at 2.5, 5, 10, 25, 75, 225, and 675 Hz.

b. Back-end stage.

The auditory model performed the same experimen-
tal paradigm as each of the twelve participants for the
three noise conditions. For the simulations, the same or-
der of noise presentation and the same level roving as the
participants was used, but the exact SNR in each interval
depended on the specific model responses.

To generate a decision outcome the internal represen-
tation of the current trial Rc—the output of the front-
end processing—was compared with the /aba/ (T1) and
/ada/ (T2) template, derived at a supra-threshold SNR of
−6 dB (i.e., with the speech sample presented at a level
of 59 dB SPL). The comparison was based on a cross
correlation at lag 0. The artificial listener indicated the
option “aba” if Rc ·T1 ≥ Rc ·T2 +K or the option “ada”
if Rc · T1 < Rc · T2 +K (Osses and Varnet, 2021). More
formally:

responsemodel=

{
“aba” if Rc · T1 −Rc · T2 ≥ K
“ada” if Rc · T1 −Rc · T2 < K

(A1)

b. Calibration of the model

The bias K depended on the exact set of templates
and on the type of noise. The use of a K = 0 led to biased
model responses. For this reason we used K as a free
parameter. The fitting of this parameter was performed
before the simulation of each new set of noises, using a
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constant stimulus procedure at a very low speech level
arbitrarily set to an SNR of −40 dB (i.e., at a speech
level of 25 dB SPL)—a condition that the model should
not be able to solve—and we stored the cross-correlation
values (CCV = Rc · T1 −Rc · T2) for all 4000 trials. The
final K value was chosen to be the median of the CCVs.

c. ACIs derived from simulations

The ACIs derived from simulations that used the set
of noises of participants S01–S03 were shown in Fig. 10,
in the main text. The remaining ACIs that used the set
of noises of participants S04–S12 are shown in Fig. A.6.

5. ACIs for different hyper parameter values

The time-frequency weights in the ACIk and inter-
cept ck are obtained during the GLM fitting procedure
(see Sec. II E 3), using the noise vector Nk,i and the par-
ticipant’s (or artificial listener’s) responses. During the
10-fold cross-validation procedure of the lasso regression,
different hyperparameter values are evaluated. The in-
termediate ACIs obtained for four different values of the
hyperparameter λ applied to the data of participant S01
in the MPS condition are shown in Fig. A.7. The right-
most ACI, the null ACI, is particularly important for
the prediction performance that we used, because the
goodness-of-fit metrics of CVDt and PA (see Sec. II E 4 a)
were referenced to that null ACI, whose performance was
nearly close to chance. An additional scaling was applied
to the PA metric, to correct for guessing, with expected
∆PA values between 0% (performance at chance accord-
ing to the null ACI) and 100%.
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