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Abstract 

During cortico-basal ganglia dependent learning, relevant environmental information is associated with 

certain outcomes; such learning is essential to generate adaptive behaviour in a continuously changing 

environment. Through repetitive trial-and-error experiences, actions are optimized and cognitive 

associative load can be relieved through consolidation and automatization. Although the molecular basis 

of learning is well studied, region-specific genome-wide expression profiles of the striatum, the major 

input region of cortico-basal ganglia circuits, during learning are lacking. Here we combined an 

automated operant conditioning paradigm with an efficient RNA-sequencing protocol to compare 

expression profiles among three learning stages in three striatal regions per hemisphere in a total of 240 

striatal biopsies. Notably, the inclusion of matched yoked controls allowed reliably identifying learning-

related expression changes. With 593 differently expressed genes (3.3% of all detected genes), we find 

the strongest effect of learning at an early, goal-directed stage across all three striatal region and identify 

a total of 921 learning-related expression changes. Our dataset provides a unique resource to study 

molecular markers of striatal learning.  
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Introduction 

The way animals learn is a subject of utmost relevance. Learning how to look for food, how to play 

piano, or how to drive a car requires a multitude of steps until efficiency. The first step requires 

motivation (for example, hunger, desire to play music, need to drive to work, respectively), and also 

high amounts of exploration and trial-and-error. After having established the correct associations 

between environmental stimuli, executed actions and outcomes, performance increases fast. Finally, 

through sufficient repetition, performance saturates with consolidation and automatization of the 

acquired task or skill. This important step allows for perfecting our actions and permits freeing the 

cognitive load required in the previous stages. 

Cortico-basal ganglia circuits are crucially implied in task and skill learning and consolidation. They are 

topographically organized into parallel limbic, associative and sensorimotor loops coursing through the 

ventromedial (VMS), dorsomedial (DMS) and dorsolateral striatum (DLS), respectively (Hintiryan et 

al., 2016; McGeorge & Faull, 1989; Pan et al., 2010). These circuits dynamically interact and are 

recruited to different extents during learning. The limbic cortico‐striatal loop, the “reward circuit”, is 

especially important during initial acquisition, when behaviour is highly exploratory and reward-

dependent. The associative loop is increasingly recruited during the goal‐directed, declarative phase of 

learning, when creation and strengthening of “good associations” need to be made. Finally, the 

sensorimotor loop is crucial when the learned behaviour becomes automatized and procedural 

(Alexander et al., 1986; Graybiel, 2008; Thorn & Graybiel, 2014; White & McDonald, 2002; Yin et al., 

2009; Yin & Knowlton, 2006). The striatum forms the major input region of the basal ganglia and 

receives glutamatergic projections from the cortex and thalamus, which then conveys back into the 

cortex, through the thalamus. In addition, the striatum receives important innervation and modulation 

by the dopaminergic midbrain neurons, which are crucially involved in reward-related learning and 

motivation. Finally, one other important player in the modulation of the striatal circuits in the context of 

learning is the ensemble of cholinergic interneurons, with the hypothesis of their involvement in the 

encoding of “gain” of learning and plasticity (Cox & Witten, 2019). Learning leaves enduring 

neuroplastic traces as a neural engram in involved circuitry. Such neuroplastic changes comprise 

different phenomena, including for example Hebbian plasticity (Hebb, 1949), post-lesional cortical 

remapping (Kaas et al., 1983; Merzenich et al., 1983), or myelination (Gibson et al., 2014). To capture 

comprehensive, dynamic snapshots of the overall learning engram systematically and to identify 

learning-affected procedures and genes in a data-driven manner, we designed an automated, self-

motivated learning task. Our experimental design allowed us to characterize different learning stages 

systematically and to generate a sufficiently high number of samples to set out to develop a molecular 

map of the learning striatum. Importantly, sets of control animals allowed us to identify changes that 

stem from learning. Concretely, we developed custom-modified operant conditioning chambers 

(Benzina et al., 2021), which, in contrast to standard laboratory operating procedures, serve both as 

housing as well as learning environment for the animals. Such design allows for conditioning the animals 
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in a self-paced, self-motivated manner and with reducing experimental stress to a possible minimum. 

Sets of such chambers allowed for generating cohorts of animals for early, intermediate and expert 

learning stages, hereby enabling the collection of a high number of samples and reducing noise through 

controlling for cohort effects. Finally, each learning mouse was paired with a matched control animal in 

a mock chamber in the same experimental room, controlling for experimental side effects other than 

learning-related effects. Additional naïve mice, which never entered any treatment, served as an 

outgroup control for any experimental procedures. Sample harvesting for genetic expression analyses 

was performed at precisely defined time points from three different striatal regions, namely limbic, 

associative and sensorimotor striatum, which have been all described as relevant to a different extent for 

different learning stages. We clustered observed genetic expression changes according to their dynamics 

across learning and identified annotated gene categories implied across learning in general as well as in 

particular to each learning stage in a first draft of a comprehensive molecular map of the learning 

striatum. 

 

Materials and Methods 

Animals 

All experimental procedures followed national and European guidelines and were approved by the 

institutional review boards (French Ministry of Higher Education, Research and Innovation; APAFiS 

Protocols no. 1418-2015120217347265 and 2021042017105235). Animals were group-housed in the 

animal facilities of the Paris Brain Institute in Tecniplast ventilated polycarbonate cages under positive 

pressure with hard-wood bedding in groups of up to six animals per cage with ab libitum food and water 

access. The temperature was maintained at 21–23 °C and the relative humidity at 55 ± 10% with a 12-h 

light/dark cycle (lights on/off at 8am and 8pm, respectively). The animals were maintained in a 12-hour 

light/dark cycle (lights on/off at 8:00am/8:00 pm, respectively), and had ab libitum food and water 

access. Following ethical guidelines of animal experimentation on gender equity and the principle of the 

three Rs, we included both male (n = 99) and female adult mice (n = 60) (aged 5.50 ± 1.88 months). For 

behavioural task validation, wildtype animals (n = 25, hereof n = 19 males and n = 6 females) originated 

from several mouse lines on C57BL6 background in order to reduce breeding for ethical reasons. 

 

Experimental setup and task 

Operant conditioning was conducted in custom-modified experimental chambers (ENV-007CTX, Med 

Associates, Vermont, USA) as previously described (Benzina et al., 2021), in which each of the tested 

animals lives and performs the conditioning task 24/7 in an automated, self-initiated, self-paced manner. 

Seven such experimental operant chambers were operated in parallel in the same experimental room. 

Briefly, the rear wall of each chamber housed the feeder compartment (equipped with an infrared light 

beam to detect feeder entry crossing) and drinking water bottle holder, the front wall held two tactile 

screens, and a custom-made pair of black Plexiglas gates equipped with a pair of infrared (IR) beams. 
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These beams allowed for tracking the locomotion of the mouse into or out of the area with the tactile 

screens. The chambers of the yoked controls were custom-built, plexiglass chambers as described in 

(Lamothe et al., 2021) and were located in the same experimental room as the operant conditioning 

chambers. The yoked control chambers contained ad libitum water access as well as the same woodchip 

bedding and cotton pad nesting material as the operant conditioning chambers and regular housing cages 

in the facilities. Precision reward pellets served as the sole nutrition during the entire experiment. The 

reward pellets (20 mg LabTabTM AIN-76A rodent precision pellets, TestDiet, Richmond, USA) are 

earned upon successful trials by the mice in the conditioning task (“learners”); yoked control mice, 

matched for sex, age and whenever possible also for litter, receive the exact same amount of food 

rewards as their matched pair undergoing actual conditioning. 

Once placed in the operant conditioning chambers, the mice start with a pre-training phase of four 

different stages. In a first stage, a total of five precision pellets drops automatically once every minute 

if the previous pellet had successfully been recovered. In a second stage, the mouse is required to nose 

poke into the feeder compartment to trigger individual pellet delivery once per minute until a total of 10 

pellets has been received. In a third stage, crossing of the IR photobeams prompts the illumination of 

both tactile screens; the mouse is required to touch one of them to trigger pellet delivery in the feeder. 

There was no time limit for recovering the pellets at this stage. However, the condition for the mice to 

pass into the following pre-training stage was the recovery of the pellets within less than 15 seconds for 

at least 66% of the times. Then, in the consecutive pre-training stage, as before, both screens were 

illuminated with white light upon gate crossing. However, mice now had to nose poke into the feeder in 

less than 15 seconds after screen touch in order to trigger pellet delivery. Having successfully recovered 

at least 66% of the pellets in this manner, mice passed into the actual task. 

The behavioural task was a deterministic, binary visual discrimination task, where mice self-initiated 

each trial by triggering visual stimulus onset on the tactile screens by again crossing the photobeam-

equipped gate. The presented stimulus pair consist in ten, either vertical or horizontal, white bars on a 

black screen, each of which was presented 50% of the time in a random manner.  To earn a precision 

pellet, mice need to associate each of the two stimuli with one screen touch, e.g. stimulus of ten 

horizontal/ vertical bars associated with the action of left/right screen touch, accordingly. The 

contingencies were balanced across individuals and operant chambers. Mice were allowed a maximum 

of 60 seconds after stimulus onset to respond with a screen touch. Upon correct response, the screens 

started blinking to give a positive feedback for the mouse, which had 15 seconds to nose poke in the 

food dispenser in the rear wall for obtaining a food reward. Past 15 seconds after correct response, the 

trial became unrewarded. In case of incorrect screen touch, mice received an aversive white light for 

five seconds. Additionally, in order to decrease the tendency of mice to lateralize, each trial following 

an incorrect response required the mouse to switch to the other screen. Past 60 seconds in the chamber 

compartment with the screens, the screens would switch off again; in these time out trials, mice then 

had to cross out and back into the feeder compartment to trigger the next trial. Trials where mice crossed 
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in and out of the screen compartment within 60 seconds and without screen touch, were quantified 

aborted trials (Supplementary Figure 1). 

Animals for validation of the task and subsequent determination of the time points of early, intermediate 

and late stages of learning remained in the task for around 5500 trials (trial number = 5517 +/- 1177; 

median +/- SD, respectively). The time point of early learning stage was estimated through averaging 

individual subjects’ inflection points of ramping performance towards the beginning of the performance 

plateau (trial number = 1240 ± 409; median +/- SD, respectively) (Supplementary Figure 2). Late 

learning was determined as 2000 trials post early learning stage time point. Finally, intermediate learning 

stage for each individual was determined as the intermediate time point between individual early and 

late learning stage time points. 

Animals for subsequent RNA-seq were divided into early, intermediate and late learner groups; the 

groups were balanced for age and litter, and the animals sacrificed the morning after having reached 

each stage defined at 1000/2000/3000 trials for early/intermediate/late learners, respectively. An 

additional group of naïve animals, which was never exposed to any behavioural task, served as a control 

for experimental treatment. To control for experimental factors, each learning mouse was paired with a 

matched animal of the same genotype, sex, and age as a yoked control (for e.g. change of the 

experimental room, social isolation, food consumption and quality). Learners and yoked controls were 

put into their according behavioural setup at the same time, and sacrificed at the same time, with the 

order of the dissection/tissue harvesting being randomized. The yoked controls received the exact same 

amount of precision food pellets as its learning partners during the past 24 hours in the mornings. 

 

Sample collection 

Having reached respective criteria for early/intermediate/late learning stages, the brains of both learners 

and their paired yoked partners were rapidly dissected and collected during the morning of the following 

day. Naïve animals were directly taken from the group-housed home cages and their dissections were 

done at the same hours as the mice of the other groups.  

Before each dissection, all tools and surfaces were cleaned with RNAse decontaminating solution 

(Fisher Scientific, reference #10180601). Concretely, animals were euthanized by cervical dislocation, 

rapidly dissected and their brains immediately collected and sliced (1mm thickness) using a 5-blade 

custom-made tool to rapidly obtain coronal slices of 1mm thickness at comparable levels across mice. 

All dissections were performed in a petri dish, which had been cleaned with RNAse decontaminating 

solution beforehand. Brains were sprinkled with sterile saline to remove excess blood.  All samples were 

collected by the same experienced researcher using 1mm2 biopsy punchers (pfm medical, reference 

#49101) to collect 1mm3 samples from each hemisphere of the three regions of interest: ventromedial 

striatum (AP = 0.10/ML = ±1.00/DV = 4.00), dorsomedial striatum (AP = 0.14/ML = ±1.50/DV = 2.10), 

and dorsolateral striatum  (AP = 0.14/ML = ±2.50/DV = 2.50). Samples were rapidly placed inside of a 

RNAse-free Eppendorf tube (Dominique Dutscher, reference #033872) containing 200µL of buffer RLT 
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Plus (Qiagen, reference #1053393), and immediately frozen on dry ice. All samples were transferred 

and kept at -80°C until shipment, which was done on dry ice. 

Samples were transferred to 96-well plates and RNA purification and  RNA-sequencing was performed 

with 50µl lysate using the prime-seq protocol as described (Janjic et al., 2022). Separate libraries were 

generated for the three striatal regions and sequenced together on four lanes of an Illumina NextSeq 

2000 P2 flow cell with Read 1 (barcode & UMI): 28 bp, Index 1 (i7): 8 bp; Read 2 (cDNA): 101bp. 

 

Data analysis 

Behavioural analyses 

All behavioural data were analyzed using Matlab R2017b and the open source package ‘estimation stats 

- DABEST’ for data visualization (Ho et al., 2019). For behavioural strategy analyses, we additionally 

applied the PsyTrack algorithm (Roy et al., 2021). Statistical analysis were performed using IBM SPSS 

Statistics 29. We used a generalized linear mixed model to investigate the effects on three different 

targets: performance, number of trials, and pellet recovery times. The model used was target ~ 1 + 

Age_start + Sex + Mouse_line + Cage + Batch + Learning_stage + (1|Mouse).  

 

 

Expression data processing and mapping 

Fastq files were trimmed to remove any bases from the poly(A) tail using Cutadapt v1.12 (Martin, 2011). 

The quality was assessed using fastqc v.0.11.8 (ANDREWS, n.d.). zUMIs pipeline v.2.9.4d (Parekh et 

al., 2018) was used to process the data and generate a count matrix. Reads with a Phred quality score 

threshold of 20 for 3 BC bases and 4 UMI bases were filtered, mapped to the mouse genome (GRCm38) 

with the Gencode annotation (vM25) using STAR v.2.7.3a (Dobin & Gingeras, 2015), and then counted 

using RSubread v.1.32.4 (Liao et al., 2019). Genes that were expressed in at least 20% of the cells with 

an average of 3 counts or higher across samples from at least 1 striatal region were kept for the 

downstream analyses. This resulted in a count matrix containing 17,499 genes across 240 samples. 

 

Cell-type composition 

SCDC v.0.0.0.9000 (Dong et al., 2021) was used for cell-type deconvolution, using the scRNA-seq 

TM_Brain_Non_Myeloid reference from Tabula Muris (Schaum et al., 2018). We observed varying 

proportions of inhibitory neurons (0.6 - 0.88) across samples, however these proportions are likely 

variable due to technical reasons, not biological, as we did not observe any systematic difference in 

overall cell-type composition between mouse samples under learning conditions vs controls 

(multinomial test p-value 1.0).  

 

Model selection and exploratory analyses DESeq2 v.1.34.0 (Love et al., 2014) was used for the initial 

data exploration and backward model selection (Likelihood ratio test, Benjamini-Hochberg adjusted p-
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value <0.05). A full model including all relevant biological and technical factors was fitted using the 

following design ~0 + Condition + Region + Batch + Hemisphere + prop_inhibitory + 

Age_start_months. Predictor importance was tested using leave-one-out approach. All predictors 

besides Age_start_months showed significant improvement in explaining the variance of >200 genes. 

Age_start_months only explained 2 genes and was further removed from the model. Another round of 

leave-one-out model selection was performed without including Age_start_months, but none of the kept 

predictors showed reduced importance, hence all other predictors were kept. Principal component 

analysis (PCA) and hierarchical clustering (Euclidian distance, method “complete”) using R package 

pheatmap v.1.0.12 (Kolde, 2019) were performed on the 1000 most variable genes (centered and scaled 

matrix), and we observed clustering mainly due to the striatal region, but also cell-type composition, 

batch and learning effects.  

 

Differential expression analysis  

Input expression matrix was normalized using scaling factors calculated via TMM method from R 

package edgeR v.3.36.0 (Robinson & Oshlack, 2010). Differential expression (DE) analysis was 

performed using DREAM (Hoffman & Roussos, 2021), R package variancePartition v.1.24.1 (Hoffman 

& Schadt, 2016), which implements mixed-effect modelling.  Mouse pairs were included as a random 

effect in addition to the main predictors specified above, resulting in the following final model: 0 + 

Condition + Region + Hemisphere + Proportion (IN) + Batch + (1|Mouse pairs). The importance of the 

included predictors was validated using variance partition implemented in DREAM. Benjamini-

Hochberg adjusted p-value < 0.05 was considered as a cut-off for significant DE. 

 

Clustering of differentially expressed genes 

The included genes consisted of genes that were DE between either learning stage (GD, Int, Hb) and its 

respective control (yokedGD, yokedInt, yokedHb), respectively, or the combined (averaged) contrast 

across the learning stages versus controls, comprising a total of 921 learning-associated genes. The log2-

fold changes to the respective controls were used to cluster these genes using k-means unsupervised 

clustering algorithm (Eucledian distance on centered and scaled matrix), R package factoextra v.1.0.7 

(Kassambara & Mundt, 2020). The relevant number of clusters was inferred using three cluster metrics: 

silhouette, elbow and gap statistic. All of these preferred cluster number (k) of 2-4, showing very similar 

preference among these 3 options. Hence, we chose to evaluate the clusters using the range of 2-4 k. 

 

Gene set enrichment analysis (GSEA) 

GSEA was performed using R package topGO v.2.46.0 (Alexa & Rahnenfuhrer, 2022) Biological 

Process (BP), setting minimal node size to 10. Significantly enriched terms (Fisher’s p-value < 0.01) 

were further filtered for terms with <500 annotated genes and >2 significant genes to facilitate 

interpretability. 
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Software 

All expression analyses besides pre-processing were performed using statistical software R v.4.1.3 (R 

Foundation for Statistical Computing, Vienna, Austria., n.d.). Figures and data wrangling were done 

using tidyverse v.1.3.2 (Wickham et al., 2019) and cowplot v.1.1.1 (Wilke, 2020). 

             

Results 

A deterministic visual discrimination task to assess learning 

To capture learning in the most naturalistic possible manner, we have developed a fully automated, self-

motivated, visual discrimination task. Mice live inside custom-modified operant conditioning chambers 

and self-initiate each trial in order to obtain food rewards by crossing an infrared beam-equipped gate 

(Fig. 1A). By doing so, the two touchscreens inside the chamber wall facing the mouse display 

simultaneously either ten vertical or horizontal bars as a stimulus. Each mouse was assigned to a certain 

stimulus-outcome contingency, e.g. horizontal/vertical bars require a left/right screen touch, 

respectively. We evaluated all trials during the animals’ awake cycle (8pm-8am) and distinguished 

between five response types: correct and incorrect trials, aborted trials, time out trials and trials, in which 

the food reward was not picked up within 15 seconds after correct response (Supp. Fig. 1). Wildtype 

mice acquired the task, following the expected learning curve with a steady increase in initial 

performance and plateauing performance at trial number = 1240 ± 409 (Fig. 1B, Suppl. Fig. 2). We thus 

distinguished four different learning stages: naïve, early, intermediate, and late. The naïve stage 

corresponds to the first night in the chamber. The early learning stage was defined as the night in which 

the performance plateau was reached (Suppl. Fig. 2). Subsequently, intermediate and late learning stages 

were defined as 1000 or 2000 trials past early learning, respectively (Fig.1B). Performance levels 

differed between early and both intermediate and late learning stages, while this was not the case 

between the two latter stages. Besides performance, we used additional behaviourally relevant metrics 

to further characterize the different learning stages: reaction time, i.e., the time between stimulus onset 

and screen touch; pellet recovery time, i.e., the time between correct screen touch and nose poke to 

trigger pellet delivery; and the number of trials, which we additionally segregated into five response 

types. Reaction time was highly variable between animals and did not reflect modulation across learning 

(Supp. Fig. 3). Pellet recovery time steeply decreased during initial learning before plateauing (Fig. 1C). 

The overall number of initiated trials decreased from early to subsequent learning stages. Indeed, 

subtracting performance and initiated trials at early learning stage from those of a later learning stage 

highlights an increase in efficiency across learning (Fig. 1D). We performed generalized linear mixed 

model analysis on the response variables “performance”, “number of trials”, and “pellet recovery time”, 

using learning stage, age, sex, mouse line, cage, and batch as predictors, and correcting for animal as 

random effect. For performance and pellet recovery time, the only significant predictor was learning 

stage (Performance: F: 152.976, df1: 3, df2: 78, p-value<0.001; Pellet recovery time: F: 66.554, df1: 3, 
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df2: 78, p-value<0.001). As for number of trials, no fixed effect reached statistical significance, being 

however close (Number of trials: F: 2.536, df1: 3, df2: 78, p-value=0.063).  

While performance and rapidity are unquestionably important parameters to assess learning over time, 

we believe that understanding the hidden strategies that drive a subject to take a decision can 

substantially provide insights into behavioural optimisation. To analyse such hidden strategies, we used 

the PsyTrack model (Roy et al., 2021). Such model allows to estimate the weights of different strategies 

that can be applied by the animals. Concretely, in our task, we identified four relevant strategies: in the 

“current contingency” strategy, the animal follows the assigned stimulus-outcome contingencies and 

represents the optimal strategy for this task. The “lateralization bias” reflects the natural tendency of 

each mouse to choose one side over the other. The “previous contingency” strategy represents win-

stay/loose-shift behaviour. And lastly, animals could also apply a simple repetition/alteration strategy. 

In our task, we observed an increase of the weight of following the assigned contingencies across 

learning, indicating that the animals correctly apply the acquired contingencies as a dominant task 

strategy (Fig. 1E). Such increase closely follows the performance curve, suggesting that the increase in 

performance mainly is due to understanding the task structure. Lateralization bias, the initially most 

dominant strategy, and repetition/alternation strategy remain stable over time. Interestingly, the 

contribution of the previous contingency strategy slightly increases during initial learning, and 

completely extinguishes near the time that the current contingency strategy reaches its plateau. In 

summary, different metrics extracted from the developed task suggest learning as well as learning-

related changes across time. Such difference is especially visible between naïve, early and intermediate 

learning stages, but not beyond. 

 

Replication of task metrics in mice used for RNA-sequencing 

Having validated the assessment of learning and behavioural changes across the different learning stages 

in a first cohort of wildtype mice, we now aimed to track molecular changes across learning and 

consolidation. To do so, we repeated the behavioural task in a separate cohort of wildtype mice (n = 40), 

which were assigned to different learning (naïve, early, intermediate and late) and control groups (yoked 

groups for early, intermediate and late learner groups) (n = 6 per group except the naïve group with n = 

4) (Fig. 2A). Group assignment was balanced for age and home cage. In a slight deviation from the 

original task, we pre-determined a common time point for the early learning stage at 1000 trials instead 

of attributing an individual time point to each subject in order to extract information from individual 

learning variability. Subsequent intermediate and late learning stages in this second cohort were thus 

also uniformly defined at 2000 and 3000 trials, respectively. Having reached the required number of 

trials, each group was sacrificed the morning after and bilateral striatal punches from the ventral, 

dorsomedial and dorsolateral striatum taken for subsequent RNA-sequencing procedures. In order to 

control for experimental condition, handling and food intake, each learner mouse of the early, 

intermediate and late learning stages was paired with a yoked control mouse. This yoked control mouse 
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would stay in a mock chamber in the same experimental room for the same amount of time, receiving 

exactly the same amount of food pellets as its paired learner mouse. The yoked animals were dissected 

at the time as the learners, hereby randomizing the dissection order across yoked and learner groups. 

Naïve animals served as an external control for any experimental condition.  

We first confirmed that the behavioural parameters obtained in the second cohort was comparable to the 

ones obtained from the first wildtype cohort. Indeed, as in the first wildtype cohort, performance steeply 

increased from the early to intermediate learning stages, but not between intermediate to late learning 

stages  (Fig. 2B and 2C). Similarly, the total number of trials decreased between early and the subsequent 

learning stages, yet without any further decrease between intermediate to late learning stages (Fig. 2D). 

Given reduced animal number (n = 6 per group instead of n = 25 in the first cohort), the decrease in the 

pellet recovery times was only observed as a tendency (Fig. 2E). We then correlated the number of trials 

initiated by the mouse with the performance achieved during the same night and we can notice a clear 

separate cluster for early time point that shows worst performance for a bigger number of initiated trials. 

Finally, we conducted generalized linear mixed model analysis on the response variables “performance”, 

“number of trials”, and “pellet recovery time”, using learning stage, age, cage, and batch as predictors, 

and correcting for animal as random effect. Both performance and number of trials were strongly 

predicted by learning stage, with additionally significant effect of batch (Performance: Learning stage – 

F: 6.781, df1: 2, df2: 6, p-value=0.029; Batch – F: 6.375, df1: 3, df2: 6, p-value=0.027; Number of trials: 

Learning stage – F: 11.223, df1: 2, df2: 6, p-value=0.009; Batch – F: 8.646, df1: 3, df2: 6, p-

value=0.013). Pellet recovery time was not predicted by any of the effects.  

 

RNA-sequencing analysis shows learning-related differential gene expression  

We processed the 240 striatal punch biopsies (40 mice x 3 regions x two hemispheres) using the prime-

seq protocol as described (Janjic, et al, 2022). In this plate-based bulk RNA-seq protocol, RNA is 

purified directly from the RLT dissolved biopsies using magnetic beads and subsequently reverse 

transcribed with barcoded oligo-dT primers. This allows pooling of barcoded cDNA before second 

strand synthesis, amplification and library generation and is an efficient and sensitive way to generate 

many libraries (Janjic, et al, 2022). We generated on average 5.3 million reads per sample, resulting in 

~ 3 million reads mapped to genes of which 1.5 million were unique reads (UMIs). To remove noise, 

we selected the 17,499 genes that are in at least one region expressed in at least 20% of the samples with 

an average of at least three UMIs.  We deconvoluted the expression profiles using scRNA-seq data from 

annotated brain cell types to analyse cell type compositions. As expected, the great majority of cells in 

our samples were inhibitory (60-88%), followed by excitatory, and glial cells (Fig. 3B). Importantly, the 

proportion of inhibitory cells was not only a good predictor for variations in other major cell types, but 

also explained much of the variance observed in the principal component analysis (PC 2, 18% variance, 

Suppl. Fig 4). Given the relevance of this variability, and to avoid excluding potential outlier samples, 

we included the proportion of inhibitory cells as a factor in our statistical model. Through backward 
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model selection further important covariates such as hemisphere, region and batch were included as 

fixed effects (see methods section for details). Given the experimental design of learner and paired yoked 

animals, we defined mouse pair as the random effects predictor. We used a mixed-effects differential 

expression analysis framework (DREAM, (Hoffman & Roussos, 2021)) to infer differentially expressed 

(DE) genes due to learning, while accounting for both random and fixed effects in our data . We observe 

that a large proportion of variation in gene expression can be accounted to regions. Firstly, hierarchical 

clustering of the 1000 most variable genes in our dataset indicates that variation mainly results from 

regional punching (Fig. 3C). Also, when analysing what percentage of gene expression variance can be 

explained by either predictor, the largest differences across the data set are between regions (Fig. 3D), 

however condition still explains 5-29% of variation in 557 genes. Interestingly, also two groups of 

samples seem to cluster according to learning/yoked condition irrespective of the region (Fig. 3C). 

Furthermore, these two clusters come almost exclusively from dorsomedial and dorsolateral, but not 

from ventral striatal samples. 

Our experimental design allowed for a multitude of comparisons and analyses (Fig. 3E). We first started 

by comparing naïve and yoked control groups to detect expression changes, which were attributable to 

experimental testing other than learning. Given the near absence of gene expression differences between 

naïve and control groups, we excluded major side effects due to experimental condition per se. 

Importantly, this meant that the expression differences between yoked and learning groups could be 

interpreted as learning-related. When segregating those learning-related differential gene expression into 

the three learning stages, we detected substantial expression changes during early learning , indicating 

a peak of intense molecular activity by 593 differentially expressed genes (for all mentioned DE results, 

adjusted p-value<0.05). Past the early learning stage, differential gene expression tremendously 

decreases from nearly 600 to 55 differentially expressed genes between intermediate learners and yoked 

controls, to only 36 differentially expressed genes between late learners and yoked controls. Next, we 

contrasted differential gene expression between learning stages for an imprint of striatal learning across 

time and detected similar amounts of differentially expressed genes between early/intermediate, and 

intermediate/late comparisons. Highest differential gene expression was detected between early and late 

learning stages. We next assessed the communalities and particularities in gene expression patterns  

between the learning stages (Fig. 3F). As of no surprise, the majority of differentially expressed genes 

were specific to the early learning (327 genes), whereas there were very few differentially expressed 

genes specific to the intermediate or late stages (14 and 12, respectively). To add functional information, 

we selected all learning-related differentially expressed genes (921 genes in total) and annotated gene 

functions using gene set enrichment analysis of gene ontology “Biological process” (Fisher’s p-

value<0.01, (Alexa & Rahnenfuhrer, 2022)) (Fig. 3G). Interestingly, many synapse-related categories 

appeared in this analysis, including “regulation of long-term synaptic potentiation”.  

 

Comparison between consistently and early expressed genes  
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We clustered all 921 learning-modulated genes across subsequent learning stages using three cluster 

metrics: silhouette, elbow and gap statistic (Supp. Fig 4). All of these preferred cluster number (k) of 2-

4, showing very similar preference among these three options. Hence, we chose to evaluate the clusters 

using the range of 2-4 k. With 2 k-means clusters, the separation was mainly between the up- or down-

regulated genes, whereas with 3 clusters the up-regulated genes were further subdivided. When dividing 

these patterns into 4 k-means clusters (Fig. 4), this allowed us to identify 71 consistently up-regulated 

genes (cluster 1) and 78 consistently downregulated genes (cluster 3). Clusters 2 and 4 (332 and 440 

genes, respectively) contained mainly early learning-modulated genes. Consistently upregulated genes 

were mostly related to angiogenesis, while the consistently downregulated genes were mostly related to 

circadian regulation. The clusters of mainly early-learning modulated genes contained synapse-related 

categories, annotations of developmental growth, learning, and others.  

 

Discussion 

In the present study, we systematically characterized learning behaviour across defined early, 

intermediate and expert learning stages in a large number of animals and mapped out learning-related 

molecular changes. Automated, self-paced, self-motivated operant conditioning as well as a set of 

matched control conditions allowed us to minimize molecular noise generated by the experimental 

procedure per se. Operant conditioning set-ups have been used and developed since their first creation 

in the 19th century (Calkins, 1896; Skinner, 1963; Thorndike, 1927). Despite varying designs and 

complexity of operant learning paradigms, the vast majority of experimental work still relies on daily 

conditioning sessions of rather short duration. Such design often includes drastic experimental 

interferences to elevate the motivational drive of experimental animals to engage in the task such as e.g., 

water- or food-restriction in mammals (Balcombe et al., 2004). Here, we experimentally minimized such 

experimental interference and statistically confirmed our approach first in replicable behavioural 

datasets according to expectations and, second, through molecular expression analyses. 

We opted for a simple deterministic binary discrimination task and observed the expected sigmoid 

performance changes across learning stages with steep performance increase during initial learning 

followed by plateauing performance towards expert performance. Expert learning never translated into 

performance at 100%, suggesting the maintenance of an exploratory component throughout the entire 

task. Similarly, also pellet recovery times, an indicator of motivational association of action and 

outcome, suggest a dynamic development of learning stages from naïve through early, intermediate 

towards late learning stages. Indeed, pellet recovery time experiences a sharp drop-off from naïve to 

early learning, supporting the strongest associative processes between naïve to early learning as 

observed in the performance parameter. However, the observation of a plateauing effect in isolated yet 

meaningful behavioural readouts does not indicate static prolongation of early learning states. Indeed, 

when applying hidden strategy analysis (Roy et al., 2021), opposing dynamics of the strategies following 

either stimulus-outcome or win-stay/loose-shift strategies favor continued learning beyond the early 
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learning stage. As an alternative behavioural parameter to assess learning dynamics over time, efficiency 

serves as an additional readout for dynamic learning changes. Indeed, when contrasting early and late 

performance over early and late trial numbers, we observed a shift of the majority of the animals into 

the quadrant of higher performance over less number of trials, indicating an increase in efficiency over 

time in our task. We did not observe a change of reaction times across learning, which had been observed 

previously when comparing initial and late learning stages (Thorn & Graybiel, 2014). While this seems 

surprising at first sight, such observation is likely due to the task design: in tasks such as the T-maze 

tasks, a widely applied task to study learning-stage related questions, the stimulus-action and action-

outcome components are at least partially overlapping while they are completely separated in our task 

design. 

Having observed dynamic changes across learning stages, we designed an experimental protocol 

suitable to assess a molecular imprint of learning and of learning across the different stages without 

major interference of experimental factors. Indeed, the differences in expression changes observed 

between learning animals and paired yoked control groups could not be explained by experimental 

treatment per se, for which we had controlled for by comparing naïve and yoked control animals, which 

yielded hardly any expression changes. Similarly, also between-learning stage differences could not be 

explained by experimental manipulation given the near absence of expression changes between the 

different yoked control groups. Thus, observed expression changes could be attributed to learning-

associated procedures, which were comparable to the first cohort of mice given similar performance, 

efficiency, applied strategies, pellet recovery times and reaction times. Our dataset could thus be applied 

to study learning-related questions in general as well as questions addressed to particular subsets of 

learning stages. Such approach could be informative when studying certain gene categories, networks 

or single genes of interest that for example have emerged from the literature of neuropsychiatric animal 

models and that have been suspected to affect associative learning in one way or the other.  

Consistent with the dynamics of behavioural parameters, we observed major changes in differential gene 

expression during early learning, with a decrease in differential expression changes at later stages of 

learning. We first grouped all learning-related expression changes and analyzed major expression 

changes across all learning stages in a data-driven manner. The top fifteen striatal learning-regulated 

gene ontology categories affect three major groups: behavioural categories, such as locomotion or 

regulation of heart rate; cellular categories such as cell migration; or, to the largest extent, categories 

describing neuronal molecular changes, in particular neuroplasticity- or general synapse-associated 

categories including e.g. membrane depolarization, regulation of long-term synaptic plasticity, receptor 

internalization, regulation of glutamatergic synaptic transmission or acetylcholine receptor signaling. 

We consider all categories that emerged from such unbiased analyses meaningful in the context of 

learning and when describing plasticity-related changes in cortico-basal ganglia circuits. Obtaining such 

meaningful categories further corroborates our approach and results of learning-related differential gene 

expression.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.522560doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522560


14 
 

When pooling and clustering all learning-related genes across segregated learning stages, we obtained 

four clusters: genes, which were characterized either by a peak of differential gene expression (up- or 

downregulation) in particular during the early learning phase, or by a consistent up- or downregulation 

pattern across learning stages. Interestingly, even in more consistently learning-regulated genes, a peak 

of differential gene expression is present during early learning; this again corroborates the paralleling of 

behavioural and molecular findings.  

When analyzing gene expression categories in a data-driven manner, the top five categories of more 

consistently upregulated genes across learning stages suggest major upregulation of angiogenetic and 

cardiovascular processes. This corroborates on the one hand functional hyperemia as a metabolic 

marker, which forms the principle pf functional MRI BOLD signaling: here, focal blood influx is used 

to assess neural activity levels given the correlation of both parameters. Beyond such metabolically 

inspired interpretations of increased blood flow to provide the necessary gas exchange at metabolically 

highly active sites, one might also reconsider our observations in the context of hemodynamic 

neuromodulatory functions (Moore & Cao, 2008). Indeed, hemodynamics might modulate neural 

activity through direct and indirect mechanisms: for example, Moore & Cao propose that an 

upregulation of hemodynamic signals might increase the delivery of diffusible blood-borne messengers 

and modulate neural activity mechanically as well as thermically. Indirectly, changes in hemodynamics 

might regulate astrocytes, which themselves in turn would regulate neural activity. Support for such 

hypothesis is provided through studies using angiogenesis inhibitors demonstrating that angiogenesis 

but not neurogenesis is critical for learning (Kerr et al., 2010). The top five categories of differentially 

expressed genes experiencing a consistent downregulation across different learning stages, contained 

cardiovascular-related categories, translational regulation as well as changes in circadian rhythm. The 

latter seems to be of particular interest given previous reports of this category being affected during 

learning consolidation (Horowski et al., 2004; Smarr et al., 2014; Verwey et al., 2016) as well as an 

important factor in several neuropsychiatric disorders such as depression and schizophrenia (Walker et 

al., 2020). Furthermore, genes involved in circadian regulation have also been described in the context 

of the cognitive evolution, including human evolution (Fontenot et al., 2017). 

The top five early-upregulated gene categories contained cellular and synaptic processes, which again 

were meaningful in the given context: inhibitory postsynaptic potential, regulation of glutamatergic 

synaptic transmission, protein refolding, regulation of cell migration and of developmental growth. 

These categories and certain genes of interest leading the group of differentially expressed genes within 

these categories, e.g. dopamine-2 receptors of A2A receptors (He et al., 2016) render the dataset 

meaningful in the context of cortico-basal ganglia related learning in health and disease. A first analysis 

of the top five gene categories with major down-regulation in particular during early learning stages 

further corroborate the molecular mapping of cortico-basal ganglia related learning in our assay. These 

categories again include learning and neurodevelopmental gene categories such as e.g. neural tube 

closure-related genes as well as molecular adaptations through e.g. mRNA slicing. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.522560doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.522560


15 
 

Taken together, data-driven analyses suggest a meaningful, major modulatory effect on learning-related 

and neuroplasticity-related gene clusters, categories and individual genes. The specific learning-related 

effect assessed through our experimental design renders our dataset useful for the exploitation in 

particular settings and contexts, including for example mouse models of neuropsychiatric or neurologic 

research with defects in cortico-basal ganglia-dependent learning and consolidation procedures. 
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Figures with legends 

 

Figure 1 

 

 

Figure 1. A self-motivated, visual discrimination task to capture learning and consolidation. A – 

Schematic illustration of the custom-adapted operant conditioning chambers (top-view). The animal 

lives inside the operant chamber, which is equipped with a food pellet dispenser at the rear end and two 

touchscreens displaying the task-relevant stimuli at the front end. The animal triggers trial onset by 

crossing the laser-beam equipped gate. B – Performance follows a sigmoid learning curve across up to 

4000 trials. Plotted is the mean and SEM of n = 25 wildype animals. C – Pellet recovery times decreases 

across learning stages and serves as an additional behavioural readout across different learning stages.  

D – Individual performances, pellet recovery times and number of initiated trials during the night when 

reaching each learning stage. The bottom right graph represents the difference of late versus early 

learning stages in number of trials (x-axis) over the difference of performance (y-axis), and demonstrates 

gained efficiency across learning through the clustering of most animals in the top left quadrant. E – 
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Relative weights of PsyTrack several hidden strategies (Roy et al., 2021) that were available to the 

animals during the task. Pink: weight of applying current contingency, i.e., the animal follows stimulus-

outcome contingencies in the current trial; orange: weight of applying previous contingency, i.e., the 

animal applies a win-stay/loose-shift strategy; green: general repetition/alternation strategy; violet: 

general lateralization bias. The bottom graph represents the differences between late and early learning 

stages in the weights of applying previous (x-axis) over current contingencies (y-axis), and shows a shift 

of the majority of the animals away from win-stay/loose-shift towards the optimal current contingency 

strategies. Plots in panels B-D represent means +/- SEM. The colour code in panels B and D represents 

the naïve, early, intermediate and late learning stages in dark blue, blue, turquoise, and green, 

respectively. N: naïve, E: early, I: intermediate, L: late learning stages. 
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Figure 2 

 

 

Figure 2. Replication of behavioural readout parameters in animals applied for molecular 

mapping. A – Illustration of experimental design. Groups mice of each learning stage (early, 

intermediate, late) were paired with yoked controls. Naïve mice were added as outgroup controls for 

general experimental procedures. B – Average performance (mean +/- SEM) of each learning stage 

group until stage criterion: 1000, 2000, and 3000 trials for early, intermediate, and late learners, 

respectively. C – Individual data points of performance, number of initiated trials, and pellet recovery 

times as behavioural readouts of the night prior to reaching stage criterion.  D – Trial number (x-axis) 

over performance for individual animals of each learning stage during the night prior to reaching 

learning stage criterion. Early, intermediate and late learners are colour coded in blue turquoise, and 

green, respectively. E: early, I: intermediate, L: late. 
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Figure 3 
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Figure 3. Learning-related differential gene expression is strongest during early learning.  

A – Schematic illustration of striatal sample collection. Brown: limbic, ventromedial striatum, red: 

associative, dorsomedial striatum, yellow: sensorimotor, dorsolateral striatum. B – All striatal samples 

show expected cell type composition. C – Distribution of variance explained by experimental factors 

that were included in the GLMM analyses of differential gene expression. D – Heatmap of hierarchically 

clustered gene expression. Most differential gene expression could be explained by regional sampling; 

remaining gene expression patterns mostly cluster into learning versus non-learning condition. 

Yellow/blue colour spectrum represents up- or downregulated expression levels. Samples are colour-

coded according to condition (learner versus yoked groups), learning stage (naïve, early, intermediate, 

late) and regional sampling (ventromedial, dorsomedial, dorsolateral striatum). E – Pooled differential 

expression analysis showed major learning-related changes especially during early stages. Yoked and 

naïve outgroup control groups with nearly absent differential gene expression demonstrate learning-

specific expression in our task design. F – Comparison of expression changes across learning and 

individual learning stages. G – 15 most highly enriched TopGO gene ontology categories of pooled 

learning-related expression changes. 
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Figure 4 
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Figure 4. Learning-regulated expression changes cluster into consistently versus early-learning 

enriched expression changes.  

A – Learning-regulated differentially expressed genes cluster into four categories when plotted by their 

expression level across early, intermediate, and late learning stages: consistently up- or downregulated 

and mostly early-learning up- and downregulated genes. B – Cnet plots of the five most enriched gene 

ontology categories of each cluster with their respective differentially regulated genes, colored by their 

log2-fold change relative to the respective yoked control. Pink and blue colour coding represents 

differential up- or downregulated expression patterns. Light and dark grey represent consistently versus 

early-regulated differential gene expression. 
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