
Supplementary Material for “DISCO+QR: Rooting Species Trees in

the Presence of GDL and ILS”

James Willson, Yasamin Tabatabaee, Baqiao Liu, and Tandy Warnow

Department of Computer Science, University of Illinois Urbana-Champaign

Contents

S1 Proof of Runtime Complexity of DISCO+QR 2

S2 Software Commands and Version Numbers 5
S2.1 DISCO+QR . 5
S2.2 STRIDE . 5
S2.3 Quintet Rooting (QR) . 5
S2.4 DISCO . 5
S2.5 Rooting (Clade Distance) Error, MGTE, AD . 5

S3 Additional Information about Datasets 6

S4 Additional Results 8

List of Tables

S1 Empirical Statistics of Simulated 21-taxon Datasets 7
S2 Means and medians for Figure 1 . 9
S3 Means and medians for Figure 2 . 10
S4 Means and medians for Figure 3 . 11
S5 Means and medians for Figure 4 . 12
S6 Means and medians for Figure 5 . 13
S7 Means and medians for Figure 6 . 14

1

S1 Proof of Runtime Complexity of DISCO+QR

Given an unrooted tree T , we denote a rooted version of T by Re where Re is T rooted on edge e.
If the rooted edge is not of significance, we omit e and simply write R.

Proposition S1.1. DISCO decomposes the input gene family trees into single copy trees in O(Nn)
time, where N is the total number of leaves in the gene family trees and n is the number of taxa
(species labels) appearing in the gene trees.

Proof. The DISCO algorithm can be separated into three steps for each input gene-family tree Gi.
The first step, rooting (finding the most parsimonious root), can be done in O(n|Li|) time, where
|Li| is the number of leaves in Gi. This is briefly mentioned in the original algorithm description
in [7] (“we used memoization to reduce the time to quadratic”). The second step, tagging, can be
again done in O(n|Li|) time, which is clear from its algorithm in ASTRAL-Pro (Algorithm 1, [7]).
The third step, decomposition, can be done in O(|Li|) time, which is self-evident from its pseudo-
code in the DISCO paper (Algorithm 1, [6]). The total running time of the DISCO decomposition
step for all input gene family trees is thus

∑
iO(|Li|n) = O(nN)

The next two propositions give the runtime of the two steps of QR: preprocessing and scoring.
First, we bring a detailed description of the QR algorithm:

Details of QR Algorithm. QR has a cost function Cost(Re|q, u⃗q) that given u⃗q (i.e., u⃗q a 15-
dimensional vector), the empirical distribution of gene tree unrooted quintet topologies induced on
q and a rooted quintet topology Re|q (denoting R rooted on e induced on q), calculates the “cost”
of observing the distribution u⃗q assuming Re|q is the model rooted quintet topology. Given the set
of sampled quintets Q, Score(e) is defined as

∑
q∈QCost(Re|q, u⃗q). Our goal is to find the edge e

that minimizes Score(e). Now we give the scoring algorithm.

1. Preprocess T . Build an empty list I(v) ⊆ Q at each internal node v of T . For each q ∈ Q,
consider T |q. We extract the internal nodes x, y, z of T |q, where x, y, z are also internal nodes
of T . Add q to I(x), I(y), and I(z). In effect, I(v) for any internal node v of T is defined by
the quintets inside Q such that the homeomorphic subtrees of T induced on these quintets
have v as an internal node.

2. Fix an arbitrary edge e. Calculate Score(e) by iterating over the quintets in Q.

3. Consider an edge f adjacent to e connected by node v. We conceptually split Q into two sets.
The first set Qδ is defined by those q ∈ Q s.t. Re|q ̸= Rf |q in topology, i.e., those quintets
that have rooted topologies that differ when rerooting T from e to f . The second set Q′ is
Q −Qδ (quintets that don’t differ in rooted topology when rerooting from e to f). Observe
that for any q′ ∈ Q′, Re|q′ = Rf |q′ in topology, implying Cost(Re|q′ , u⃗q′) = Cost(Rf |q′ , u⃗q′).
Therefore,

Score(f)− Score(e) =
∑
q∈Qδ

Cost(Rf |q, u⃗q)− Cost(Re|q, u⃗q)

Further observe that Qδ = I(v), since by construction, for any q ∈ I(v), e and f are separated
by an internal node of T |q that is v, hence Re|q and Rf |q are different in rooted topology.
Also, any q ̸∈ I(v) will be in Q′ because e and f are located on the same edge of T |q (where
an edge in T |q is a path in T).

2

4. Finally, recall that we already calculated Score(e) for some arbitrary e. We proceed by
traversing all edges of T starting from e, and when visiting an edge f , we derive Score(f)
using the above-mentioned update strategy. The above strategy will be called at most twice
per internal node v because each v has bounded degree three.

We now bring the runtime complexity analysis of preprocessing and scoring steps.

Proposition S1.2. The preprocessing step of QR that computes the cost of each possible rooting
of an unrooted quintet can be done in O(k(|Q| + n)), where k is the number of input single-copy
gene trees and Q is the set of sampled quintets in QR.

Proof. Recall that the cost of a rooted quintet tree on taxon-set q is defined with respect to an
empirical distribution of the unrooted quintet topologies of q observed in the gene trees denoted
by u⃗q. Therefore we first obtain this u⃗q, after which the cost for a given rooted quintet tree can be
computed in O(1) time.

For each single-copy gene tree G, we first equip G with an LCA data structure (see Lemma S1.4)
in O(n) time, after which the unrooted quintet topology of any q can be queried on G in O(1) time
(by Lemma S1.5). As such, each u⃗q can be computed in O(k) time, and all u⃗qs where q ∈ Q can
be computed in O(|Q|k) time. Adding in the time to initialize the LCA data structures results in
a total running time of O((|Q|+ n)k).

Once the u⃗qs are computed, one can iterate over all seven possible rooted topologies of T |q, where T |q
is the unrooted species tree induced on q, to compute the costs against u⃗q. Since there are a constant
number of topologies per q, our total running time is unaffected and remains O((|Q|+ n)k).

Proposition S1.3. The scoring step of QR can be done in O(n+ |Q|) time for an unrooted species
tree T with n taxa, where Q is the set of quintets sampled.

Proof. Given that Re|q can be queried in O(1) time according to Lemma S1.5, each u⃗q already
calculated in the QR preprocessing step, and that Cost is a constant time function, Score(e) can
be derived in O(|Q|) time for arbitrary e by simply iterating over all quintets in set Q. Now we
compute the runtime for each step of the QR scoring algorithm:

1. Preprocessing T takes O(n) time according to Lemma S1.4, and computing I(v) for all internal
nodes of T takes O(|Q|) time, as each q ∈ Q is analyzed in constant time. Therefore, this
step takes O(n+ |Q|) time.

2. Calculating Score(e) for one fixed edge e can be simply done by iterating over all the quintets
in set Q. This takes O(|Q|) time.

3. For an edge f connected to e by node v, updating Score(e) to Score(f) is done in O(|I(v)|)
time, since Qδ = I(v) and Qδ contains quintets q such that Re|q and Rf |q are different in
rooted topology and only the cost of these quintets should be updated in Score(f), which
can be done in constant time per quintet.

4. Each internal node of T will be traversed at most twice in the final step, and hence the scores
of all edges can be computed in at most

∑
v 2 · (1 +O(|I(v)|)) time.

In this way, we obtained scores for all edges of T in at most
∑

v 2 · (1 + O(|I(v)|)) = O(n + |Q|)
time, where v ranges over all internal nodes of T . Therefore, the total runtime of the scoring step
of QR is O(n+ |Q|).

3

Lemma S1.4. Given rooted tree R with l leaves, after O(l) preprocessing time, the following queries
can be completed in O(1) time for arbitrary nodes u, v of R.

1. lca(u, v), the least common ancestor of u and v

2. depth(u), the distance (number of edges) between u and the root. If depth(u) > depth(v), u
is said to be deeper (or lower) than v.

3. d(u, v), the number of edges between u and v

4. ancestor(u, v), which decides if v is an ancestor of u

Proof. These are well known. (1) is due to [2]. (2) is trivial (preprocess by DFS from the root) and
is frequently a byproduct of the preprocessing used for (1). For (3), d(u, v) = depth(u)+depth(v)−
2 · depth(lca(u, v)) and hence can be queried in constant time. For (4), u is an ancestor of v if
lca(u, v) = u and hence can be queried in constant time.

We simply refer to this preprocessing of Lemma S1.4 as equipping R with the LCA data structure.

Lemma S1.5. Given rooted tree R (with T as its unrooted topology) equipped with the LCA data
structure, the following queries can be completed in O(1) time given five taxa q = (q1, q2, q3, q4, q5)
and e an edge in R:

1. R|q, the homeomorphic (rooted) subtree of R induced on q

2. T |q, the homeomorphic subtree of T induced on q

3. Re|q, first reroot R on e, then consider the rooted quintet topology of Re induced on q

Proof. We start with (1). Consider the set S of nodes in R inductively defined as follows. First,
qi ∈ S where 1 ≤ i ≤ 5. Second, if u, v ∈ S, then lca(u, v) ∈ S. Observe that S is constant-size
by construction and contains exactly all the nodes of R|q. Construct S in constant time, and for
any u, v ∈ S, if u is an ancestor of v, put a directed edge from u to v, forming a graph H on S.
Compute the transitive reduction on H, which results in R|q. Notice that R|q is of constant size.

For (2), since R|q is of constant size, we can use brute force to extract the two bipartitions of the
unrooted topology of R|q in constant time, which defines T |q.

For (3), first observe that given two nodes x, y in R and an edge e = (u, v) in T , it can now
be decided in constant time if e lies on the path between x and y. A node z is between x, y iff
d(x, z) + d(z, y) = d(x, y). Therefore, if u and v both lie between x, y, then e lies between x, y.
First compute R|q. Then, among all edges of R|q, we need to find the edge x, y s.t. e is located
on the path between x and y on T , which as we just established can be done in constant time per
edge, and we have a constant number of edges. Then reroot R|q on this edge x, y on which e lies,
obtaining our defined Re|q.

4

S2 Software Commands and Version Numbers

S2.1 DISCO+QR

DISCO and Quintet Rooting (QR) are available in open source form in github (as described below).
Therefore, DISCO+QR can be easily run by a simple pipeline.

S2.2 STRIDE

We ran STRIDE (version 1.0.0) rooting software which is available at https://github.com/davidemms/STRIDE
using the following command

python2 stride.py -s dash -S <species_tree > -o <output_prefix > -d <gene_tree_dir >

where <gene tree dir> is a directory containing gene family trees in separate files.

The -o option is enabled in this forked version https://github.com/JSdoubleL/STRIDE.

S2.3 Quintet Rooting (QR)

We ran Quintet Rooting (QR) (version 1.2.2) available at https://github.com/ytabatabaee/Quintet-
Rooting with the following command:

python3 quintet_rooting.py -t <species -topology.tre > -g <input -genes.tre >

-o <output -tree.tre > -sm LE -rs 0

The -sm LE option specifies the quintet sampling method as “Linear Encoding”.

S2.4 DISCO

We ran DISCO (version 1.3) available at https://github.com/JSdoubleL/DISCO for decomposing
multi-copy gene-family trees into single-copy gene trees. We used the following command:

python3 disco.py -i <gene_trees > -o <output_file > -d _

S2.5 Rooting (Clade Distance) Error, MGTE, AD

Mean gene tree estimation error (MGTE) and average distance (AD) between the model species
tree and true gene trees were calculated using a script written by Erin. K. Molloy for computing
normalized Robinson-Foulds (RF) distance, available at

https://github.com/ekmolloy/fastmulrfs/blob/master/python-tools/compare two trees.py.

We measured the rooting error using average normalized clade distance (nCD) which is an extension
of RF distance for rooted trees. We used the script for computing average normalized clade distance
available at https://github.com/ytabatabaee/Quintet-Rooting/blob/main/scripts/clade distance.py
which is extended and modified from the script written by Erin. K. Molloy for computing RF dis-
tance for unrooted trees.

5

https://github.com/davidemms/STRIDE
https://github.com/JSdoubleL/STRIDE
https://github.com/ytabatabaee/Quintet-Rooting
https://github.com/ytabatabaee/Quintet-Rooting
https://github.com/JSdoubleL/DISCO
https://github.com/ekmolloy/fastmulrfs/blob/master/python-tools/compare_two_trees.py
https://github.com/ytabatabaee/Quintet-Rooting/blob/main/scripts/clade_distance.py

S3 Additional Information about Datasets

To create the new simulated data for this study, we used SimPhy [3] with the following command:

simphy -sl f:20 -rs 10 -rl f:1000 -rg 1 -sb f:0.000000005 \

-sd f:0 -st ln:21.25,0.2 -so f:1 -si f:1 -sp f:$population_size \

-su ln:-21.9,0.1 -hh f:1 -hs ln:1.5,1 \

-hl ln:1.551533,0.6931472 -hg ln:1.5,1 -cs 8472 -v 3 \

-o $model_condition_name -ot 0 -op 1 -lb f:$dup_rate \

-ld f:$loss_rate -lt f:0

To simulate gene tree estimation error, we needed to generate sequence data. We used INDELible [1]
with GTR parameters taken from the FastMulRFS study [4]. We also used scripts from that study
(available here: https://databank.illinois.edu/datasets/IDB-5721322) to run INDELible.

python set_indelible_params.py \

-n 1000 \

-f 113.48869 69.02545 78.66144 99.83793 \

-r 12.776722 20.869581 5.647810 9.863668 30.679899 3.199725 \

-a -0.470703916 0.348667224 \

-l $sequence_length \

-o indelible-parameters.csv

python run_indelible.py \

-x indelible \

-s 1 \

-e 1000 \

-p indelible-parameters.csv \

-t g_true.trees \

-o $out_dir

Finally, we generated trees from the simulated sequences using FastTree2 [5], with the follwing
command:

fasttree -nt -gtr $alignment_file > $estimated_tree

6

https://databank.illinois.edu/datasets/IDB-5721322

Dup Rate # Taxa AD MGTE (500bp) MGTE (100bp) MGTE (50bp) Avg. # Leaves

Low ILS – Equal Loss

1× 10−13 21 0.184 – 0.379 0.490 21.0
1× 10−12 21 0.221 0.184 0.415 0.525 21.0
1× 10−12 51 0.209 – 0.421 – 51.0
1× 10−12 101 0.251 – 0.459 – 101.2
1× 10−11 21 0.251 – 0.422 0.534 21.3
1× 10−10 21 0.190 – 0.368 0.478 24.1
5× 10−10 21 0.158 – 0.342 0.452 35.8
1× 10−9 21 0.156 – 0.337 0.441 52.1

High ILS – Equal Loss

1× 10−13 21 0.693 – 0.422 0.554 21.0
1× 10−12 21 0.674 0.192 0.426 0.557 21.0
1× 10−12 51 0.757 – 0.458 – 51.2
1× 10−12 101 0.784 – 0.482 – 101.2
1× 10−11 21 0.670 – 0.410 0.532 21.3
1× 10−10 21 0.645 – 0.390 0.509 24.2
5× 10−10 21 0.545 – 0.395 0.517 36.2
1× 10−9 21 0.442 – 0.383 0.507 47.9

Low ILS – No Loss

1× 10−13 21 0.210 – 0.380 0.482 21.0
1× 10−12 21 0.200 – 0.391 0.500 21.1
1× 10−11 21 0.173 – 0.401 0.511 21.7
1× 10−10 21 0.215 – 0.388 0.499 30.0
5× 10−10 21 0.191 – 0.416 0.541 158.2
1× 10−9 21 0.195 – 0.409 0.550 693.9

High ILS – No Loss

1× 10−13 21 0.666 – 0.416 0.545 21.0
1× 10−12 21 0.674 – 0.423 0.547 21.1
1× 10−11 21 0.674 – 0.417 0.542 21.8
1× 10−10 21 0.628 – 0.411 0.538 30.8
5× 10−10 21 0.589 – 0.405 0.550 147.3
1× 10−9 21 0.558 – 0.461 0.604 776.4

Table S1: Statistics for simulated model conditions containing 10 replicates with 1000 gene trees
each. High ILS indicates the model conditions with the high simulated haploid effective population
size, while low indicates the reverse.

7

S4 Additional Results

This section has tables with means and medians for the results (given in figures) from the main
paper.

8

]

Model Condition Method Mean Median

Figure 1(a): Low ILS

1× 10−13

DISCO+QR (LE)

0.353 0.342
1× 10−12 0.347 0.342
1× 10−11 0.363 0.368
1× 10−10 0.295 0.263
5× 10−10 0.316 0.316
1× 10−9 0.311 0.342

1× 10−13

STRIDE

0.339 0.316
1× 10−12 0.210 0.184
1× 10−11 0.103 0.000
1× 10−10 0.017 0.000
5× 10−10 0.016 0.000
1× 10−9 0.012 0.000

Figure 1(b): High ILS

1× 10−13

DISCO+QR (LE)

0.153 0.158
1× 10−12 0.132 0.079
1× 10−11 0.179 0.184
1× 10−10 0.189 0.263
5× 10−10 0.174 0.158
1× 10−9 0.242 0.263

1× 10−13

STRIDE

0.400 0.421
1× 10−12 0.226 0.263
1× 10−11 0.142 0.078
1× 10−10 0.062 0.026
5× 10−10 0.045 0.000
1× 10−9 0.055 0.000

Table S2: Means and medians for all model conditions from Figure 1. Impact of varying the
duplication rate on rooting error (nCD) of STRIDE and DISCO+QR, given at two levels of ILS;
low ILS in subfigure (a) (AD ≈ 20%) and high ILS in subfigure (b) (AD ≈ 64%). The species tree
was estimated with ASTRID-DISCO. The simulated model conditions contain 21 taxa, 1000 genes,
10 replicates, a loss rate equal to the duplication rate, and ≈ 40% MGTE.

9

Model Condition Method Mean Median

Figure 2(a): Low ILS

True

DISCO+QR (LE)

0.216 0.211
18% 0.226 0.211
39% 0.351 0.342
50% 0.353 0.368

True

STRIDE

0.037 0.000
18% 0.036 0.026
39% 0.226 0.184
50% 0.326 0.421

Figure 2(b): High ILS

True

DISCO+QR (LE)

0.074 0.026
18% 0.111 0.105
39% 0.132 0.079
50% 0.153 0.158

True

STRIDE

0.174 0.105
18% 0.242 0.289
39% 0.242 0.263
50% 0.405 0.421

Table S3: Means and medians for all model conditions from Figure 2. Impact of varying the amount
of gene tree estimation error on the rooting error (nCD) of STRIDE and DISCO+QR, given at two
levels of ILS; low ILS in subfigure (a) (AD ≈ 20%) and high ILS in subfigure (b) (AD ≈ 64%). The
species tree was estimated with ASTRID-DISCO. The simulated model conditions contain 21 taxa,
1000 genes, 10 replicates, a duplication rate of 1× 10−12 and an equal loss rate, and AD ≈ 20%.

10

Model Condition Method Mean Median

Figure 3(a): Low ILS

50

DISCO+QR (LE)

0.363 0.368
100 0.353 0.316
500 0.342 0.342
1000 0.347 0.342

50

STRIDE

0.358 0.368
100 0.337 0.368
500 0.347 0.368
1000 0.226 0.184

Figure 3(b): High ILS

50

DISCO+QR (LE)

0.374 0.368
100 0.289 0.263
500 0.152 0.158
1000 0.132 0.079

50

STRIDE

0.484 0.500
100 0.458 0.474
500 0.353 0.395
1000 0.242 0.263

Table S4: Mean and median for all model conditions from Figure 3. Impact of varying the number
of gene trees on the rooting error (nCD) of STRIDE and DISCO+QR, given at two levels of ILS;
low ILS in subfigure (a) (AD ≈ 20%) and high ILS in subfigure (b) (AD ≈ 64%). The species
tree was estimated with ASTRID-DISCO. The simulated model conditions contain 21 taxa, 10
replicates, a duplication rate of 1× 10−12 and an equal loss rate, AD ≈ 20%, and ≈ 40% MGTE.

11

Model Condition Method Mean Median

Figure 4(a): Low ILS

20
DISCO+QR (LE)

0.347 0.342
50 0.186 0.173
100 0.144 0.131

20
STRIDE

0.226 0.184
50 0.178 0.173
100 0.153 0.162

Figure 4(b): High ILS

20
DISCO+QR (LE)

0.132 0.079
50 0.104 0.102
100 0.095 0.101

20
STRIDE

0.242 0.263
50 0.231 0.214
100 0.155 0.162

Table S5: Means and medians for all model conditions from Figure 4. Impact of varying the number
of species on the rooting error (nCD) of STRIDE and DISCO+QR, given moderate duplication
rates. (a) low ILS (AD ≈ 20%), (b) high ILS (AD ≈ 64%). The species tree was estimated with
ASTRID-DISCO. The simulated model conditions contain 1000 genes, 10 replicates, a moderate
duplication rate of 1× 10−12 and an equal loss rate, and ≈ 40% MGTE.

12

Model Condition Method Mean Median

Figure 5(a): 1000 genes

1× 10−10

DISCO+QR (LE)
0.112 0.101

5× 10−10 0.133 0.136
1× 10−9 0.124 0.126

1× 10−10

STRIDE
0.040 0.025

5× 10−10 0.057 0.061
1× 10−9 0.033 0.030

Figure 5(b): 500 genes

1× 10−10

DISCO+QR (LE)
0.126 0.116

5× 10−10 0.151 0.146
1× 10−9 0.128 0.126

1× 10−10

STRIDE
0.045 0.020

5× 10−10 0.065 0.071
1× 10−9 0.050 0.056

Figure 5(c): 100 genes

1× 10−10

DISCO+QR (LE)
0.147 0.131

5× 10−10 0.161 0.152
1× 10−9 0.318 0.162

1× 10−10

STRIDE
0.135 0.152

5× 10−10 0.116 0.106
1× 10−9 0.277 0.101

Table S6: Mean and median for all model conditions from Figure 5. Impact of varying number of
genes under three high duplication rates and low ILS on the rooting error (nCD) of STRIDE and
DISCO+QR on simulated datasets with 100 taxa (and one outgroup taxon) and varying numbers of
genes. (a) 1000 genes, (b) 500 genes, (c) 100 genes. The species tree was estimated with ASTRID-
DISCO. The simulated model conditions contain 10 replicates, a loss rate equal to the duplication
rate, AD ≈ 20%, and ≈ 40% MGTE.

13

Method Mean Median

Figure 6(a): 1000 genes

DISCO+QR (LE) 0.066 0.044
STRIDE 0.054 0.030

Figure 6(b): 500 genes

DISCO+QR (LE) 0.070 0.048
STRIDE 0.060 0.044

Figure 6(c): 100 genes

DISCO+QR (LE) 0.081 0.075
STRIDE 0.262 0.077

Table S7: Means and medians for all model conditions from Figure 6. Error (nCD) of STRIDE
and DISCO+QR on a simulated dataset with 1000 taxa (and one outgroup taxon) and varying
numbers of genes. (a): 1000 genes, (b): 500 genes, (c): 100 genes. The species tree was estimated
with ASTRID-DISCO. The simulated model conditions contain 10 replicates, a duplication rate of
5× 10−10 and an equal loss rate, AD ≈ 20%, and ≈ 40% MGTE.

14

References

[1] William Fletcher and Ziheng Yang. INDELible: a flexible simulator of biological sequence
evolution. Molecular Biology and Evolution, 26(8):1879–1888, 2009.

[2] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

[3] Diego Mallo, Leonardo de Oliveira Martins, and David Posada. SimPhy: phylogenomic simu-
lation of gene, locus, and species trees. Systematic Biology, 65(2):334–344, 2016.

[4] Erin K Molloy and Tandy Warnow. FastMulRFS: fast and accurate species tree estimation
under generic gene duplication and loss models. Bioinformatics, 36(Supplement 1):i57–i65,
2020.

[5] Morgan N Price, Paramvir S Dehal, and Adam P Arkin. FastTree 2–approximately maximum-
likelihood trees for large alignments. PloS One, 5(3):e9490, 2010.

[6] James Willson, Mrinmoy Saha Roddur, Baqiao Liu, Paul Zaharias, and TandyWarnow. DISCO:
Species tree inference using multicopy gene family tree decomposition. Systematic Biology,
71(3):610–629, 2022.

[7] Chao Zhang, Celine Scornavacca, Erin K Molloy, and Siavash Mirarab. ASTRAL-Pro: quartet-
based species-tree inference despite paralogy. Molecular Biology and Evolution, 37(11):3292–
3307, 2020.

15

	Proof of Runtime Complexity of DISCO+QR
	Software Commands and Version Numbers
	DISCO+QR
	STRIDE
	Quintet Rooting (QR)
	DISCO
	Rooting (Clade Distance) Error, MGTE, AD

	Additional Information about Datasets
	Additional Results

