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Abstract 

Music and speech are two sounds that are unique to human beings and encountered in 
daily life. Both are transformed by the auditory pathway from an initial acoustical 
encoding to higher level cognition. Most studies of speech and music processing are 
focused on the cortex, and the subcortical response to natural, polyphonic music is 
essentially unstudied. This study was aimed to compare the subcortical encoding of 
music and speech using the auditory brainstem response (ABR). While several methods 
have recently been developed to derive the ABR to continuous speech, they are either 
not applicable to music or give poor results. In this study, we explored deriving the ABR 
through deconvolution using three regressors: 1) the half-wave rectified stimulus 
waveform, 2) the modeled inner hair cell potential, and 3) the auditory nerve model firing 
rate (ANM), where the latter two were generated from a computational auditory 
periphery model. We found the ANM regressor yields robust and interpretable ABR 
waveforms to diverse genres of music and multiple types of speech. We then used the 
ANM-derived ABRs to compare the subcortical responses to music and speech and 
found that they are highly similar in morphology. We further investigated cortical 
responses using the same deconvolution method, and found the responses there were 
also quite similar, which was unexpected based on previous studies. We conclude that 
when using our proposed deconvolution regressor that accounts for acoustical 
differences’ nonlinear effects on peripheral encoding, the derived brainstem and cortical 
responses to music and speech are highly correlated.  
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Introduction 
 

Music and speech are two uniquely human sounds. Recent studies have reported that 
the human brain has specialized responses to music and speech versus other sound 
stimuli [1-4]. These sounds, once they hit our ears, spark a cascade of neural activity 
beginning with basic encoding of acoustics and eventually activating high level brain 
function, such as understanding, memory, and emotion [5]. However, how this 
transformation from encoding to perception to cognition happens along the auditory 
pathway, and how the process differs at each stage between music and speech, 
remains unclear. 

Previous studies investigating the human brain processing of music and speech have 
mostly focused on the cortex. While neural overlap of music and speech processing has 
been suggested, several studies have noted differences [6]. Music and speech stimuli 
have different spectral and temporal modulations, and this has been reported to 
underlie asymmetrical processing [7, 8]. A study reconstructing the envelope from EEG 
responses found different cortical envelope tracking between speech and music [9]. 
Studies have also revealed selectivity patterns of neural populations from auditory 
cortex in response to music and speech [4, 10]. Other studies, however, have 
investigated the processing of syntax and structure in speech and music and found 
shared networks, suggesting that their syntactic integration may share mechanisms [11-
15].  

There is comparatively limited subcortical work comparing the responses to music and 
speech. Some studies have examined low level encoding of short speech and music 
sounds by analyzing the transient onset response and the frequency-following response 
(FFR) [16-21]. This work has revealed some relationship between the subcortical 
response and the spectral or temporal attributes of music and speech. However, the 
purely subcortical origin of FFR is debatable, and is likely a mixture of cortical and 
subcortical generators [22]. Further, all of these studies were restricted to short stimuli 
such as a single vowel or phoneme for speech, or a single pitch (or pitch interval/chord) 
for music, none of which represent the richness of natural music or speech. 

The Auditory Brainstem Response (ABR) can be used to characterize the subcortical 
activity in response to auditory stimuli, with its major strength being that its component 
waves can be attributed to distinct stages of the early auditory pathway [23]. The ABR’s 
major drawback, however, is that its traditional measurement requires many repetitions 
of short stimuli such as clicks or tone bursts. 

In this paper we will measure the ABR to natural speech and music stimuli using 
deconvolution techniques, which fit a model that relates an input stimulus to the 
recorded EEG data. Several techniques have been recently developed that allow the 
derivation of subcortical responses to continuous and non-repetitive stimuli, with some 
caveats. Some have been developed for speech but do not generalize to polyphonic 
music [24-26]. Another study used the subcortical temporal response function (TRF) to 
measure responses to each line in two-part melodic musical pieces, but was not tested 
with other music [27]. A third, similar technique takes the half-wave rectified audio 
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waveform as the input to a linear system and computes the ABR as that system’s 
impulse response [28]. The derived response to speech showed a clear wave V which 
has a high degree of similarity in the morphology with the click-evoked ABR, but the 
earlier waves (wave I-IV) were “smeared” together. Despite this drawback, this 
paradigm has the advantage of making no assumptions about the input stimulus (e.g., 
that it is speech, or that it has a definable fundamental frequency). 

The deconvolution technique we will use in this paper is based on Maddox and Lee [28], 
but will address its shortcomings. In the first part of this paper, we extend that paradigm 
by replacing the half-wave rectified audio regressor with physiologically realistic ones 
which better reflect nonlinear processing in the auditory periphery, and find that the 
output firing rate of an auditory nerve model (ANM) provides excellent results for both 
music and speech, beating the half-wave rectified stimulus as well as modeled inner 
hair cell (IHC) potential over several quantitative metrics. In the second part, we turn to 
our original question of subcortical encoding of music and speech using deconvolution 
with the ANM regressor. We find that subcortical responses to music and speech have 
no discernable difference. We also investigated the cortical responses using the same 
methods and find, somewhat surprisingly given previous work [1], that the cortical 
responses as well were highly similar. These results suggest that the brainstem 
encodes music and speech without regard to sound type, and that using regressors that 
account for peripheral encoding may be essential for cortical studies of different 
stimulus classes. 

Materials and Methods 
Participants 

All subjects gave informed consent prior to the experiment and were compensated for 
their time. Data collection was conducted under a protocol approved by the University of 
Rochester Subjects Review Board (#66988). 

There were 24 subjects who participated in this experiment. All subjects had 
audiometric thresholds of 20 dB HL or better from 500 to 8000 Hz, self-reported normal 
or correctable to normal vision, and indicated English as their primary language. 

Two subjects were excluded: one self-withdrew partway through the experiment, and 
technical problems during data collection led to unusable data for another subject. 
Therefore, after excluding the two subjects, there were 22 subjects (11 male and 11 
female) with an age of 22.7 ± 5.1 (mean ± SD) years that we included in the analysis.  

 

Stimulus Presentation 

Subjects were seated in a sound-isolating booth on a chair in front of a 24-inch BenQ 
monitor with a viewing distance of approximately 60 cm. Stimuli were presented at an 
average level of 65 dB SPL and a sampling rate of 48000 Hz through ER-2 insert 
earphones (Etymotic Research, Elk Grove, IL) plugged into an RME Babyface Pro 
digital sound card (RME, Haimhausen, Germany). The stimulus presentation for the 
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experiment was controlled by a python script (Python Programming Language, 
RRID:SCR_008394) using a custom package, expyfun [29].  

 

Stimulus Types 

Click Train 

Click times were generated from a Poisson process with a rate of 40 stimuli / s, and the 
click duration was 104 µs [30]. Each train was one minute in duration. 

 

Music & Speech Dataset 

A broad sample of music and speech stimuli was ensured by selecting clips from many 
genres and contexts. Six genres of music (acoustic, classical, jazz, hip-hop, metal, and 
pop) without vocals and six types of speech (English audiobook, Chinese audiobook, 
interview, instructional lecture, news, and presentation) were the main stimuli analyzed 
in the study. The English audiobooks were purchased and were the same as used in 
[26, 28], whereas the Chinese audiobooks were recorded by lab members. Other music 
and speech stimuli were collected from diverse sources that were Creative Commons 
(CC) licensed (See Tables 1 & 2 for details).  

 

Table 1. Music stimuli. 

Type Sources Link Content 

Classical Free Music 
Archive 

https://freemusicarchive.org/ Borromeo - String Quartet 
– 03 – Mozart String 
Quartet No16 in E-flat 
Major 

MIT Symphony Orchestra 
– 01 – The Merry Wives of 
Windsor Overture Nicolai 
004 

Scott Holmes Music-
Conclusion-FMA 000 

Jazz Till Paradiso-Be Part of My 
Universe-FMA 

DSD100 [31] https://sigsep.github.io/dataset
s/dsd100.html 

 

030 - Patrick Talbot - A 
Reason To Leave 

081 - Patrick Talbot - Set 
Me Free 

Acoustic 021 - James May - On The 
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Line 

044 - Tom McKenzie – 
Directions 

062 - Cristina Vane - So 
Easy 

Hip-hop 001 - ANiMAL - Clinic A 

027 - M.E.R.C. Music – 
Knockout 

052 - ANiMAL - Easy Tiger 

Metal 018 - Hollow Ground - Ill 
Fate 

043 - Timboz – Pony 

069 - Hollow Ground - Left 
Blind 

098 - Wall Of Death - 
Femme 

Pop 024 - Leaf - Come Around 

037 - Speak Softly - 
Broken Man 

041 - The Mountaineering 
Club - Mallory 

Table 2. Speech stimuli 

Type Sources Link Content 

Chinese 
Audiobook 

Recorded  N/A My Old Home by Lu Xun 

Kong Yiji by Lu Xun 

English 
Audiobook 

Polonenko 
and Maddox 
(2021) [26] 

https://datadryad.org/stash/dat
aset/doi:10.5061/dryad.12jm63
xwd 

The Alchemyst (Scott, 
2007) 

A Wrinkle in Time (L’Engle, 
2012) 

Interview YouTube https://www.youtube.com/watc
h?v=J0WbRmlSXBU 

CBC Sports - NBA 
Commissioner Adam Silver 
weighs in on the Raptors, 
racism, and politics | CBC 
News: The National 

Instructional 
lecture 

Khan 
Academy 

https://www.khanacademy.org/
science/electrical-
engineering/ee-signals/ee-

Khan Academy - Fourier 
Series introduction (video) 
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fourier-series/v/ee-fourier-
series-intro 

YouTube 

 

https://www.youtube.com/watc
h?v=9yETqNk0eMc 

 

YaleCourses - The 
Deuteronomistic History: 
Prophets and Kings 

 

News YouTube https://www.youtube.com/watc
h?v=Fy-mG4ktdS8 

BBC News - Snow Storm 
Report 28/2/18 

Presentation TED Talk https://www.ted.com/talks/gen
evieve_bell_6_big_ethical_que
stions_about_the_future_of_ai 

https://www.ted.com/talks/nick
_bostrom_what_happens_whe
n_our_computers_get_smarter
_than_we_are 

Genevieve Bell - 6 big 
ethical questions about the 
future of AI 

Nick Bostrom - What 
happens when our 
computers get smarter 
than we are? 

 

Stimulus Processing 

First, all the stereo stimuli were converted to mono by averaging the two channels. 
Some of the stimuli were originally sampled at 44.1 kHz, so these were resampled to 48 
kHz. 

Then, we normalized the volume of the music stimuli and removed silence from the 
speech stimuli. In order to control for any large amplitude changes in the music stimuli, 
they were divided by their slow envelope (low pass filtered at 0.1 Hz) to make the 
overall amplitude flatter. This did not affect local dynamics and instead functioned like 
“turning the volume up” during quieter parts of a piece. The flattened signal was created 
as ���������	
 � � ��/�� � 0.1�	�, 
where � is the stimulus waveform, � the envelope of the waveform low-passed at 0.1 Hz, �	 the standard deviation of the envelope, and ���������	
 the flattened signal. 

The speech stimuli were processed by automatically cutting out any silent period that 
was longer than 0.5 s using tools previously developed by our lab [26, 28]. We also 
manually cut out laughter and applause from the audience. 

Finally, both music and speech were spectrally matched to the average spectrum over 
all stimuli. We separated the stimuli into 28 bands from 50 Hz to 22,050 Hz with a 
spacing of 1/3 octaves using a 6th order Butterworth filter. Then, the mean powers for 
each band were computed across all trials and were used to match the powers of every 
stimulus: 
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��� � � � ���,����/��,�

�

, 
where � the �th frequency band, � the total number of frequency bands (� � 28, in our 
case), � the �th trial of the stimulus, � the total number of trials, ���,� the �th trial stimulus 
at the �th frequency band, ��,� the power of ���,�, �� the mean power of �th frequency 
band averaged across trials, and �� the spectrally matched �th trial of the stimulus.  

 

Trial Presentation and Task 

There were two phases in this experiment. For the first phase, ten trials of one-minute 
clicks were presented to the subjects. For the second phase, the 12 types (six genres of 
music and six types of speech) of 12 s stimuli clips were presented. There were 40 trials 
for each type with shuffled order. Between trials, there was a 0.5 s pause.  

To collect cortical activity at the same time, subjects needed to be kept alert during the 
experiment. Therefore, subjects were asked to do a mathematical comparison task 
while listening to the stimuli. One block constituted 5, 6, or 7 trials, containing a random 
number of music and speech trials. At the end of each block, subjects were asked to 
report whether there had been more music trials or speech trials within that block by 
clicking a button with a mouse. If a subject did not respond at the end of a block, the 
experiment paused. Only one subject forced the experiment to pause by not responding 
and completed the session after being roused by the experimenter. This task was not 
related to any EEG analysis we did, but ensured that subjects maintained some level of 
alertness and did not fall asleep for extended periods during the session.  

EEG Data Acquisition 

The EEG signal was recorded using BrainVision’s PyCorder software 
(RRID:SCR_019286). We collected both subcortical and cortical signals at the same 
time. For subcortical (ABR) activity, Ag/AgCl electrodes were placed frontocentrally 
(FCz, active non-inverting), left and right earlobes (A1, A2, inverting references), and 
the frontal pole (Fpz, ground). For cortical activity, 32-channels arranged according to 
the International 10-20 system were used. The average of the two electrodes P7 and P8 
was used as the cortical reference. 

The ABR electrodes were plugged into an EP-Preamp system (BrainVision) which was 
connected to an ActiCHamp (BrainVision) recording system. The 32-channel active 
electrode system was plugged directly into the ActiCHamp. We verified that all the 
electrode impedances were below a threshold of 5 kΩ before the experiment started. 
Both cortical and subcortical signals were recorded at a sampling frequency of 10 kHz. 

 

Response Derivation 

EEG Preprocessing 
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Clock drift can lead to timing differences between the EEG system and the sound card. 
To determine the actual sampling frequency of the EEG recording, we made a drift 
trigger stamped at 20 ms before the stimulus ended. The actual sampling frequency 
was then calculated by dividing the number of samples between the start trigger and the 
drift trigger by the offset of the two triggers (12 s stimulus duration − 0.02 s = 11.98s) 
[26], and the EEG was resampled so that it corresponded exactly with the stimulus 
presentation. 

The subcortical EEG data were high-passed at 1 Hz using a first-order causal 
Butterworth filter to remove slow drift in the signal. We also used a second-order infinite 
impulse response notch filter to remove 60 Hz noise and its multiples (120 Hz and 300 
Hz specifically) with a width of 5 Hz. We then averaged the left and right channels as 
the final subcortical EEG signal. 

The 32-channel cortical EEG data were high-passed at 0.1 Hz and notch filtered as 
described above. 

 

Subcortical Click Response Derivation from Cross-Correlation 

The subcortical click response was derived by calculating the cross-correlation of the 
click timing train (where click times were encoded with a 1 and all other samples were 0) 
and the EEG data. To speed computation, we calculated the response using frequency 
domain cross-correlation: 

����� �������� �  1� �  ��!"�
�  #�$ �%&�⁄

�

, 
where  �� is the inverse Fourier transform, " the fast Fourier transform (FFT) of click 
train, # is the FFT of EEG, * the complex conjugate, % the click rate (40 stimuli/s in this 
study), & the duration (60 s), � the total number of trials, � the index of �th trial. 

 

Deconvolution of Speech and Music Responses 

As described in Maddox and Lee (28), we defined an encoding model of the ABR as 
shown in Figure 1. The stimulus with a non-linearity applied (i.e., regressor) was the 
input �, the EEG signal was the output (, and the ABR was the impulse response of a 
linear system. 
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Figure 1. The encoding model is used in deconvolution. The stimulus is firstly processed with a 
nonlinearity applied to it and then the processed stimulus is used as the input x (i.e., regressor). The 
EEG data is considered as the output y. The ABR is the impulse response from the linear kernel and 
can be derived by deconvolving the EEG data and the regressor. 

 

As for click responses, the computation was performed in the frequency domain,  

)������� �  �� *∑ ,� "�
�  #��1� ∑ "�
�  "��

-, 
where )������� denotes the derived impulse response (ABR), " the FFT of the stimulus 
with the non-linearity applied (i.e., regressor), # the FFT of EEG signal, * the complex 
conjugate,  �� the inverse FFT, ,� the averaging weight of the �th trial (see below), � 
the total number of trials, � the index of �th trial 

When computing the response, we followed a Bayesian-like process [32] to account for 
variations in noise level, so that noisier trials were weighted less in the average. The 
EEG recording from each trial was weighted by its inverse variance, 1 ���.  , relative to 

the sum of the inverse variances of all trials [26]: 

,� � 1 ���.∑ 1 ���.�

. 
 

Regressors 

We analyzed the response using three different regressors:  

1) Half-wave rectified stimulus 

The half-wave rectified stimulus regressor was created by first taking the positive 
values of the stimulus waveform and down sampling it to 10 kHz. This positive 

Input 

non-linearity

Stimulus
Linear kernel

(Convolution)
EEG Signal

Deconvolution

Auditory Brainstem Response

x y
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regressor was then used as the input to the encoding model shown in Figure 1 
(i.e., �). Then, a second calculation was done, taking the negative values and 
down sampling as before. We ran the deconvolution two times separately with 
the positive and negative regressor. The final ABR response for each specific 
epoch of each subject is the average of the positive and negative responses [28].  

2) Inner Hair Cell modeled potential (IHC) from the Auditory periphery model 

We used a computational auditory periphery model created by Zilany et al. [33, 
34] and its adapted python package version [35] to generate simulated auditory 
neural responses to use as our regressors. This computational model is a 
phenomenological model for the early auditory pathway, which can transform the 
stimulus waveform to human auditory representation of that acoustical signal. 
The model encompasses detailed neural encoding of the inner hair cells (IHC), 
outer hair cells (OHC) as well as the auditory nerve. Thus, it was used in our 
study to account for the peripheral nonlinearity effects. 

We first used the IHC potentials in our analysis to investigate if cochlear non-
linearity could compensate for the acoustical differences of music and speech. 
Stimuli were up-sampled to 100 kHz as required by the model and converted to a 
pressure waveform with units of pascals at 65 dB SPL. We specified the 
characteristic frequency (CF) from 125 Hz to 16 kHz with intervals of 1/6 octaves. 
The IHC potential of each CF was the output from the model function 
“cochlea.zilany2014._zilany2014.run _ihc()”. The response was then summed 
over all the CFs and down-sampled to 10 kHz to be used as the final regressor, 
denoted as IHC. 

3) Auditory Nerve Modeled Firing Rate (ANM) from the Auditory periphery Model  

We then used the ANM firing rate to further account for the nonlinearity effect in 
the auditory pathway. The pipeline to generate the ANM regressor is the same as 
the IHC regressor using the computational model, except that the function we 
used here is “cochlea.run_zilany2014_rate()”.  

When deriving the ABR, we generated the IHC and ANM regressors twice. For the first 
time, the unaltered stimuli were input to the computational model. For the second time, 
we inverted the polarity of the stimuli before they were input into the model. The two 
polarities were used to derive two responses that were averaged to get the final ABR. 
This processing method with inverted polarity mostly cancelled out the stimulus artifact. 
We measured the lag between the stimulus and the model generated regressor from 
the cross-correlation between click waveform and the IHC/ANM regressor and found a 
2.75 ms lag. This lag in the regressor would have the effect of shifting the derived 
responses to the left. Thus, when calculating the ABRs, we compensated for this lag by 
shifting the deconvolved responses 2.75 ms to the right. 

 

Statistical Analysis 

Waveforms 
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The averaged ABR waveforms for each type of stimulus were computed across the 22 
subjects. Then, the general music-evoked ABR was computed by averaging all the 
responses of the six genres of music. The general speech-evoked ABR was computed 
using the same method with the six types of speech responses. From the deconvolution 
computation, we were able to get the response within the time interval of [0, 12] s. But 
due to the circular nature of discrete frequency domain deconvolution, the response can 
be represented as [-6, 6] s by concatenating the last 6 s and the beginning 6 s of the 
response. For display and analysis of the response waveform, we limit the time interval 
to [-200, 600] ms.  

For the cortical responses, we performed the deconvolution method on all 32 channels 
but cut out the first 30 and the last 2 ms segments to remove the onset/offset effect. We 
computed the averaged responses of the 32 channels for every type of stimulus across 
the 22 subjects. The mne-python package (RRID:SCR_005972) [36] was used to show 
the responses for each channel, the topographies of pivotal time point and the global 
field power (GFP). 

Both deconvolution for ABR and cortical response were computed with all three 
regressors. 

 

Response Signal-to-noise Ratio (SNR)  

To compare the quality of the responses derived from each of the three regressors, we 
estimated the SNRs of each ABR waveform using the equation 

/�� � 10 log�� 3����� 4 ������ 5 , 
where �����  is the variance of the ABR waveform in the time range of [0, 15] ms, and ��� 
is the variance of the noise calculated by averaging the variance of every 15 ms 
segment in the pre-stimulus baseline, covering a time range of [-200, -20] ms. 

The grand average SNR could not be calculated because some responses were too 
noisy to estimate SNR. Instead, we computed the SNR of the grand average response, 
and then adjusted it by the number of subjects as /���
� � /�� 4 10 log�� �����	��, 
where /�� computed with the equation above, �����	�� the number of subjects, /���
� 
the adjusted SNR. 

 

Correlation Between the Predicted and the Real EEG 

To compare the power of the three regressors to predict EEG, we computed the 
correlation coefficient between the predicted EEG from the responses derived using the 
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three regressors and the real EEG data. To get the predicted EEG, we used the general 
stimulus class kernels, which are the general music- and general speech-evoked ABR 
derived from the three regressors of the encoding model, and convolved the kernels 
with the corresponding types of stimuli regressors (e.g., the general music ABR 
convolves with the regressors of all music stimuli). We also investigated the predictive 
ability of the overall kernels, which are the overall general ABR derived from each of the 
three regressors (i.e., the averaged response of all types of stimuli) using the same 
method. 

The Pearson correlation coefficient was computed for general stimulus class kernel or 
overall kernel, and then was averaged across the subjects. 

 

Spectral Coherence Analysis 

We also used a spectral coherence analysis to compare the power of the three 
regressors in predicting EEG. This method served as a normalized correlation between 
the predicted EEG and the real EEG data but in different frequency bins. All of the 
predicted and the real EEG data were sliced into segments based on pre-determined 
window sizes, which then determined the frequency bins. The coherence of each 
frequency bin was calculated as 

6���7� � 89"�
��7� #��7�:;89"�

��7� "��7�: 89#���7�#��7�:, 
where 6���7� denotes the coherence between signal � and ( at frequency bin 7, 8[ ] the 
expected value across slices, * the complex conjugate, "� the FFT for predicted EEG 
slice �, and #� the FFT for real EEG data slice �.   
The coherence between the predicted and the real EEG data was calculated for each 
frequency bin. Both the predicted EEG from the general stimuli class kernel and the 
overall kernel were used to calculate the predicted EEG as in the correlation coefficient 
analysis. 

We used random data to compute the noise floor for each frequency bin. We randomly 
generated a group of 22 (the number of subjects) pairs of simulated predicted and real 
EEG as Gaussian white noise. We then computed the coherence of each pair and 
calculated the averaged coherence of the group. The sampling process was repeated 
1000 times. The 95th percentile of the computed coherence at each frequency bin was 
used as the noise floor. 

 

Time Required to Obtain Robust Responses 

From the previous analysis, we found the ANM was the best regressor among the three 
(see Results). We were interested in the how long it took to record data in order to get a 
good ABR to music and speech using the ANM. For each subject, we calculated the 
SNRs of the music or speech ABRs (using the equation as described above) but 
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derived from varied recording durations from 12 s (1 epoch) to 48 minutes (240 epochs). 
We reported the cumulative proportion of subjects whose ABRs to music and speech 
had achieved at least 0 dB SNR by each point in time in the recording. 

 

Correlation Between Music- and Speech-evoked ABR Waveforms 

Next, we used the ANM-derived responses to compare the music- and speech-evoked 
ABRs. The Pearson correlation coefficients of the responses in a time range of [0, 15] 
ms were computed. The Wilcoxon signed-rank test was then used to determine if the 
music- and speech-evoked ABR waveform correlations were different from a null 
distribution. The null distribution was generated by computing the correlation coefficient 
from two sets of EEG data, with each set containing equal numbers of music and 
speech epochs and representing trials throughout the experiment. Because of the noise 
in EEG signal, the correlation of the null distribution will be less than 1 and represent an 
upper limit of the music-speech waveform correlation. 

 

Wave V Latencies 

To verify the waveform agreement, two authors (TS & RKM) manually picked the wave 
V peak latencies of the click-evoked ABR, the general music- and general speech-
evoked ABR (from the ANM regressor) from each of the 22 subjects. A paired t-test was 
used to compare the latency differences between general music- and general speech-
evoked ABRs. 

 

Results 
The results of this study are in two overall parts. In the first part we compare the three 
deconvolution methods in several ways. We start by comparing the morphology of the 
ground truth click-evoked ABR and with the morphology of music- and speech-evoked 
ABRs derived from the three regressors. We then quantitatively compare the three 
regressors in their robustness and prediction ability. Next, in the second part, we 
address our original question of speech and music encoding using the ANM, which was 
determined to be the best regressor using the above analyses.  

Click responses verify ABRs are present in the EEG 

We derived the responses to the Poisson click trains to confirm the EEG measurement 
quality. Figure 2 shows the grand average of the broadband click-evoked ABR, which 
yields a canonical ABR waveform (individual responses in supplemental material Figure 
S1). Furthermore, this click-evoked ABR is used as a comparison in later analysis.  
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Figure 2. The grand averaged broadband click-evoked ABR waveforms. Shaded area shows ±1 
SEM (n=22). Waves I, III and V are annotated. All individual subject responses are shown in 
supplemental material Figure S1. 

 

Comparing ABR morphologies derived from each regressor 

Half-wave rectified stimulus regressor: wave V is present for speech but not 
music  

We first obtained the general music- and speech-evoked ABRs using deconvolution 
with the half-wave rectified stimulus as the regressor. The general music-evoked ABRs 
for each subject were calculated by averaging the responses to all six genres of music 
stimuli. The same process was done with the speech-evoked ABRs. Figure 3A shows 
the grand average waveforms of the general music- and speech-evoked ABRs in a time 
range from −10 ms to 30 ms. Wave V is present in the general speech-evoked ABR with
a peak at around 7.5 ms latency. However, wave V was absent in the general music- 
evoked ABR. 

1 
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Figure 3. General music- and speech-evoked ABR waveforms using the half-wave rectified 
stimulus as the regressor in deconvolution. A. The grand averaged general music- and speech-
evoked ABR waveforms.  Arrow shows Wave V in speech at 7.5 ms. Shaded areas show ±1 SEM 
(n=22). B. Two examples of individual responses (subject 12 and subject 18). All individual subject 
responses are shown in supplemental material Figure S2. 

 

Observing the individual responses, it is clear that there is fairly substantial noise. 
Figure 3B shows the examples of two individual’s responses (subject 12 and subject 
18). Subject 18 showed a distinct wave V in speech responses but not in music, while 
subject 12 did not show a strong wave V in either response. 

 

IHC regressor: wave V is present for both speech and music 

The simulated Inner Hair Cell (IHC) potential generated from the Zilany et al. auditory 
periphery model [33, 34] was used as a second regressor to derive the ABR. We used 
the IHC potential in hopes that it would account for cochlear nonlinearities and their 
potential interactions with the differing overall acoustics between music and speech. 
Figure 4A shows the grand average waveforms of the general music- and speech-
evoked ABRs. There were clearer waves and less noise compared with the waveforms 
from the half-wave rectified stimulus regressor.  
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Figure 4. General music- and speech-evoked ABR waveforms using the IHC as the regressor 
in deconvolution. A. The grand averaged general music- and speech-evoked ABR waveforms. The 
waveforms were low passed with a cutoff at 1500 Hz. The shading areas show ±1 SEM (n=22). B. 
Two examples of individual responses (subject 12 and subject 18). All individual subject responses 
are shown in supplemental material Figure S3. 

 

Figure 3B shows the examples of the same two individual’s responses (subject 12 and 
subject 18). Subject 18 showed a distinct wave V in both speech and music responses, 
while subject 12 again showed weak responses and no clear waves in the music 
response. Additionally, there was a broad peak before wave V in the average response 
to both stimuli with a latency of approximately 2.5 ms that did not clearly correspond to 
either wave I or III. 

 

ANM regressor: ABRs show waves I, III, and V in both speech and music 

The simulated firing rate of the auditory nerve response from the same auditory 
periphery model (i.e., ANM as described in Methods) was used as a third regressor. 
Figure 5A shows the grand average waveforms of the general music- and speech-
evoked ABRs. Unlike previous regressors, wave I, III and V of the canonical ABR 
waveform were all identifiable for both music- and speech-evoked ABR. Additionally, all 
the individuals’ responses also showed clear wave V, with many also showing earlier 
waves (Figure 6). The average waveforms represent a marked improvement in 
morphology over the previous two regressors. Also notable is that subject 12, who 
previously showed no responses, showed strong a wave V in both responses, and also 
a visible wave I in the speech response. 
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Figure 5. General music- and speech-evoked ABR waveforms using the ANM as the regressor 
in deconvolution. A. The grand averaged general music- and speech-evoked ABR waveforms. 
Wave I, III and V are annotated. The waveforms were low passed with a cutoff at 1500 Hz. The 
shading areas show ±1 SEM (n=22). B. Two examples of individual responses (subject 12 and 
subject 18).  
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Figure 6. Responses of all individuals using the ANM regressor. 

 

The ANM regressor yields the most robust music- and speech-evoked ABR 

ABRs derived from the ANM regressor have the highest SNR 

To compare the quality of the response derived from the three regressors, we computed 
the signal-to-noise ratio (SNR) of the general music- and speech-evoked ABR 
waveforms in the time range of [0, 15] ms. The bars from Figure 7 show the adjusted 
SNRs of the grand average general music- and speech-evoked ABR waveforms. The 
half-wave rectified stimulus regressor has a fair SNR (0.0 dB) for speech-evoked 
response but has a very low SNR for music-evoked response (−11.4 dB). The IHC 
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regressors showed a higher SNR than the half-wave rectified stimulus regressor for 
both responses (music −0.8 dB, speech 8.0 dB). The ANM regressor outperformed both 
of the other regressors and showed the highest SNR (8.0 dB for music, 13.4 dB for 
speech), 19.4 dB higher than the half-wave rectified stimulus regressor for music and 
13.4 dB higher for speech. The dots with lines represent the SNRs computed from each 
subject’s responses. Although some subjects’ SNR cannot be shown (because the 
signal was too small for SNR to be estimated), the overall trend of the individual 
response SNR followed the grand average response. 

 

 

Figure 7. The SNR of the general music- and speech-evoked ABR waveforms from the three 
regressors. The bars represent the SNRs for the grand average responses, adjusted by the number 
of subjects. The dots with lines are the SNRs for each individual subject. 

 

We also extended the time range of signal to compute the SNR with [0, 30] ms and [0, 
90] ms windows, which will include cortical responses. Figures are shown in 
supplemental material Figure S4. 

 

ABRs derived from the ANM and IHC regressors have higher accuracy in 
predicting EEG than the half-wave rectified stimulus regressor 

We next performed a Pearson correlation to compare the accuracy of the three 
regressors in predicting EEG data as is commonly done [37, 38]. We did it with two 
types of kernels for each regressor: 1) the general stimulus class kernels: the grand 
average general music- and speech-evoked ABR; 2) the overall kernel: the mean of the 
two general stimulus class kernels. The averaged correlation coefficients for the 
stimulus class kernels were shown in Figure 8. The averaged correlation coefficients for 
the overall kernel were very similar. We did not test our predictions out of sample, but all
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models had the same amount of training data and the same number of parameters, so 
the comparison of correlation coefficients was still indicative of relative model quality. 

 

Fig 8. Pearson correlation coefficient between the predicted and real EEG data. The correlation 
coefficient of the predicted EEG derived from the general class kernel and the real EEG. Dots with 
lines are individual subject coefficients. 

 

We then performed spectral coherence analysis to compare the accuracy of the three 
regressors in predicting EEG data in frequency bins (see methods for details), also with 
the two types of kernels as described above. 

Figure 9 shows the absolute value of the coherence computed from the general 
stimulus class kernels using 0.1 s segments (Figure 9A) and 1 s segments (Figure 9B)
Figure 9A shows the spectral coherence from 0 to 300 Hz. The ANM and IHC 
regressor surpass the half-wave rectified stimulus regressor in most of the frequencies 
especially in the range of [25, 140] Hz. For the higher frequency range between 150 and 
250 Hz the ANM regressor for the speech-evoked response has the highest coherence, 
with the others below the noise floor. In the frequency range of [0, 10] Hz using 1 s 
segments (Figure 9B), speech and music show different patterns of coherence. The 
ANM outperformed the other two regressors for music trials, while the coherence of 
three regressors for speech trials are similar. For all stimuli and at all frequencies, the 
rectified stimulus regressor underperforms the others. 
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Figure 9. The absolute value of the coherence computed from the general stimulus class 
kernels. A. Coherence computed with 0.1 s segments. B. Coherence computed with 1 s segments. 
Note the different frequency axis ranges. The gray zone represents the noise floor (95th percentile of 
random signal coherence), 

 

The pattern of the coherence from the overall kernel is again the same as that 
computed from the general stimulus class kernels.  

Overall, these results indicate that the ANM regressor provides the best model to 
determine ABRs in response to natural stimuli. It gives very consistent morphology, 
wave V latency and earlier waves – including sometimes wave I, which is not always 
present even in click responses. It yields robust responses to speech and a wide range 
of music stimuli, where the half-wave rectified stimulus regressor only works for speech. 
Additionally, there were some subjects who had no discernable responses for the half-
wave rectified which became visible when analyzing the same recording but with the 
ANM regressor. The ANM regressor also showed the best SNR, the highest model 
prediction correlations, and the best coherence across the widest range of frequencies.  

 

Responses were obtained quickly for ABRs derived from the ANM regressor 

With the ANM resulting in the best responses, we then assessed the recording time 
necessary for subjects to obtain a usable SNR for the music- and speech-evoked ABRs. 
Figure 10 shows the cumulative proportion of subjects with 0 dB or better SNR against 
EEG recording time. In a cohort of 22 subjects, for music-evoked ABR, 50% of the 
subjects reached 0 dB after a recording time of 2.4 minutes, and all the subjects 
reached 0 dB after 15.2 minutes. Notably, for speech-evoked ABR, 50% of the subjects 
reached 0 dB after 1.6 min, and all the subjects reached 0 dB after merely 5.6 min.  
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Figure 10. The cumulative proportion of subjects whose ABRs have an SNR ≥ 0 dB as a 
function of recording time in minutes. Time required for music is shown as the solid green line, 
and speech is shown as the dashed yellow line. 

 

The responses to music and speech stimuli are similar both at subcortical 
and cortical levels  

We used the ANM regressor to compare the subcortical responses to music and speech
To gauge the similarity of the waveforms across stimulus types, we computed the 
correlation between each subject’s music and speech responses [26]. The median 
(interquartile range) of the Pearson correlation coefficients between the average music-
evoked ABR and average speech-evoked ABR waveform was 0.86 (0.84-0.90). These 
correlations indicate a high degree of similarity. The null hypothesis is that there is no 
difference between speech and music responses—thus, the null distribution can be 
estimated as the correlation between the two split sets, where each set contains equal 
numbers of music and speech epochs. The median (interquartile) correlation of the null 
distribution was 0.90 (0.85–0.94). These distributions are shown in Figure 11. The null 
distribution coefficient is significantly higher than the music-speech coefficient 
(p=0.0026; Wilcoxon sign-rank test). Thus, while the correlation coefficients show that 
the speech and music ABR waveforms are strikingly similar, we do find a small but 
measurable difference between them. When examining the responses to each genre of 
music and speech (Figure 12), it can be seen that there were also no major response 
differences within the two stimulus classes, though there was more variation across 
genre for music responses—a statement which is also true of the stimuli themselves. 

ch. 
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Figure 11. The Pearson correlation coefficient distribution of music- and speech-evoked ABR 
and the null distribution. The red bars are the distribution of music- and speech-evoked ABR 
correlation coefficient. The red dashed line is the median of the distribution. The hatched blue bars 
are the null distribution of correlation coefficient. The blue dashed line is the median of the null 
distribution. 

 

Figure 12. The grand averaged ABR response for each genre of music and each type of 
speech stimuli. The upper lines are music-evoked ABRs. The lower lines are the speech-evoked 
ABRs. The different shades of lines represent different genres of music or different types of speech. 
No systematic differences are observable across genres for either music or speech. 

 

We found the latencies of wave V in music- and speech-evoked responses and 
compared them with the wave V latency in the click-evoked response for every subject 

R 
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(Figure 13). The latency of wave V of the music-evoked ABR was 8.1 ms (± 0.07 ms; 
mean ± SEM) which was close to that of the speech-evoked ABR, 8.0 ms (± 0.07 ms), 
both of which are later than the click latency, 7.7 ms (± 0.08 ms). There was no 
significant difference between the music and speech wave V latencies (p = 0.82). 

 

Figure 13. The latency of Wave V in click-, music- and speech-evoked ABRs. The grey lines are 
individual latencies. The green line is the averaged latencies, error bars are ±1 SEM. 

 

For the cortical responses, we used the same deconvolution method to derive the 
responses from the 32-channel system and extended the analysis window to longer 
lags. Figure 14 shows the responses to music and speech stimuli derived from the 
ANM regressor, their global field power (GFP), and the topography at the time points of 
prominent peaks. The morphology of the response waveforms, the GFP, and the 
topographies of the responses across music and speech conditions are similar with 
minor differences in latency of 60–100 ms. Although the overall amplitude of music-
evoked responses is larger than that of speech-evoked responses, this difference is not 
necessarily meaningful. Caution must be taken when comparing responses to different 
stimuli, or as the case is here, different classes of stimuli. Differences in responses 
could result from differences in stimulus statistics (e.g., spectrum, modulation spectrum) 
or inaccuracies in the nonlinear process used to generate the regressor (a near 
guarantee, since no model is perfect), and in neither case would reflect important or 
interpretable differences in brain responses. For this reason, we have commented on 
the striking similarities—especially in peak latencies and topographies—between the 
music and speech responses without delving into the differences. 
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Figure 14. The cortical response derived from the 32-channel system with ANM regressor. A. 
The music-evoked cortical responses. Topographies are selected from the time points of pivotal peaks. 
The thick black line with grey underline area represents the GFP of the derived response. B. The speech-
evoked cortical responses. Topographies are selected from the same time points as music-evoked 
response. The thick black line with grey underline area represents the GFP of the derived response. 

 

Discussion 
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In the present study, we developed a method that can derive robust ABRs of 
stereotypical morphology and we used this method to compare subcortical responses to 
continuous music and speech in human listeners. We derived ABRs to a broad sample 
of music and speech stimuli using deconvolution with three different regressors: 1) the 
half-wave rectified stimulus waveform, as used in Maddox and Lee (28), 2) the IHC 
potential, and 3) the ANM firing rate, the latter two generated from a computational 
auditory periphery model [33, 34]. After comparing the abilities of the three regressors in 
deriving subcortical responses with several metrics, we found that the ANM regressor 
was the most robust for deriving responses. Therefore, we use the ANM regressor to 
compare the music- and speech-evoked ABR as well as cortical responses. The ABRs 
of general music and speech are highly correlated in morphology and the wave V 
latencies of their ABRs are statistically similar. The cortical responses derived using the 
same method also showed very similar waveforms and topographies to music and 
speech when using the ANM regressor. 

 

Deconvolution Quality Depends on the Choice of Regressor 

Convolution is by construction a linear process, and thus assumes the system being 
analyzed is linear. The auditory system, however, is rife with nonlinearities which are 
essential to its function. Therefore, when studying the auditory system with 
deconvolution, the choice of the “input” for the model (regressor) needs to be the 
stimulus processed with some nonlinearity that makes the model biologically meaningful. 
The quality of the derived response depends on what nonlinearity is applied to the 
stimuli before deconvolution. In the case of the auditory brainstem response, the optimal 
nonlinearity is likely to be the one which most accurately models the early physiological 
nonlinearities. 

When using the half-wave rectified stimulus, the response to the speech stimuli was 
generally robust, but included only wave V and lacked the earlier waves I and III. The 
response to music, however, as shown in Figure 3, was noisy and failed to even show 
a distinct wave V (which is shown in most subjects’ speech-evoked ABR). Compared to 
speech acoustics, music has much more complex spectral and temporal modulation 
which may be inadequately captured by the half-wave rectified nonlinearity. 

Computational auditory periphery models, like the one proposed by Zilany et al. [33, 34] 
can transform acoustic signals into their biological representations. The model is 
comprehensive, including each early auditory stage from middle ear to the cochlea to 
AN. Employing a model like this allows us to apply a more biologically plausible 
nonlinearity to stimulus. 

Using peripheral model outputs as the regressor yielded much better deconvolution 
results. The IHC regressor improved the deconvolved response substantially over half-
wave rectified stimuli (Figure 4). Furthermore, the ANM regressor not only 
outperformed the previous half-wave rectified stimulus, but also the IHC. The ANM-
derived ABRs to both speech and music have a canonical response with clear waves I, 
III and V, each reflecting activity from distinct early neural generators (Figure 5). The 
wave V latency (a key ABR metric) from the ANM-derived responses was close to what 
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we expected, albeit a bit later than the wave V latency of click-evoked ABR (~8 ms 
versus ~7.7 ms, respectively). This may be because clicks are a broadband stimulus 
which have more high-frequency energy and thus result in an earlier response than for 
music and speech. Regardless, clicks and continuous natural stimuli are so unalike that 
some difference in latency is to be expected. In the time range of [0, 15] ms, the ANM 
had significant improvement in the ABR’s SNR (Figure 7) with a 19 dB increase 
compared to the half-wave rectified stimulus for music stimuli. It also improved the 
speech response by 13 dB. The improvement of the response was present in almost 
every subject. We also extended the time window to compute the SNR for [0, 30] ms 
and [0, 90] ms (thus including some early cortical response components) and found that 
the SNR difference decreased, but was still better for ANM than the half-wave rectified 
regressor (Figure S4). This indicates that the half-wave rectified stimulus regressor may 
contain sufficient information needed for later responses (i.e., cortical) but unlike the 
ANM, is inadequate for the early music response (i.e., ABR and middle latency 
response). 

The correlation coefficient of the predicted EEG and the real EEG data from the three 
regressors showed that the auditory peripheral regressors improved the prediction 
ability (Figure 8), since both IHC and ANM regressor surpassed half-wave rectified 
stimulus. The spectral coherence analysis between real and predicted EEG further 
revealed which frequency bands showed the best improvement. Figure 9 shows that in 
the frequency range of 25 to 140 Hz (notably, above the frequencies that the typical 
envelope regressors contain), the IHC and ANM both have better absolute coherence. 
The half-wave rectified stimulus, however, also surpassed the noise floor for 
frequencies below 60 Hz, suggesting that the half-wave rectified stimulus may still 
capture information relevant to the later response, a conclusion which is consistent with 
the extended SNR window results.  

The ANM regressor method presented here also showed advantages over other studies 
that derive subcortical response to continuous stimuli. For example, one can quickly 
acquire an ABR using the ANM regressor for music and speech. All subjects reached 0 
dB SNR for speech-evoked ABR in less than 5.6 min (Figure 10), which is faster than 
6–12 minutes for a chirp-speech paradigm [39], and 33 min for the half-wave rectified 
broadband speech paradigm [28]. This speed is also comparable to 5 min for a 
previously developed “peaky speech” paradigm, which uses a re-synthesized impulse-
like speech and the glottal impulse train as the regressor [26]. However, the peaky 
speech paradigm can only derive ABRs to modified continuous speech stimuli. With the 
present method, we get responses of similar quality from natural speech and music. 
While not tested here, it is likely that other classes of stimuli will also yield usable 
responses.  

Another paradigm for studying the response to speech developed by Forte, Etard (24) 
used cross-correlation between the fundamental waveform from the speech stimulus 
and the recorded EEG data. These responses were a single broad peak, and this 
method is not applicable to recorded polyphonic music, as it does not have a single 
fundamental frequency. To study subcortical music encoding, Etard, Messaoud (27) 
used the stimulus waveform as the regressor for the TRF to derive subcortical response 
to continuous melody lines. Those results show a more detailed response than the 
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previous paper, with a clear wave V, but waves I and III were not visible. Recorded 
polyphonic music was not included in that study, so further testing would be needed to 
determine its effectiveness with that class of sound.  

 

Brain Responses to Music and Speech are Similar once the Auditory 
Peripheral Nonlinearity is Accounted for 

To achieve this study’s ultimate goal of comparing subcortical speech and music 
encoding, we considered the ABR to both stimulus classes using the ANM regressor. 
The median correlation coefficient of the general-music and general-speech ABRs was 
0.86, which means a high degree of morphological similarity. Furthermore, their wave V 
latencies were not significantly different (Figure 13). These morphologies were 
consistent for each genre of music and each type of speech (Figure 12).  

The correlation coefficient distributions of the general-music and general-speech ABR 
were different than the correlation coefficient distribution of the evenly split two sets 
responses (null distribution), and the former was slightly smaller than the latter (Figure 
11). We accept that there may indeed be small differences between the music and 
speech waveform morphology. However, we note that comparing responses to stimuli 
from different categories is fraught because of their differences in acoustical statistics 
[40] or the inaccuracies due to the nonlinear process (e.g., the auditory periphery model 
we used in this study). The deconvolved response is a model relating the recorded 
signal to the regressor—there can be music-speech differences in either, but the former 
is scientifically interesting, and the latter is an artifact. 

One advantage of the deconvolution method is that it allows us to further extend the 
time window to examine the middle and late latency of the response waveforms. 
Surprisingly, the cortical responses to music and speech derived from the ANM 
regressor appears to be highly similar (Figure 14). Cortical response waveform 
morphology was similar between music and speech for each electrode. Unlike the 
previous studies that found hemispheric asymmetry or distinct patterns in the encoding 
of music and speech [4, 7, 9, 10, 41], no considerable difference or asymmetry was 
found in the waveforms or the topographies of the cortical response in our study. The 
argument can be made, however, that the spatial resolution of EEG is limited and may 
not be able to show subtle differences observable with fMRI or intracranial EEG. When 
comparing our results to other studies using EEG, we believe that accounting for how 
the nonlinearities in the peripheral encoding interact with the acoustical differences 
between speech and music caused the differences in the cortical responses to 
disappear.  

Another possibility could be that to observe differences in music and speech processing 
at the cortical level, a non-acoustical regressor (such as one based on “surprisal” in 
music and speech) may be necessary, such as has been observed in studies that show 
an early anterior negativity on the left in response to surprising speech but on the right 
in response to surprises in music [41-44]. In any case, it is now standard practice in 
studies using TRF methods to include acoustical features in the model so that their 
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contribution can be regressed out—using the ANM regressor instead of a simpler 
envelope regressor is likely to fill this role much more effectively. 

 

Future Directions 

Here we presented a new tool for deriving meaningful subcortical responses (ABRs) to 
continuous, spectrotemporally rich stimuli, such as music and speech, using the ANM 
firing rate as the regressor in the deconvolution paradigm. Since responses derived 
from a wide range of stimuli—including six different genres of recorded multi-
instrumental music—were robust, our method has the potential to be used for more 
generalized natural and continuous stimuli, such as environmental ambient sounds. 
Such flexibility will afford an even wider range of experimental possibilities than previous 
methods.  

The computation model that we used to generate the ANM regressor is also able to 
simulate the auditory nerve responses in ears with hearing loss by adjusting frequency-
specific parameters related to the outer hair cell and inner hair cell damage [33, 34]. 
Different types of hearing loss will affect ABR in different ways [45], so comparing 
predictions of ANM regressors with different parameters for an individual subject may 
prove informative.  

Our results indicate that speech and music brainstem responses are very similar when 
accounting for nonlinear effects of peripheral encoding, and that cortical differences 
found in other studies may stem from unaccounted for peripheral effects. It is common 
for studies of speech processing to regress against speech-specific features such as 
lexical or semantic information to also include an envelope-based acoustical regressor 
[46]. In such studies, using the ANM instead of the envelope may offer an improvement. 
The ANM regressor also yields a clear cortical middle latency response where studies 
using envelope regressors do not consistently show it. With clearer subcortical and 
cortical music responses for music, our findings may facilitate similar studies as have 
been done for speech, studying how cognitive factors such as attention or expectation 
play a role in music listening. 

Data Availability 
The EEG recording data are available in EEG-BIDS format at OpenNeuro.org 
(doi:10.18112/openneuro.ds004356.v1.0.0). The Python code for this study is available 
at GitHub.org (https://github.com/maddoxlab/Music_vs_Speech_abr). 
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