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Abstract
How humans learn new visual objects is a longstand-
ing scientific problem. Previous work has led to a di-
verse collection of models for how it is accomplished,
but a current limitation in the field is a lack of em-
pirical benchmarks which can be used to evaluate and
compare specific models against each other. Here, we
use online psychophysics to measure human behav-
ioral learning trajectories over a set of tasks involving
novel 3D objects. Consistent with intuition, these re-
sults show that humans generally require very few im-
ages (≈ 6) to approach their asymptotic accuracy, find
some object discriminations more easy to learn than
others, and generalize quite well over a range of im-
age transformations after even one view of each object.
We then use those data to develop benchmarks that
may be used to evaluate a learning model’s similarity
to humans. We make these data and benchmarks pub-
licly available [GitHub], and, to our knowledge, they
are currently the largest publicly-available collection of
learning-related psychophysics data in humans. Addi-
tionally, to serve as baselines for those benchmarks, we
implement and test a large number of baseline models
(n=1,932), each based on a standard cognitive theory of
learning: that humans re-represent images in a fixed,
Euclidean space, then learn linear decision boundaries
in that space to identify objects in future images. We
find some of these baseline models make surprisingly
accurate predictions. However, we also find reliable
prediction gaps between all baseline models and hu-
mans, particularly in the few-shot learning setting.

Introduction
People readily learn to recognize new visual objects. As
an individual receives examples (images) of some new
object, their ability to categorize new, unseen views of
that object increases, possibly very rapidly (in the limit,
from one example). What are the mechanisms that al-
low an adult human to do so?

Efforts from cognitive science, neuroscience, and ma-
chine learning have lead to a diverse array of ideas to
understand and replicate this specific human ability,
and human example-based learning in general.

These works range in levels of specification, from
conceptual frameworks that do not directly offer quan-
titative predictions (1–6), models which depend on un-
specified intermediate computations (i.e. non-image-
computable models) (7–10), to end-to-end learning
models which take raw pixels as input (11–17).

An important step in determining which (if any) of
these ideas might lead to accurate descriptions of hu-
man object learning is to implement them in forms that
allow for quantitative predictions in novel situations
(i.e. predictions for novel images and image sequences
from image-computable learning models), then to com-
pare those predictions to behavioral measurements of
humans as they perform the same learning tasks.

However, while empirical behavioral benchmarks ex-
ist for visual tasks involving known object categories
(18–20), the field currently lacks a publicly-available
set of benchmarks for comparing models to humans as
they learn novel object categories, making it difficult to
gauge progress in the field.

To address this gap, we aimed to create and release
benchmarks that allow for the standardized assessment
of any image-computable object learning model of hu-
man learning. We wished to make minimal assump-
tions about the learning models that might be com-
pared today or in the future, and we required only that
they are computable in the following sense: on each test
trial, they can take a pixel image as input, choose an
action, and receive scalar-valued feedback from the en-
vironment (e.g. to drive any changes to their internal
state).

Our first and primary experimental goal in this study
was to measure human learning trajectories across a va-
riety of elementary binary object discrimination learn-
ing tasks involving novel 3D objects rendered at highly
varied views (n=64 subtasks). We could then use the re-
sultant dataset to build a benchmark which compares a
core signature of any learning system to that of humans:
its rate and pattern of learning across a variety of novel
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situations.
Based on prior suggestions of where humans may be

particularly powerful (13, 21), our secondary goal was
to measure human behavior during the special case of
"one-shot" learning, where the learner receives a single
example from each category before being asked to gen-
eralize to unseen examples. We therefore aimed to cre-
ate a second benchmark which compares a model’s and
humans’ ability to be generalize from a single exam-
ple of novel objects to a range of image transformations
(e.g. translation, scaling, and 3D rotation).

To serve as baselines for these benchmarks, we im-
plemented then tested models from a standard cog-
nitive theory of learning, which posits that adult hu-
mans re-represent incoming visual stimuli in a stable,
preexisting multi-dimensional Euclidean space, build
categorization boundaries in that space by applying
some learning rule to exemplars, and apply this learned
boundary to categorize new examples (1, 5, 6, 8, 17, 22).
To actually build those baseline models, we drew from
ongoing efforts in computational cognitive science (23–
28) and visual neuroscience (29–31) in building and
validating image-computable models of human visual
representations, primarily based on intermediate lay-
ers of deep convolutional neural networks (DCNNs).
We then combined those representational models with
trainable decision models that have been considered
neurally plausible, namely linear decoders which are
adjusted by scalar reward-based update rules (32–34).

In summary, our goal in this work was to take the fol-
lowing scientific steps: measure human behavior across
a range of reinforced object choice learning tasks, im-
plement baseline learning models that are capable of
tuning their behavior during those same tasks for any
novel image sequence, and compare and contrast the
behavior of humans to the behavior produced by (i.e.
predicted by) each of the models.

We reasoned that, if any such models were found
to be statistically indistinguishable from humans, they
could then serve as leading scientific hypotheses to
drive further experiments. If they were not found, pre-
dictive gaps could be used to guide future work in
improving models of human object learning. Either
way, the benchmarks created in this work facilitate a
standard evaluation of current and future visual object
learning models.

Materials and Methods

1 Overview of experiments
We studied human learning of novel object discrimina-
tion tasks. We aimed to assess this ability in two exper-
iments (Experiment 1 and Experiment 2), and we pro-
vide a brief overview of these experiments below.

For both experiments, the core measurement we
sought to obtain was the discrimination performance
of a typical subject as they received increasing numbers

of exposures to images of the to-be-learned (i.e. new)
objects. Conceptually, we consider such measurements
to be an assessment of the human ability to learn noun
labels for new objects. Because we are here primarily
focused on the typical human ability, our primary mea-
sures were computed by averaging over many subjects.

We assumed that different pairs of objects result in
potentially different rates of learning, and we wanted
to capture those differences. Thus, in Experiment 1,
we aimed to survey the empirical landscape of this
human ability by acquiring this learning curve mea-
surement for many different pairs of objects (n=64
pairs). Specifically, for each pair of to-be-learned ob-
jects (referred to as a "subtask"), we aimed to measure
(subject-averaged) human learning performance across
100 learning trials, where each trial presented a test im-
age generated by one of the objects under high view-
point uncertainty (e.g. random backgrounds, object lo-
cation, and scale). We refer to this 100-dimensional set
of measurements as the learning curve for each subtask.

In Experiment 2, we aimed to measure the pattern
of human learning that results from their experience
with just a single canonical example of each of the to-be-
learned objects (a.k.a. "one-shot learning"). Specifically,
we wished to measure the pattern of human discrimi-
nation ability over various kinds of identity-preserving
image transformations (e.g, object scaling, transforma-
tion, and rotation). In total, we tested nine kinds of
transformations. We anticipated that humans would
show distinct patterns of generalization across these
transformations, and we aimed to measure the human
commonalities in those patterns (i.e. averages across
subjects).

Experiments 1 and 2 both utilized a two-way object
learning task paradigm that is conceptually outlined
in Figure 1B. The two experiments differed only in the
manner in which test images were generated and sam-
pled for presentation, and we describe those differences
in detail in their respective sections. Before that, we
provide more detail on the specific procedures and pa-
rameters we used to implement the common two-way
object learning task paradigm.

2 Behavioral task paradigm
For both experiments, subjects were recruited from Me-
chanical Turk (35), and ran tasks on their personal com-
puters. Each experiment consisted of a set of subtasks.
For each subtask, we asked a population of human sub-
jects to learn that subtask, and we refer to the collection
of trials corresponding to a specific subject in a subtask
as a “session".

At the beginning of each session, the subject was in-
structed that there would be two possible objects – one
belonging to the "F" category and the other belonging
to the "J" category. The subject’s goal was to correctly
indicate the category assignment for each test image.
The specific instructions were: "On each trial, you’ll view
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3 Experiment 1: Learning objects under high view variation

a rapidly flashed image of an object. Your task is to figure out
which button to press (either "F" or "J" on your keyboard)
after viewing a particular image. Each button corresponds to
an object (for example, a car might correspond to F, while a
dog might correspond to J)."

Subjects were also informed that they would receive
a monetary bonus (in addition to a base payment) for
each correctly indicated test image, incentivizing them
to learn. We next describe the structure of a single trial
in detail below.

Test image presentation. Each trial began with a display
start screen that was uniformly gray except for a small
black dot at the center of the screen, which reliably in-
dicated the future center of each test image.1 In this
phase, the subject could initiate the trial by pressing
the space bar on their keyboard. Once pressed, a test
image (occupying ~6◦ of the visual field) belonging to
one of the two possible object categories immediately
appeared. That test image remained on the screen for
~200 milliseconds before disappearing (and returning
the screen to uniform gray).2

For each subject and each trial, the test image was se-
lected by first randomly picking (with equal probabil-
ity) one of the two objects as the generator of the test
image. Then, given that selected object, an image of
that object was randomly selected from a pool of pre-
rendered possible images. Test images were always se-
lected without replacement (i.e. once selected, that test
image was removed from the pool of possible future
test images for that behavioral session).

Subject choice reporting. Fifty milliseconds after the dis-
appearance of the test image, the display cued the sub-
ject to report the object that was "in" the image. The
display showed two identical white circles – one on the
lower left side of the fixation point and the other on the
lower right side of the fixation point. The subject was
previously instructed to select either the "F" or "J" keys
on their keyboard. We randomly selected one of the
two possible object-to-key mappings prior to the start
of each session, and held it fixed throughout the entire
session. This mapping was not told to the subject; thus,
on the first trial, subjects were (by design) at chance ac-
curacy.

To achieve perfect performance, a subject would need
to associate each test image of an object to its corre-
sponding action choice, and not to the other choice (i.e.,
achieving a true positive rate of 1 and a false positive
rate of 0).

1The center of the test image is not necessarily the same as the center
of the object in the test image.

2We assumed our subjects used computer monitors with a 16:9 as-
pect ratio, and naturally positioned themselves so the horizontal ex-
tent of the monitor occupied between 40◦-70◦ degrees of their vi-
sual field. Under that assumption, we estimate the visual angle
of the stimulus would vary between a minimum and maximum of
≈ 4◦ − 8◦. Given a monitor has a 60 Hz refresh rate, we expect the
actual test image duration to vary between ≈ 183− 217 milliseconds.

Subjects had up to 10 seconds to make their choice.
If they failed to make a selection within that time, the
task returned to the trial initiation phase (above) and
the outcome of the trial was regarded as being equiva-
lent to the selection of the incorrect choice.3.

Trial feedback. As subjects received feedback which in-
formed them whether their choice was correct or incor-
rect (i.e. corresponding to the object that was present
in the preceding image or not), they could in principle
learn object-to-action associations that enabled them to
make correct choices on future trials.

Trial feedback was provided immediately after the
subject’s choice was made. If they made the correct
choice, the display changed to a feedback screen that
displayed a reward cue (a green checkmark). If they
made an error, a black "x" was displayed instead. Re-
ward cues remained on the screen for 50 milliseconds,
and were accompanied by an increment to their mon-
etary reward (see above). Error cues remained on the
screen for 500 milliseconds. Following either feedback
screen, a 50 millisecond delay occurred, consisting of a
uniform gray background. Finally, the display returned
to the start screen, and the subject was free to initiate the
next trial.

3 Experiment 1: Learning objects under high view
variation

Our primary human learning benchmark (Experiment
1) was based on measurements of human learning
curves over subtasks involving images of novel ob-
jects rendered under high view-variation. We describe
our procedure for generating those images, collecting
human behavioral measurements, and benchmarking
models against those measurements below.

3.1 Stimulus image generation
We designed 3D object models (n=128) using the “Mu-
tator" generative design process (36). We generated a
collection of images for each of those 3D objects us-
ing the POV-Ray rendering program (37). To generate
each image, we randomly selected the viewing parame-
ters of the object, including its projected size on the im-
age plane (25%-50% of total image size, uniformly sam-
pled), its location (±40% translation from image cen-
ter for both x and y planes, uniformly sampled), and
its pose relative to the camera (uniformly sampled ran-
dom 3D rotations). We then superimposed this view on
top of a random, naturalistic background drawn from
a database used in a previously reported study (38).
All images used in this experiment were grayscale, and
generated at a resolution of 256x256 pixels. We show
an example of 32 objects (out of 128 total) in Figure 1A,
along with example stimulus images for two of those
objects on the right.

3In practice, this was quite rare and corresponded to ~0.04% of all
trials that are included in the results in this work.
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3.2 Human behavioral measurements

Design of subtasks. We randomly paired the 128 novel
objects described above into pairs (without replace-
ment) to create n=64 subtasks for Experiment 1, each
consisting of a distinct pair of novel objects. Each be-
havioral session for a subtask consisted of 100 trials,
regardless of the subject’s performance. On each trial
of a session, one of the two objects was randomly se-
lected, and then a test image of that object was drawn
randomly without replacement from a pre-rendered set
of 100 images of that object (generated using the pro-
cess above). That test image was presented to the sub-
ject as described in Methods 2 above. We collected 50
sessions per subtask and all sessions for each subtask
were obtained from separate human subjects, each of
whom we believe had not seen images of either of the
subtask’s objects before participation.

Subject recruitment and data collection. Human subjects
were recruited via the Mechanical Turk platform (35)
through a two-step screening process. The goal of the
first step was to verify that our task software success-
fully ran on their personal computer, and to ensure our
subject population understood the instructions. To do
this, subjects were asked to perform a prescreening sub-
task with two common objects (elephant vs. bear) using
100 trials of the behavioral task paradigm described in
Methods 2 above. If the subject failed to complete this
task with an average overall accuracy of at least 85%,
we excluded them from all subsequent experiments in
this study.

The goal of the second step was to allow subjects to
further familiarize themselves with the task paradigm.
To do this, we asked subjects to complete a series of
four "warmup" subtasks, each involving two novel ob-
jects (generated using the same “Mutator" software, but
distinct from the 128 described above). Subjects who
completed all four of these warmup subtasks, regard-
less of accuracy, were enrolled in Experiment 1. Data
for these warmup subtasks were not included in any
analysis presented in this study. In total, we recruited
n = 70 individual Mechanical Turk workers for Experi-
ment 1.

Once a subject was recruited (above), they were al-
lowed to perform as many of the 64 subtasks as they
wanted, though they were not allowed to perform the
same subtask more than once (median n = 61 total
subtasks completed, min=1, max=64). We aimed to
measure 50 sessions per subtask (i.e. 50 unique sub-
jects), where each subject’s session consisted of an in-
dependently sampled, random sequence of trials. Each
of these subtasks followed the same task paradigm
described in Methods 2, and each session lasted 100
trials. Thus, the total amount of data we aimed
to collect was 64 subtasks × 100 trials × 50 subjects =
320k measurements.

Behavioral statistics in humans. We aimed to estimate a
typical subject’s accuracy at each trial, conditioned on
a specific subtask. We therefore computed 64× 100 ac-
curacy estimates (subtask× trial) by taking the sample
mean across subjects. We refer to this [64,100] matrix of
point statistics as Ĥ. Each row vector Ĥs has 100 entries,
and corresponds to the mean human "learning curve"
for subtask s = {1,2, ...64}.

Because each object was equally likely to be shown on
any given test trial, each of these 100 values of Ĥs may
be interpreted as an estimate of the average of the true
positive and true negative rates (i.e. the balanced accu-
racy). The balanced accuracy is related to the concept
of sensitivity from signal detection theory – the ability
for a subject to discriminate two categories of signals
(39). We note that an independent feature of signal de-
tection behavior is the bias – the prior probability with
which the subject would report a category. We did not
attempt to quantify or compare the bias in models and
humans in this study.

3.3 Simulating behavioral sessions in computational mod-
els

To obtain the learning curve predictions of each base-
line computational model, we required that each model
perform the same set of subtasks that the humans per-
formed, as described above. We imposed the same re-
quirements on the model as we did on the human sub-
jects: that it begins each session without knowledge of
the correct object-action contingency, that it should gen-
erate a action choice based solely on a pixel image in-
put, and that it can update its future choices based on
the history of scalar-valued feedback ("correct" or "in-
correct"). If the choices later in the session are more
accurate than those earlier in the session, then we col-
loquially say that the model has "learned", and com-
paring and contrasting the learning curves of baseline
models with those of humans was a key goal of Exper-
iment 1.

We performed n=32,000 simulated behavioral ses-
sions for each model (500 simulated sessions for each
of the 64 subtasks), where on each simulation a random
sequence of trials was sampled in an identical fashion
as in humans (see above). During each simulation, we
recorded the same raw "behavioral" data as in humans
(i.e. sequences of correct and incorrect choices), then
applied the same procedure we used to compute Ĥ
(see above) to compute an analogous collection of point
statistics on the model’s raw behavior, which we refer
to as M̂.

3.4 Comparing model learning with human learning

The learning behavior generated by an image-
computable model of human learning (M̂) should min-
imally replicate each of the entries in Ĥ to the limits of
statistical noise. To identify any such models, we de-
veloped a scoring procedure to compare the similarity
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3 Experiment 1: Learning objects under high view variation

of the learning behavior in humans with any candidate
learning model. We describe this procedure below.

Bias-corrected mean squared error. Given the matrix of
human learning measurements Ĥ (accuracy estimates
for 64 subtasks over 100 trials) and corresponding
model measurements (M̂), we computed a standard
goodness-of-fit metric, the mean-squared error (MSE,
where a lower value indicates a better model). The for-
mula for the MSE is given by:

MSE(M̂, Ĥ) =
1

64 · 100

64

∑
s=1

100

∑
t=1

(M̂st − Ĥst)
2

Because each Ĥst and M̂st is a random variable (i.e.
sample means), the MSE is a random variable, and has
an expected value. The expected value of MSE(M̂, Ĥ)
consists of two conceptual components: the expected
difference between the model and humans, and in-
tractable noise components:

E[MSE(M̂, Ĥ)] =
1

64 · 100

64

∑
s=1

100

∑
t=1

(E[M̂st]− E[Ĥst])
2

+ σ2 (Ĥst
)
+ σ2 (M̂st

)
Where E[·] denotes the expected value, and σ2(·)

denotes the variance due to finite sampling (a.k.a.
"noise"). It can be seen that the variance terms, which
are always positive, create a lower bound on the ex-
pected MSE. That is, even if a model is expected to per-
fectly match the subject-averaged behavior of humans
(i.e. E[Mst] = E[Hst], for all subtasks s and trials t), it
cannot be expected to achieve an error below this lower
bound.

The expression above also shows how the expected
MSE for a model depends not only on its expected pre-
dictions E[M̂st], but also its sampling variance σ2(M̂st),
which depends on the predictions of the model itself.4

Because the sampling variance of the model depends
on its predictions, it is therefore conceptually possible
that a model with worse expected predictions could
achieve a lower expected MSE, simply because its as-
sociated sampling variance is lower.5

We corrected for this inferential bias by estimating,
then subtracting, these variance terms from the “raw"
MSE for each model we tested.6. We refer to this bias-
corrected error as MSEn (aka the bias-corrected MSE):

4This can be seen by the expression for the variance of M̂st, which is
a mean over independent (but not necessarily identically distributed)
Bernoulli variables: σ2 (M̂st

)
= pst(1−pst)

nst
. The value of E[M̂st] is the

expected behavior of the model on trial t of subtask s, and nst is the
number of model simulations.

5And/or because more model simulations were performed –
though in this study, all tested models performed the same number
of simulations, n = 500.

6In practice, this correction was relatively small, because of the high
number of simulations that were conducted.

MSEn(M̂, Ĥ) =
1

64 · 100

64

∑
s=1

100

∑
t=1

(M̂st − Ĥst)
2 − ŝ2 (M̂st

)
Where s2 (M̂st

)
is the unbiased estimator for the vari-

ance of M̂st:

ŝ2 (M̂st
)
=

kst
nst

(
1− kst

nst

)
nst − 1

Intuitively, MSEn is an estimate of the mean-squared
error that would be achieved by a model, if an infinite
number of simulations of that model were to be per-
formed.

We note that it is possible to perform an addi-
tional bias-correction step by estimating then removing
σ2 (Ĥst

)
terms, which is the error attributable to the ex-

perimental variance in our estimate of human perfor-
mance on subtask s and trial t. We chose not do so here,
as it would not affect any inferences on models.

Finally, to aid in the human interpretation of these er-
ror scores, one may take the square root of MSEn to get
a rough estimate of the average deviation which would
be expected between a model and humans,7 in the units
of the measurements (i.e. accuracies). We refer to this
square root statistic using the notation

√
MSEn.

Null hypothesis testing. For each model we tested, we
attempted to reject the null hypothesis that E[Ĥst] =
E[M̂st], for all subtasks s and trials t. To do so, we
approximated the distribution for MSEn(Ĥ, M̂) that
would be expected under the null hypothesis, using
bootstrapping (where bootstrap samples of Ĥ and a
null model M̂ were created by resampling over indi-
vidual human sessions).

If a model’s actual MSEn(M̂, Ĥ) score fell above the α-
quantile of the estimated null distribution, we rejected
it on the basis of having significantly more error than
what would be expected from a "true" model of humans
(with estimated significance level α). We approximated
the null distribution using B=1,000 bootstrap samples.

Lapse rate correction. Lastly, we corrected for any lapse
rates present in the human data. We defined the lapse
rate as the probability with which a subject would ran-
domly guess on a trial, and we assumed this rate was
constant across all trials and subtasks. To correct for
any such lapse rate in the human data, we fit a sim-
ulated lapse rate γ parameter to each model, prior to
computing its MSEn. Given a lapse rate parameter
of γ (ranging between 0 and 1), a model would, on
each trial, guess randomly with probability γ. For each
model, we identified the value of γ that minimized its
empirical MSEn .

7The root mean-squared error is in general a biased estimator.
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We note that fitting γ can only drive the behavior of
a model toward randomness; it cannot artificially intro-
duce improvements in its learning performance.

4 Experiment 2: One-shot human object learning
benchmark

For the second benchmark in this study, we compared
one-shot generalization in humans and models. Our
basic approach was to allow humans to learn to distin-
guish between two novel objects using a single image
per object, then test them on new, transformed views of
the support set.

4.1 One-shot behavioral subtasks
We used the same task paradigm described in Methods
2 (i.e. two-way object discrimination with evaluative
feedback). We created 64 object models for this exper-
iment (randomly paired without replacement to give a
total of 32 subtasks). These objects were different from
the ones used in the previous benchmark (described in
Subsection 3).

At the beginning of each session, we randomly as-
signed the subject to perform one of 32 subtasks. Iden-
tical to Experiment 1, each trial required that the subject
view an image of an object, make a choice ("F" or "J"),
and receive feedback based on their choice. Each ses-
sion consisted of 20 trials total, which was split into a
"training phase" and "testing phase", which we describe
below.

Training phase. The first ten trials (the "training phase")
of the session were based on a single image for each ob-
ject object (i.e. n = 2 distinct images were shown over
the first 10 trials). We ensured the subject performed
trial with each training image five times total in the
training phase; randomly permuting the order in which
these trials were shown.

Testing phase. On trials 11-20 of the session (the "test-
ing phase"), we presented trials containing new, trans-
formed views of the two images used in the train-
ing phase. For each trial in the test phase, we ran-
domly sampled an unseen test image, each of which
was a transformed version of one of the training im-
ages. There were 36 possible transformations (9 trans-
formation types, with 4 possible levels of strength). We
describe how we generated each set of test images in
the next section (see Figure 1B for examples). On the
15th and 20th trial, we presented "catch trials" consist-
ing of the original training images. Throughout the test
phase, we continued to deliver evaluative feedback on
each trial.

4.2 Stimulus generation
Here, we describe how we generated all of the images
used in Experiment 2. First, we generated each 3D ob-
ject model using the Mutator process (see 3.1)). Then,
for each object (n=64 objects), we generated a single

canonical training image – a 256x256 grayscale image
of the object occupying ≈ 50% of the image plane, cen-
tered on a gray background. We randomly sampled its
three axes of pose from the uniform rotational distribu-
tion.

For each training image, we generated a correspond-
ing set of test images by applying different kinds of im-
age transformations we wished to measure human gen-
eralization on. In total, we generated test images based
on 9 transformation types, and we applied each trans-
formation type at 4 levels of "strength". We describe
those 9 types with respect to a single training image,
below.

Translation. We translated the object in the image plane
of the training image. To do so, we randomly sampled
a translation vector in the image plane (uniformly sam-
pling an angle from θ ∈ [0°,360°]), and translated it r
pixels in that direction. We repeated this process (inde-
pendently sampling θ each time) for r = 16,32,64, and
96 pixels (where the total image size 256× 256 pixels),
for two iterations (for a total of eight translated images).

Backgrounds. We gradually replaced the original, uni-
form gray background with a randomly selected, nat-
uralistic background. Each original background pixel
bij in the training image was gradually replaced with a
naturalistic image c using the formula b′ij = (1− α)bij +

αcij. We varied α at four logarithmically spaced inter-
vals, α = 0.1,0.21,0.46,1. Note that at α = 1, the origi-
nal gray background is completely replaced by the new,
naturalistic background. We generated two test images
per α level, independently sampling the background on
each iteration (for a total of eight images per object).

Scale. We rescaled the object’s size on the image to
12.5%, 25%, 50%, and 150% of the original size (four
images of the object at different scales).

Out-of-plane rotations. We rotated the object along
equally spaced 45° increments, rendering a test image
at each increment. We did so along two separate ro-
tational axes (horizontal and vertical), leading to n=13
test images total based on out-of-plane rotations.

In-plane rotation. We rotated the object inside of the
image-plane, along 45° increments. This resulted in n=7
test images based on in-plane rotations.

Contrast. We varied the contrast of the image. For each
pixel pij (where pixels range in value of 0 and 1), we
adjusted the contrast using the equation p′ij = 10c(pij)+

0.5(1− 10c), varying c from −0.8,−0.4,0.4 and 0.8.

Pixel deletion. We removed pixels corresponding to the
object in the training image, replacing them with the
background color (gray). We removed 25%, 50%, 75%,
and 95% of the pixels, selecting the pixels randomly for
each training image.
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4 Experiment 2: One-shot human object learning benchmark

Blur. We blurred the training image using a Gaussian
kernel. We applied blurring with kernel radii of 2, 4,
8, and 16 pixels (with an original image resolution of
256× 256 pixels) to create a total of 4 blurred images.

Gaussian noise. We applied Gaussian noise to the pix-
els of the training image. For each pixel pij, we added
i.i.d. Gaussian noise:

p′ij = pij +N (0,σ)

We applied noise with σ = 0.125, 0.25, 0.375 and 0.5
(where pixels range in luminance value between 0 and
1). We then clipped the resultant pixels to lie between 0
and 1.

4.3 Human behavioral measurements
Subject recruitment. We used the same two-step subject
recruitment procedure described above (3.2), and re-
cruited n=170 human subjects. Some of these subjects
overlapped with those in Experiment 1 (n=9 subjects
participated in both experiments).

All recruited subjects were invited to participate in up
to 32 behavioral sessions. We disallowed them from re-
peating subtasks they had performed previously. Sub-
jects were required to perform a minimum of four such
behavioral sessions. In total, we collected n = 2,547 ses-
sions (≈ 51k trials) for Experiment 2.

Behavioral statistics in humans. We aimed to estimate the
expected accuracy of a subject on each of the 36 possible
transformations, correcting for attentional and memory
lapses.

To do so, we combined observations across the eight
test trials in the testing phase to compute accuracy es-
timate for each of the 36 transformations; that is, we
did not attempt to quantify how accuracy varied across
the testing phase (unlike the previous benchmark). We
also combined observations across the 32 subtasks in
this experiment. In doing so, we were attempting to
measure the average generalization ability for each type
of transformation (at a specific magnitude of transfor-
mation change from the training image), ignoring the
fact that generalization performance likely depends on
both the objects to be discriminated (i.e. the appearance
of the objects in each subtask), the specific training im-
ages that were used, and the testing views of each ob-
ject (e.g. the specific way in which an object was ro-
tated likely affects generalization – not just the absolute
magnitude of rotation). In total, we computed 36 point
statistics (one per transformation).

Estimating performance relative to catch performance. Here
we assumed that each human test performance mea-
surement was based on a combination of the subject’s
ability to successfully generalize, a uniform guessing
rate (i.e. the probability with which a subject executes
a 50-50 random choice), and the extent to which the

subject successfully acquired and recalled the training
image-response contingency (i.e. from the first 10 tri-
als). We attempted to estimate the test performance of
a human subject that could 1) fully recall the association
between each training image and its correct choice dur-
ing the training phase, and 2) had a guess rate of zero
on the test trials.

To do so, we used trials 15 and 20 of each session,
where one of the two training images was presented to
the subject ("catch trials"). Our main assumption here
was that performance on these trials would be 100% as-
suming the subject had perfect recall, and had a guess
rate of zero. Under that assumption, the actual, empir-
ically observed accuracy pcatch would be related to any
overall guess and/or recall failure rate γ by the equa-
tion γ = 2− 2pcatch. We then adjusted each of the point
statistics (i.e. test performances) to estimate their val-
ues had γ been equal to zero, by applying the following
formula:

p′ =
p

1− γ
− γ

2− 2γ

We refer to the collection of 36 point statistics (follow-
ing lapse rate correction) as Ĥos.

4.4 Comparing model one-shot learning with human one-
shot learning

Model simulation of Experiment 2. For this benchmark, we
required that a model perform a total of 16,000 sim-
ulated behavioral sessions (500 simulated sessions for
each of the 32 possible subtasks). Each simulated ses-
sion proceeded using the same task paradigm as in hu-
mans (i.e. 10 training trials, followed by a test phase
containing 8 test trials and 2 catch trials). Based on the
model’s behavior over those simulations, we computed
the same set of point statistics described above, though
we did not correct for any attentional lapses or recall
lapses in the model, which we assumed was absent in
models. In this manner, for each model, we obtained a
collection of point statistics reflecting their behavior on
this experiment, M̂os.

Noise-corrected mean-squared error and null hypothesis test-
ing. We followed the same approach as in our primary
benchmark (introduced in Methods 3.4) to summarize
the alignment of a model with humans. That is, we
used the bias-corrected error metric MSEn as our metric
of comparison:

MSEn(M̂os, Ĥos) =
1
36

36

∑
i=1

(
M̂os

i − Ĥos
i
)2 − ŝ2 (M̂os

i
)

We estimated the null distribution for MSEn using
bootstrap resampling, following the same procedure
outlined in the first benchmark (bootstrap resampling
individual sessions).
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5 Baseline model family
For a model to be scored on the benchmarks we de-
scribed above, it must fulfill only the following three
requirements: 1) it takes in any pixel image as its only
sensory input (i.e. it is image computable), 2) it can pro-
duce an action in response to that image, and 3) it can
receive scalar-valued feedback (rewards). Here, we im-
plemented several baseline models which fulfill those
requirements.

All models we implemented consist of two com-
ponents. First, there is an encoding stage which re-
represents the raw pixel input as a vector in a multidi-
mensional Euclidean space.The parameters of this part
of the model are held fixed (i.e., no learning takes place
in the encoding stage).

The second part is a tunable decision stage, which takes
that representational vector and produces a set of a ac-
tion preferences (in this study, a = 2). The action with
the highest preference score is selected, and ties are bro-
ken randomly.

After the model takes an action, the environment may
respond with some feedback (e.g. positive or negative
reward). At that point, the decision stage can process
that feedback and use it to change its parameters (i.e.
to learn). All learning in the models tested here takes
place only in the parameters of the decision stage; the
encoding stage has completely fixed parameters.

In total, any given model in this study is defined by
these two components – the encoding stage and the de-
cision stage. We provide further details for those two
components below.

5.1 Encoding stages
The encoding stages were intermediate layers of deep
convolutional neural network architectures (DCNNs).
We drew a selection of such layers from a pool of 19
network architectures available through the PyTorch li-
brary (40), each of which had pretrained parameters for
solving the Imagenet object classification task (41).

For each architecture, we selected a subset of these
intermediate layers to test in this study, spanning the
range from early on in the architecture to the final out-
put layer (originally designed for Imagenet). We re-
sized pixel images to a standard size of 224x224 pixels
using bilinear interpolation. In total, we tested 276 in-
termediate layers as encoding stages.

Dimensionality reduction. Once an input image is fed into
a DCNN architecture, each of its layers produces a rep-
resentational vector of a dimensionality specified by
the architecture of the model. Depending on the layer,
this dimensionality may be relatively large (>105), mak-
ing it hard to efficiently perform numerical calcula-
tions on contemporary hardware. We therefore per-
formed dimensionality reduction as a preprocessing
step. We performed dimensionality reduction using
random Gaussian projections to a standard size of 2048,
if the original dimensionality of the layer was greater

than this number. This procedure approximately pre-
serves the original representational structure of the
layer (i.e., pairwise distances between points in that
space) (42) and is similar to to computing and retaining
the first 2048 principal components of the representa-
tion.

Feature normalization. Once dimensionality reduction
was performed, we performed another standardization
step. We computed centering and scaling parameters
for each layer, so that its activations fit inside a sphere
of radius 1 centered about the origin (i.e. maxi ‖xi‖= 1).

To do so, we computed the activations of the layer
over using the images from the "warmup" tasks human
subjects were exposed to prior to performing any task
in this study (i.e. 50 randomly selected images of 8 ob-
jects, see Methods 3.2). We computed the sample mean
of those activations, and set this as the new origin of
the encoding stage (i.e. the centering parameter). Then,
we took the 99th quantile of the activation norms (over
those same images) to calculate the approximate radius
of the representation, and set this as our scaling param-
eter (i.e. dividing all activations by this number). Any
activations with a norm greater than this radius were
scaled to have a norm of 1.

Other kinds of feature standardization schemes are
possible: for instance, one could center and scale the
sensory representations for each subtask separately.
However, such a procedure would expose models to
the statistics of subtasks that are meant to be indepen-
dent tests of their ability to learn new objects – statistics
which we considered to be predictions of the encoding
stage.

5.2 Tunable decision stage
Once the encoding stage re-represents an incoming
pixel image as a multidimensional vector x ∈Rd, a tun-
able decision stage takes that vector as an input, and pro-
duces an action as an output.

Generating a decision. To output an action, a set of ac-
tion preferences are calculated using the matrix mul-
tiplication Wx, where W ∈ Ra,d (i.e., action preferences
are linear “readouts" of the representation computed by
the encoding stage).

Then, the decision stage simply selects the action with
the highest preference, breaking ties randomly. In total,
the equation for generating an action is:

action = argmaxi (Wx)i

Learning from feedback. Once an action is taken, the en-
vironment may convey some scalar-valued feedback
(e.g. reward or punish signals). The model may use
this feedback to change its behavior (i.e., to learn). In
this case, behavior is determined by the value of the
weights W ∈ Ra,d, so learning consists of changing
those weights by some δ ∈Ra,d:
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6 Additional analyses

Wt+1 = Wt + δt

There are many possible choices on how this δt may
be computed from feedback; here, we focused on a set
of seven rules based on the stochastic gradient descent
algorithm for training a binary classifier or regression
function. In all cases except one,8 the goal of the learner
can be understood as predicting the reward following the
choice of the action i.

Specifically, we tested the update rules induced by
the gradient descent update on the perceptron, cross-
entropy, exponential, square, hinge, and mean absolute
error loss functions (shown in Figure 2D), as well as the
REINFORCE update rule.

Each of these update rules has a single free param-
eter – the learning rate. For each update rule, there
is a predefined range of learning rates that guarantees
the non-divergence of the decision stage, based on the
smoothness or Lipschitz constant of each of the update
rule’s associated loss function (43). We did not inves-
tigate different learning rates in this study; instead, we
simply selected the highest learning rate possible (such
that divergence would not occur) for each update rule.

6 Additional analyses
Our core experimental aim in this study was to create
benchmarks which produce an error score summariz-
ing a model’s (dis)similarity with humans (i.e. MSEn
values for each model). However, we conducted ad-
ditional analyses to provide further insight into what
specific aspects of behavior a model might diverge from
humans, and we describe those here.

6.1 Effect of model choices on human behavioral similarity
As described above in Section 5, each model in this
study was defined by two components (the encoding
stage and the update rule). We wished to evaluate the
effect of each of these components in driving the sim-
ilarity of the model to human behavior. For example,
it was possible that all models with the same encoding
stage had the same learning score, regardless of which
update rule they used (or vice versa).

To test for these possibilities, we performed a two-
way ANOVA over all observed model scores (in MSEn)
computed in this study, using the encoding stage and
update rule as the two factors, and MSEn as the depen-
dent variable. By doing so, we were able to estimate
the amount of variation in model scores that could be
explained by each individual component, and thereby
gauge their relative importance. We briefly describe the
procedure for this analysis below. First, we wrote the
MSEn score of each model as a combination of four vari-
ables:

8The REINFORCE update rule is a “policy gradient" rule that opti-
mizes parameters directly against the rate of reward; it does not aim
to predict reward.

MSEn(encoding stage i, rule j) = µ + ei + rj + γij

Where µ is the average MSEn score, over all models.
The variables ei and rj encode the value of the average
difference from µ given encoding stage i and rule j, re-
spectively. Any remaining residual is assigned to γij
(i.e. corresponding to any interaction between rule and
encoding stage). The importance of each model com-
ponent could be assessed by calculating the proportion
of variation in model scores that could be explained by
the selection of component alone.

6.2 Subtask consistency
In our primary benchmark, we measured human learn-
ing over 64 distinct subtasks, each consisting of 100 tri-
als. For each subtask, the trial-averaged accuracy is a
measure of the overall “difficulty" of learning that sub-
task, ranging from chance (0.5; no learning occurred
over 100 trials) to perfect one-shot learning (0.995, per-
fect performance after a single example). For each of the
64 subtasks, one may estimate their trial-averaged per-
formances (obtaining a length 64 “difficulty vector"),
and use this as the basis of comparison between two
learning systems (e.g. humans and a specific model).

To do so, we computed Spearman’s rank correlation
coefficient (ρ) between a model’s difficulty vector and
the human’s difficulty vector. The value of ρ may range
between -1 and 1. If ρ = 1, the model has the same
ranking of difficulty between the different subtasks (i.e.,
finds the same subtasks easy and hard). If ρ = 0, there
is no correlation in the rankings.

In addition to computing ρ between each model and
humans, we estimated the ρ that would be expected be-
tween two independent repetitions of the experiment
we conducted here (i.e., an estimate of experimental
reliability in measuring this difficulty vector). To do
this, we took two independent bootstrap resamples of
the experimental data, calculated their respective dif-
ficulty vectors, and computed the ρ between them.
We repeated this process for B = 1,000 bootstrap iter-
ations, and thereby obtained the expected distribution
of experimental-repeat ρ.

6.3 Individual variability in overall learning ability
In this work, we focused primarily on subject-averaged
measurements of human learning. However, individ-
ual subjects may also systematically differ from each
other. We aimed to investigate whether any such dif-
ferences existed in learning behavior for the subtasks
we tested in this study.

Here, we attempted to reject the null hypothesis that
all subjects had the same learning behavior. To do
so, we tested whether there were statistically signifi-
cant differences in overall learning performance between
individuals – that is, whether some individuals were
“better" or “worse" learners. If this was the case, this
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implies individuals differ (at least in terms of overall
learning performance), and the null hypothesis could
be rejected.

Permutation test for individual variability in overall learning ability.
To test this null hypothesis, we identified a subset of hu-
man subjects who conducted all 64 subtasks in the pri-
mary, high-variation benchmark (n = 22 subjects). For
each subject, we computed their “overall learning per-
formance", which was their empirically observed aver-
age performance over all n = 64 subtasks. That is, for
subject s, we computed:

Ĝs =
1
64

64

∑
i=1

ĝis

Where ĝis is the trial-averaged performance on sub-
task i, for subject s. The value of Ĝs is a gross measure
of the subject’s ability to learn the objects in this study,
ranging from 0.5 (no learning on all subtasks) to 0.995
(perfect one-shot learning on all subtasks). In total, we
computed n = 22 estimates of Ĝs (one for each subject
in this analysis).

We then computed the sample variance over the var-
ious Ĝs:

σ̂2 =
1

S− 1

S

∑
s=1

(Ĝs − Ḡ)2

Where Ḡ is the mean of overall lifetime performances.
Intuitively, σ̂2 is high if individuals differ in their over-
all learning performance, and is low if all individuals
have the same overall learning performance (as would
be the case under the null hypothesis).

We performed a permutation test on σ̂2 to test
whether it was significantly higher than would be ex-
pected under the null hypothesis, permuting the as-
signments of each ĝis to each subject s. For each per-
mutation, we computed the replication test statistic
σ̃2 (using the same formulas above, on the permuted
data). We performed P = 10,000 permutation replica-
tions, then computed the one-sided achieved signifi-
cance level by counting the number of replication test
statistics greater than the actual, experimentally ob-
served value σ̂2.

Testing whether specific humans outperform a model. To test
whether a specific human has significantly higher over-
all learning abilities than a specific model (over the sub-
tasks tested in this study), we performed Welch’s t-test
for unequal variances on the overall learning perfor-
mance, Ĝ (defined above). That is, for a specific subject
s and model m, we attempted to reject the null hypoth-
esis that Ĝs ≤ Ĝm.

We adjusted for multiple comparisons using the Bon-
ferroni correction (using the total number of pairwise
comparisons we made between a model m and specific
subjects s).

Results
We measured human behavior over two variants of an
object learning task (Experiments 1 & 2). Consistent
with intuition, our main empirical findings show that
humans 1) require few images to learn, 2) find some
object discriminations easier than others, and 3) gener-
alize well over a range of image transformations after
seeing even one view of each object. We then compared
those empirical measurements to the predictions made
by a suite of learning models.

1 Humans are rapid, but imperfect novel object learn-
ers

In our primary experiment (Experiment 1), we mea-
sured a population of anonymous human subjects
(n=70 subjects) performing 64 learning subtasks, each
requiring that the subject learn to discriminate two new
novel objects, rendered under high view variation (see
Figure 1A).

On average over all 64 subtasks we tested, we found
that human discrimination accuracy improved imme-
diately, after a single image example (and accompany-
ing positive or negative feedback). By construction,
accuracy on the first trial is expected to be 50% (ran-
dom guessing). But on the following trial, humans
had above-chance accuracy (mean 0.65; [0.63,0.67] 95%
bootstrapped CI), indicating behavioral adaptation oc-
curred immediately and rapidly. Average discrimina-
tion accuracy continued to rise across learning: the
subject-averaged, subtask-averaged accuracy at the last
trial (trial 100) was 0.87 (mean; [0.85,0.88] 95% CI), and
the subject-averaged, subtask-averaged accuracy over
all 100 trials was 0.82 (mean; [0.81,0.84] 95% CI).

As anticipated, we found that different subtasks (i.e.,
different pairs of objects) resulted in widely different
learning curves. This is illustrated in Figure 1D which
shows the estimated average human learning curve for
each of the 64 subtasks (i.e. Ĥs for subtask s = 1,2, ...64,
see Methods). That is, we observed that some tasks
were “easy" for humans to learn, and some were hard.
These variations were not artifacts of experimental vari-
ability, which we established by estimating the value of
Spearman’s rank correlation coefficient between aver-
age subtask performances that would be expected upon
repetitions of the experiment (ρ = 0.97; see Methods
6.2).

Overall, these results show that 1) humans can ac-
quire a significant amount of learning with respect to
novel visual object concepts with a small number of ex-
amples (e.g. ~4 training examples to reach 75% correct,
~6 to reach 90% of their final performance), 2) learning
new objects is highly dependent on the 3D shapes of
those objects, and 3) many object pairs are far from per-
fectly learned within 100 trials (e.g. mean accuracy of
≈ 0.65 for the most difficult 10% of subtasks), and the
trend lines suggest that they might never be perfectly
learned. We next asked how well a family of baseline
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2 Computing the high-variation benchmark on a suite of baseline object learning models

models based on a standard cognitive theory of learn-
ing are – or are not – able to explain these behavioral
measurements.

2 Computing the high-variation benchmark on a suite
of baseline object learning models

Scoring a family of baseline models. We implemented a
family of baseline models (Methods 5) to assess each
as a possible explanation of human object learning. As
shown in Figure 2A, each model was comprised of two
components: an encoding stage (a specific intermedi-
ate layer of some Imagenet-pretrained(41) DCNN), and
a tunable decision stage (a set of linear action prefer-
ences, trained by one of 7 update rules).

We implemented a large family of such models
(n=1,932 models), each based on a different combina-
tion of encoding stage and learning rule, and tested
each of these on the same set of subtasks (n = 64 sub-
tasks) as humans, simulating 500 behavioral sessions
per subtask, per model. Then, to compare the learning
behavior of these learning models to humans, we com-
puted a mean-squared-error statistic (MSEn, see 3.4).
The square root of that value (

√
MSEn) gives a rough es-

timate of the average deviation that would be expected
between a model’s prediction and a human behavioral
measurement.

This model comparison metric is conceptually sim-
ple: it is an estimate of the average squared error be-
tween the predictions of the model and the measure-
ments of humans (Methods 3.4). A lower value of MSEn
indicates a better alignment of the model’s behavior to
human behavior (i.e. lower error); higher values are
worse.

In principle, the value of MSEn can be no lower than
the experimental "noise floor" σ2

h , which is equivalent
to the sampling variance associated with our measure-
ments of human behavior. We made an unbiased esti-
mate of this noise floor (σ2

h ≈ 0.003, see Methods 3.4).
The square root of this value gives a rough estimate of
the average deviation that would be expected upon an
experimental repeat (≈ ±0.05).

We summarize scores for each of the models we
tested in Figure 4. Many of the models were far
from the noise floor (median

√
MSEn = 0.30), but to

our surprise, we found that a small subset of models
achieved relatively low error: the best 1% of the models
(which we term “strong baseline models") had predic-
tions which were on average within ≈ ±0.08 of human
measurements, coming relatively close to the limits of
experimental noise (≈ ±0.05).

Model components affecting the score of a model. We
wished to analyze how the two components making up
each learning model – the encoding stage and tunable
decision stage – affected its alignment with humans.

One general trend we observed was that models built
with encoding stages from deeper layers of DCNNs

tended to produce more human-like patterns of learn-
ing (see Figure 2B). On the other hand, the different up-
date rules appeared to have little effect in the model’s
ability to support human-like learning ((see Figure 5A
for example).

Specifically, a two-way ANOVA over all model scores
(Methods 6.1) revealed that the choice of update rules
explained only 0.1% of the variation in model scores.
By contrast, 99.4% of the variation was driven by the
encoding stage, showing that the predominant factor
defining the behavior of the learning model was the en-
coding stage.

Still, though some models we tested made relatively
accurate predictions of humans, we found that all mod-
els were behaviorally distinguishable from humans; all
models were rejected with a significance level of at least
α < 0.001 (see Methods 3.4). Our next step in this study
was to ask in what aspects of learning behavior differ-
ences lay between models and humans.

3 Strong baseline models are largely, but not per-
fectly, correlated with human performance patterns

To gain insight into where the behavior of these mod-
els diverged from humans, we compared models to hu-
mans along two summary statistics of learning behav-
ior: 1) the overall accuracy over all subtasks and trials
tested, and 2) Spearman’s rank correlation coefficient
(ρ) across the trial-averaged accuracy values for all of
the 64 subtasks between humans and models, which we
refer to as consistency (see Figure 6A).

Overall accuracy over a single session is a gross mea-
sure of a learning model’s rate of learning, ranging from
0.5 (chance, no gain in performance) to 0.995 (perfect
learning after just one trial). Consistency quantifies the
extent to which a model finds the same subtasks easy
and hard as humans. It ranges from -1 (perfectly anti-
correlated pattern of performance) to 1 (perfectly cor-
related pattern of performance). A value of ρ = 0 indi-
cates no correlation between the pattern of performance
between two learning systems.

These metrics are theoretically independent of each
other; e.g. a model may have high overall accuracy, but
have low consistency with humans.9

Nevertheless, we found a positive relationship be-
tween these two metrics: models with high overall ac-
curacy tended to also have high consistency (Figure
6B).

Though many of the strong baseline models matched
or exceed human-level overall accuracy (over 100 tri-
als), none of the models had full consistency with hu-
mans, indicating that part of their failure to fully ex-
plain human behavior is due to the fact they differ in
their patterns of performance across different learning
situations.

9Except for models which are either at chance or perform perfect
one-shot learning in all situations; then the correlation coefficient is
not defined.
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Moreover, even though many strong baseline models
matched (or exceeded) humans in terms of their overall
accuracy over this experiment, it was possible they had
systematic differences from humans at specific trials
that was masked by trial-averaging. We therefore next
examined models’ learning curves against humans.

4 Humans learn new objects faster than all tested
baseline models in low-sample regimes

We noticed that the strong baseline models’ accuracy
early on in learning appeared to be slightly below that
of humans (see Figure 7A). We tested for this by com-
paring the average accuracy (over subtasks) early on
in learning (which we defined as the average accuracy
over trials 1-5).

We found that all of the baseline models were signifi-
cantly worse than humans early on (see Figure 7B).

We wondered whether this gap persisted across dif-
ficulty levels (e.g., that models tended to perform par-
ticularly poorly on “hard" subtasks relative to humans,
but were human-level for other subtasks). We there-
fore performed this analysis again across four different
difficulty levels of subtasks (where each level consisted
of 16 out of the 64 total subtasks we tested, grouped
by human difficulty levels), and found models were
slower than humans across the difficulty range, though
we could not reject a subset (11/20) of the strong base-
line models at the easiest and hardest levels (see Figure
7B).

Lastly, though all models failed to match humans in
the early regime, many models readily matched or ex-
ceeded human performance late in learning (i.e. the av-
erage accuracy on trials 95-100 of the experiment).

5 Experiment 2: Characterizing one-shot object learn-
ing in humans

Our results above suggest baseline models learn more
slowly than humans in few-shot learning regimes in-
volving random views of novel objects.

To further characterize possible differences between
models and humans in this “early learning" regime,
we performed an additional behavioral experiment in
which we measured the extent and pattern of human
generalization to nine kinds of image variations follow-
ing experience with a single image of each object cate-
gory (i.e. one-shot generalization).

Our motivation here was to test whether the strong
baseline models differed from humans in ability to
generalize to any of the five kinds of image varia-
tion present in our original experiment (i.e. in-plane
translation, scale, random backgrounds, in-plane ob-
ject rotation, and out-of-plane object rotation). We also
tested four additional kinds of image variation (con-
trast shifts, pixel deletion, blur, and shot noise) that
were not present in our original experiment, but could
nonetheless serve as informative comparisons for iden-
tifying functional deficiencies in the strong baseline

models relative to humans.

Following 10 trials of training in which subjects re-
peatedly performed trials with respect to a single image
from each object category, we then presented subjects
with random “test" trials consisting of transformed ver-
sions of the support set (see Figure 8A). For each kind of
transformation, we tested four possible “levels" of vari-
ation. For example, to test generalization to scale, we
tested images where the object was resized to 12.5%,
25%, 50%, and 150% of the original support image (see
Methods 4.2 for details).

We found humans showed varied patterns of gener-
alization (see Figure 8B). For some kinds of image vari-
ation, humans had showed nearly perfect generaliza-
tion (e.g. translation, backgrounds, contrast, in-plane-
rotation) over the ranges we tested. In others, we ob-
served varied patterns of generalization. Overall, these
patterns of generalization were measured with a high
degree of experimental precision, as quantified by our
estimates of the human noise floor (standard error of
≈ ±0.02).

We next used these data to create a benchmark that
could be used to compare any candidate object learn-
ing model – including the ones we considered here –
against human object learning.

6 Baseline models show weaker one-shot generaliza-
tion compared to humans

We simulated the same experiment (i.e. 10 trials of
training followed by 10 trials of randomly selected test
images) in all of our models, and compared each of
their behavioral predictions to humans under our error
metric (MSEn, see Methods 4).

Similar to our results from our previous experiment,
we found that models varied widely in their align-
ment with human learning behavior. Specific models
achieved relatively low error – within ±0.06 experi-
mental error, where the noise floor is approximately
±0.02), but all models had statistically significant dif-
ferences in their behavior relative to humans.

We found that part of these differences lay in system-
atic generalization failures in models, relative to hu-
mans. For example, we observed that strong baseline
models had lower one-shot accuracy than humans with
respect to four kinds of image variation: pixel deletion,
blur, shot noise, and scale (see Figure 8C).

We also observed a positive relationship between the
scores of the two benchmarks: models that were most
human-like in the high-variation object learning setting
(Experiment 1) also tended to be the most human-like
in one-shot generalization (Experiment 2) (Figure 8D) –
though we emphasize that no model explained human
behavior to the limits of statistical noise.
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7 Specific individual humans outperform all baseline
models

Both of the benchmarks we developed in this study
tested the ability of a model to predict human object
learning at the "subject-averaged" level; any individual
differences in learning behavior are ignored (by design)
and not considered in those benchmarks.

To gauge the extent to which those individual differ-
ences are present (if at all) over the subtasks we tested,
we performed a post-hoc analysis on our behavioral data
from Experiment 1. We first identified subjects who
performed all 64 subtasks in that experiment (22 out of
70 total) . We then attempted to reject the null hypothe-
sis that there was no significant variation in their over-
all learning ability (see Methods 6.3). If rejected, this
would indicate that individuals indeed systematically
vary, at least in terms of their overall performance on
these tasks. We indeed found that some subjects were
reliably better object learners than others (p < 1e-4, per-
mutation test).

Given this was the case, we next asked whether any
of these individuals had an overall performance level
higher than that of the highest performing model we
identified in Experiment 1 (ResNet152/avgpool, with the
square loss update rule). To do so, we performed
Welch’s t-test on overall learning performance (Meth-
ods 6.3) between each individual human’s overall per-
formance and this model’s overall performance.

Using this analysis, we identified n = 5 individuals
whose overall accuracy significantly exceeded that of
this model (all p<1e-5, Bonferroni corrected). On aver-
age, this subset of humans had an overall accuracy of
0.92± 0.01 (SEM over subjects); this was around ~4%
higher than this model’s average of 0.88.

Discussion
An understanding of how humans accomplish visual
object learning remains an open scientific problem. A
necessary step to solve this problem is evaluating the
predictive validity of alternative models with respect
to measurements of human behavior. In this study,
we collected a set of such behavioral measurements
across a variety of object learning settings (n=371k tri-
als), which allowed us to quantify the speed of human
object learning (~6 trials to achieve close-to-asymptotic
accuracy), the distinct pattern of learning difficulty they
have for different objects, and the extent of generaliza-
tion to specific image transformations after a single im-
age example.

We then developed procedures to compare those
measurements with the predictions made by a model in
those same settings (a.k.a., behavioral benchmarks). We
implemented and tested a set of baseline object learning
models (n=1,932 models) on those benchmarks. Each
of these models consist of two stages: 1) a fixed en-
coding stage that re-represents an incoming pixel image
as a point in a representational space, followed by 2)

a tunable decision stage that generates an action choice
by computing choice preferences which are weighted
sums of that representation. Plasticity only occurs in
the decision stage, and is done through an update rule
that guides changes to the weights using the scalar rein-
forcement signal provided on each trial – the exact same
type of signal provided to human subjects. For each
model, the encoding stage was based on an interme-
diate representation of a contemporary deep convolu-
tional neural network model (DCNN), and the update
rule in each tunable decision stage was taken from a set
of standard alternatives in the field.

Prior to this study, we did not know if some or any
of these baseline models might be capable of explain-
ing human object learning as assessed here. As such,
we focus our discussion on the observed predictive
accuracy of these baseline models, but we highlight
that our behavioral data and associated benchmarks
are now a publicly available resource for testing image-
computable object learning models beyond those eval-
uated here [GitHub].

Strengths and weaknesses of current baseline object
learning models
Linear learning on deep representations as strong baseline mod-
els of human object learning. On our first benchmark,
which compares a learning model’s behavior to hu-
man behavior under high view-variation learning con-
ditions, a subset of baseline models produced relatively
accurate predictions of human learning behavior. Im-
portantly, these models are not accurate simply because
they learn new objects as rapidly as humans – they also
strongly (though not perfectly) predicted the patterns
of difficulty observed in humans (Figure 6B). That is,
they successfully predicted object discriminations that
humans will learn rapidly and those that human will
fail to learn rapidly.

We were surprised by how similar the baseline mod-
els were to human, because many authors have sug-
gested that current DCNNs are likely to be inadequate
models of human learning (15, 44–47) (see below). Con-
trary to this belief, the results reported here suggest that
some DCNN models, though imperfect, may be a rea-
sonable starting point to quantitatively account for the
ability (and inability) of humans to learn specific, new
objects.

It is worth noting the models we considered in this
study are composed only of operations that closely hew
to those executed by first-order models of neurons –
namely, linear summation of upstream population ac-
tivity, ramping nonlinearities, and adjustment of asso-
ciational strengths at a single visuomotor interface (32).
This makes them not only plausible descriptions for the
computations executed by the brain over object learn-
ing, but, with some additional assumptions (Fig 2B),
makes predictions of neural phenomena.

For example, if this interpretation is taken at face
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value, the strong baseline models make a few qualita-
tive predictions: first, if we assume that the encoding
stage corresponds to the output of the ventral visual
stream, these models predict that ventral stream rep-
resentations used by humans over object learning need
not undergo plastic changes to mediate behavioral im-
provements over the duration of the experiments we
conducted (seconds-to-minutes timescale). This pre-
diction is in line with several prior studies showing
adult ventral stream changes are typically moderate
and much slower that that timescale, at least in the con-
ditions used here (see (48) for review).

The complementary prediction of the strong baseline
models mapped in this way is that the neural changes
that underlie learning are not distributed over the en-
tire visual processing stream, but are focused at a sin-
gle visuomotor synaptic interface where reward-based
signals are available. Several regions downstream of
the ventral visual stream are possible candidates for
this locus of plasticity during invariant object learning;
we point to striatal regions receiving both high-level vi-
sual inputs and midbrain dopaminergic signals and in-
volved in motor initiation, such as the caudate nucleus,
as one such possible candidate (49, 50).

Baseline models at predicting human few-shot learning. De-
spite the overall strength of the baseline models we
tested, we emphasize that none of the models were able
to fully explain human behavior on either benchmark.
Here, we point out one specific source of these defi-
ciencies, which is the consistent accuracy gap between
models and humans in low-sample regimes.

In Experiment 1, we found humans acquired perfor-
mance rapidly (in terms of the number of examples).
By comparison, none of the models we tested could ri-
val humans when given an equivalent, small number
of exemplars (< 10, see Figure 7).

In Experiment 2, we found similar kinds of deficien-
cies in the few-shot regime (see Figure 8. For example,
here we replicated previous reports (51) of deep neu-
ral networks failing to generalize as well to scale as hu-
mans, and found other accuracy gaps.

Taken together, these results point to a central infer-
ence of this work: all learning models we tested are cur-
rently unable to account for the human ability to learn
in the few-shot regime. We next discuss possible next
steps to close these (and other) predictive gaps.

Future object learning models to be tested
Conceptually, there are several ways to improve the
predictive accuracy of the models we tested in this
study. For example, it is possible that this model family
(fixed representations combined with linear decoders
trained by reward signals) is in fact sufficient, and we
simply did not test specific models in this family which
accurately predicted the human learning benchmarks.
If that is the case, there are two conceptual components
that one could change: the encoding stage, and the

update rule which defines the tunable decision stage.
Here, we found the choice of update rule had little
effect on the predictive power of these models (see
Figure 5A), and did not interact significantly with the
choice of representational model. Still, we note there
are some notable update rules which we did not con-
sider here – namely exemplar (52) and prototype-based
rules (7, 17, 53).

On the other hand, we found the image-computable
representation that was used for each model’s encod-
ing stage had a dramatic effect on its overall predic-
tive power as an object learning model (on both bench-
marks), and it is therefore likely that alternate encod-
ing stages could lead to more accurate models of hu-
man learning. Here, we only considered encoding
stages based on Imagenet-pretrained DCNN represen-
tations; these have both similarities to, and also well-
characterized divergences from, internal primate vi-
sual representations as measured by electrophysiolog-
ical studes (31) as well as similarities and differences
as measured by behavioral studies (18, 54). If image-
computable representations that more closely adhere to
human visual representations are built and/or identi-
fied, they might lead to image-computable models of
learning which close the prediction gap on the bench-
marks we developed here.

Stepping back, it is also possible that no model of a
fixed representations followed by linear learning could
lead to fully accurate predictions on these benchmarks
(or future benchmarks), but perhaps other types of
models might do so. In that regard, we highlight
that we did not test the full array of available cog-
nitive theories of object learning in this study, and
there may be other promising approaches that score
well on the benchmarks collected here. For exam-
ple, one influential class of cognitive theories posits
that the brain learns new objects by building struc-
tured, internal models of those objects from image ex-
emplars, then uses those internal models to infer the
latent content of each new image (e.g. object identity)
(4, 11, 13, 15, 16, 55). It is possible these alternate ap-
proaches would lead to more accurate accounts of hu-
man behavior in the learning tasks we tested here, and
are possibly the critical steps needed to close the pre-
dictive gaps on the human object learning benchmarks
collected here and beyond. Implementing and testing
these alternative models on a common set of bench-
marks (such as the ones developed here) is therefore an
important direction for future work.

Future extensions of benchmarks to evaluate object
learning models

Extensions of task paradigm. The two benchmarks we de-
veloped here certainly do not encompass all aspects of
object learning. For example, each benchmark focused
on discrimination learning between two novel objects,
but humans can learn about multiple objects simulta-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 Specific individual humans outperform all baseline models

neously. Scaling to tasks involving multiple objects is
one straightforward extension of the task paradigm and
analyses utilized here, and we note that simple variants
of the baseline models we tested here naturally scale to
task paradigms involving multiple objects (i.e. by the
addition of additional linear action preferences to the
decision stage).

As well, an important future direction is to design
task paradigms which measure how humans might en-
code, organize, and later recall knowledge of previ-
ously learned novel objects, and to test the ability of
image-computable models for doing the same, which is
a nontrivial problem for DCNN-based models models
of the kind we have tested here (56, 57).

Extending stimulus presentation time. For presenting stim-
uli, we followed conventions used in previous vi-
sual neuroscience studies (18, 38) of object perception:
achromatic images containing single objects rendered
with high view uncertainty on random backgrounds,
presented at <10 degrees of visual field and for <200
milliseconds.

The chosen stimulus presentation time of 200 mil-
liseconds is too short for a subject to initiate a saccadic
eye movement based on the content of the image (58).
Such a choice simplifies the input of any model (i.e., to
a single image, rather than the series of images induced
by saccades); on the other hand, active viewing of an
image via target-directed saccades might be a central
mechanism deployed by humans to mediate learning
of new objects.

We note that if this is the case, our work (which was
designed to prevent such saccades from our subjects)
would be underestimating the number of images needed
by humans to achieve learning on new objects, relative
to conditions in which subjects had unlimited viewing
time. However, removing such a bias in our experimen-
tal design would only strengthen our central inference
relating to accuracy, which is that none of the models
we tested learn as rapidly as humans, given a small
number of image exemplars.

Still, measuring human behavior in even more nat-
uralistic learning contexts (e.g. longer viewing times,
watching objects in motion, physical interaction with
novel objects), will be an important extension of this
work.

Differences in individual subjects. In this study, we pri-
marily focused on studying human learning at the
subject-averaged level, where behavioral measure-
ments are averaged across several individuals (i.e.
subject-averaged learning curves; see Figure 1). How-
ever, individual humans may have systematic differ-
ences in their learning behavior that are, by design, ig-
nored with this approach.

For example, we found that individual subjects may
differ in their overall learning abilities: we identified a
subpopulation of humans who were significantly more

proficient at learning compared to other humans (see
Figure 9B). We did not attempt to model this individ-
ual variability in this study. Whether these differences
can be explained in terms of individual differences in
underlying sensory representations, learning rules (e.g.
the learning rate), random weight initialization, or are
unexplainable by any model in our baseline family re-
mains an area for future study.

Furthermore, performing subject-averaging leads to
the masking of learning dynamics that may be identifi-
able only at the level of single subjects, such as delayed
learning or “jumps" in accuracy at potentially unpre-
dictable points in the session (59). Performing analyses
to compare any such learning dynamics between indi-
vidual humans and learning models is an important ex-
tension of our work.

Lastly, we did not attempt to model any system-
atic increases in a subject’s learning performance as
they performed more and more subtasks available to
them (in either Experiment 1 or 2). This phenomenon
(learning-to-learn, learning sets, or meta-learning) is
well-known in psychology (60), but to our knowledge
has not been systematically measured or modeled in
the domain of human object learning. Expanding these
benchmarks (and models) to measure and account for
such effects is an important future step of building
models of the work done here.
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Fig. 1. Humans learning novel objects. A. Images of novel objects. Views of synthetically-generated 3D object models were created with random viewing parameters (i.e.
background, location, scale, and rotational pose). B. Task paradigm. On each trial, a randomly selected image (of one of two possible objects) was briefly shown to the
subject. The subject then had to report the identity of the object using a left/right choice. Positive reinforcement was delivered if the subject choice was “correct", based on an
object-choice contingency that the subject learned through trial-and-error (e.g., object 1 corresponds to “right", and object 2 corresponds to “left"). C. Example subject-level
learning data. Each behavioral session consisted of a randomly sampled sequence of 100 trials (i.e. images and their choice-reward contingencies). Image stimuli were
never repeated, ensuring each trial gauges the ability of the subject to generalize to unseen views of the new objects. Each behavioral session resulted in a sequence of
corrects / incorrects, for each subject. D. Human learning curves. We averaged across human subjects to obtain an estimate of average accuracy as a function of trials
on n = 64 subtasks (each consisting of a distinct pair of objects). We found that subjects were reliably less accurate on some subtasks than others; three example subtasks
across that range of accuracy are highlighted.
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that, for clarity, these are not the same two encoding dimensions for each subtask. Linear separability can be observed, to varying degrees. B. Simulating a single trial.
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the decision boundary to change based on the update rule. C. Simulated model behavioral data. For each learning model, we simulated a total of n=32,000 behavioral
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learning. We compared the simulated model predictions to the subject-averaged human learning data, by asking how well a model could predict the performance of a typical
human, given the same subtask and the same number of trials. We used a mean-squared error metric (MSEn ; see Methods 3.4) to quantify the goodness-of-fit of these
predictions.
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.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 Specific individual humans outperform all baseline models

A

REINFORCE

hinge

perceptron

MAE

cross-entropy

exponential

square

U
pd

at
e 

ru
le

Model error in
predicting humans

(MSEn)
Encoding stage

B

Network depth
(# nonlinearities)

ResNet18

CORnet-S

DenseNet121

AlexNet

GoogLeNet

Inception

MobileNet

SqueezeNet

N
et

w
or

k 
ar

ch
ite

ct
ur

es

0 50 100 152

VGG11

(pixels)

VGG13

VGG16

VGG19

DenseNet161

DenseNet169

DenseNet201

ResNet34

ResNet50

ResNet101

ResNet152

Network layer
(# nonlinearities)

0 19105 15

All VGG19-based end-to-end models

(pixels) (logits)
0.00

0.02

0.04

0.06

0.08

0.10

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Relative network depth

M
od

el
 e

rr
or

(M
SE

n)

noise �oor

C

pixels Imagenet
logits

All tested models
n=1932

Pixel-based
models

Strong
baseline 
models

random
guessing

Fig. 5. Evaluating the effect of model design choices on predictive accuracy of human learning. A. Example model scores across encoding stages and update rules. An
example of the effect of update rule (y-axis) and encoding stage (x-axis) on model scores (color). Model predictive accuracy was highly affected by the choice of encoding
stage; those based on deeper layers of DCNNs had the most human-like learning behavior. On the other hand, the choice of update rules had a minuscule effect. B.
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map encodes the overall score (MSEn) of the model (colorbar in Figure 5A).
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scale). Overlaying the average learning curves for humans (black) and models (magenta) reveals that humans have an advantage in performance in low-sample regimes,
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(bottom row).
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Fig. 8. One-shot learning in humans. A. One-shot learning task paradigm. We performed an additional study (Experiment 2) to characterize human one-shot learning
abilities (using the same task paradigm in Figure 1). The first 10 trials were based on two images (n=1 image per object) that were resampled in a random order. On trials
11-20, humans were tested on transformed versions of those two images (nine types of variation, with four levels of each, n=36 total generalization tests) B. Human and
model one-shot generalization to nine types of image variation. An example strong baseline model’s pattern of generalization (magenta) is shown overlaid against that
of humans. C. Humans outperform strong baseline models on some one-shot tests. We averaged human one-shot accuracy (gray) on each type of image variation, and
overlaid all strong baseline models (magenta, n=20 models). The errorbars are the the 95% CI (basic bootstrap). D. Comparison of one-shot and high-variation MSEn

scores. No strong baseline model could fully explain the pattern of one-shot generalization observed in humans (Experiment 2), nor their behavior on the high-variation
benchmark (Experiment 1). The error scores are shown on the log scale.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 Specific individual humans outperform all baseline models

0.70

0.75

0.80

0.85

0.90

0.95 * * * * *

human subjects
(n=22)

ov
er

al
l a

cc
ur

ac
y

model
simulations

A B

0 1 10 100

Individual model
simulations 

Human subject M

Human subject L

Learning curves for individual subjects
(average over n=64 subtasks)

Ac
cu

ra
cy

Trial

Subject M

Subject L

Fig. 9. Individual human subjects vary widely in their performance. We analyzed 22 subjects who performed all 64 subtasks in Experiment 1, and tested for differences
in their overall learning abilities. A. Individual-level learning curves. Each gray curve corresponds to the subtask-averaged learning curve for particular human subject
(using state-space smoothing (? )). In humans (top row), some subjects (e.g. Subject M, highest average performance over all subtasks) consistently outperformed the
subject-averaged human learning curve (in gray), while others consistently underperformed (e.g. Subject L, lowest average performance over all subtasks). In magenta are
learning curves taken from the top performing model. B. Some individual humans outperform all baseline models. Five out of 22 subjects (≈ 22% of the population) had
significantly higher overall performance than the highest performing model we tested (one-tailed Welch’s t-test, Bonferroni corrected, p<0.05).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522402
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Overview of experiments
	Behavioral task paradigm
	Experiment 1: Learning objects under high view variation
	Stimulus image generation
	Human behavioral measurements
	Simulating behavioral sessions in computational models
	Comparing model learning with human learning

	Experiment 2: One-shot human object learning benchmark
	One-shot behavioral subtasks
	Stimulus generation
	Human behavioral measurements
	Comparing model one-shot learning with human one-shot learning

	Baseline model family
	Encoding stages
	Tunable decision stage

	Additional analyses
	Effect of model choices on human behavioral similarity
	Subtask consistency
	Individual variability in overall learning ability

	Humans are rapid, but imperfect novel object learners
	Computing the high-variation benchmark on a suite of baseline object learning models
	Strong baseline models are largely, but not perfectly, correlated with human performance patterns
	Humans learn new objects faster than all tested baseline models in low-sample regimes
	Experiment 2: Characterizing one-shot object learning in humans
	Baseline models show weaker one-shot generalization compared to humans
	Specific individual humans outperform all baseline models





