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One Sentence Summary: Myeloid-derived cell atlas exhibit heterogeneous phenotypes in the 
tumor microenvironment strongly linked with clinical outcomes in cancer. 

Abstract: Immunotherapies provide long-lasting responses across a wide range of 
cancers; however, only a fraction of patients responds to them. Multiple reasons contribute to the 
failure, including the existence of myeloid-derived cells (MDCs) within tumors. Due to their 
high plasticity, these cells display numerous cell states and, as a result, distinct pro-tumorigenic 
behaviors, making them interesting targets. However, the creation of cutting-edge anticancer 
therapies is hampered by the lack of MDC-specific markers. To fully define the MDC landscape 
in solid tumors, we combined single-cell RNA-Seq from 13 public datasets, including samples 
from seven different cancers and normal samples, yielding the largest collection of MDC 
subpopulations within the tumor microenvironment. We identified five major lineages 
subdivided into one mast cell cluster, three neutrophils, eight dendritic cells, six monocytes, and 
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eleven macrophage states. Transcriptional profiles coupled with deconvolution estimates of cell 
populations in large cohorts revealed five MDC subpopulations as independent prognostic 
markers in different cancer types, including resident tissue interstitial macrophages and 
FCGR3A+ monocytes associated with an unfavorable clinical outcome in ovarian and breast 
cancer patients, respectively. Our work reveals that TREM2+ macrophages can be distinguished 
in different populations and associated with distinct prognoses. By analyzing a Brazilian cohort 
of ovarian cancer, we found that TREM2+ macrophages are associated with a better prognosis, 
indicating that their role might be dependent on the tumor niche and co-expression of 
immunosuppressive markers. Collectively, this atlas reveals in high-resolution the heterogeneous 
MDC identity as well as new avenues for understanding and manipulating their fate in cancer. 

 

Main Text: 

 

INTRODUCTION 

The tumor microenvironment (TME) is composed of recruited and resident cells as well 
as acellular components that interact with malignant cells to form a complex network. TME 
resident immune cells, which are derived from myeloid or lymphoid precursors, can either 
suppress or promote tumor growth by enabling and sustaining hallmarks related to cancer 
progression (1). The comprehensive characterization of immune cells in the TME, particularly 
lymphocytes, has enabled the development of immunotherapies that elicit long-lasting responses 
across a wide range of cancers (2). However, only a subset of individuals benefits from immune-
checkpoint inhibitor therapies (3). Immunosuppressive cells within tumors, including myeloid-
derived cells (MDCs) like monocytes, macrophages, conventional dendritic cells (cDC), and 
polymorphonuclear granulocytes, have been recognized as one of the reasons why cancer 
therapies fail, among numerous others (4–6).  

MDCs are a highly diverse and plastic population that can exhibit many cell states and 
thus perform a broad array of functions in the niche in which they are found (7). In terms of 
ontogeny, the majority of these cells are derived  from bone marrow progenitor cells and 
recruited into the TME. Macrophages can be derived from two main sources: 1) from erythro-
myeloid progenitors in the yolk sac and fetal liver before birth - these macrophages have 
enriched expression of the markers FOLR2, PLTP, and LYVE1 (8, 9), and 2) from circulating 
monocytes derived from the bone marrow and recruited into the tumor tissue (10). Recruited 
macrophages have a short lifespan and require constant replenishment from circulating 
monocytes. This cell population expresses monocyte markers such as FN1, SELL, and VCAN as 
a proxy for their ontogeny (11).  

Regardless of their origin, macrophages may manifest a constellation of phenotypes. 
Based primarily on in vitro experiments (12), macrophages have been classified into two main 
polarization states: classically activated M1, which includes cells with a proinflammatory 
phenotype, and alternatively activated M2, which includes cells with tissue remodeling and/or 
anti-inflammatory properties (10). In the TME context, M2 macrophages are commonly referred 
to as tumor-associated macrophages (TAMs), and their presence is associated with a poor 
prognosis in several tumor types (13–15). However, not all TAMs exhibit a clear M2-like 
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phenotype, and they often express markers of both activation states (16, 17), emphasizing the 
necessity of distinguishing TAM states beyond the M1/M2 dichotomy.  

TAMs have been linked to a plethora of functions in the TME. These roles have been 
associated with tumor growth, epithelial-mesenchymal plasticity, extracellular matrix 
remodeling, cell invasion, and angiogenesis, which in turn influence tumor progression, 
metastasis, and therapy resistance. In addition,  the crosstalk between TAMs and malignant cells 
can promote immune evasion via TME shaping (18). Since TAMs and other MDCs are key in 
promoting tumor growth and metastasis, several therapeutic strategies to deplete TAMs or 
modulate their functional or phenotypic reprogramming, infiltration, or activation are emerging 
(19). These therapies, however, are limited by the lack of specific markers to distinguish MDC 
subpopulations, which highlights the urgent need for an in-depth understanding of TME and 
determination of the subtypes of tumor-associated cells, which will allow the selective targeting 
of these abnormally expanded MDC populations (19).  

Although recent studies have used high-resolution technologies such as single-cell RNA 
sequencing (scRNA-Seq) and spatial transcriptomics to characterize the immune landscape of 
various cancer types, no pan-cancer integrated data allowed a systematic comparison across 
cancer types to reveal the similarities and differences of MDCs in the TME. To address this 
issue, we have built the most comprehensive pan-cancer catalog of TME subpopulations across 
eight different solid tumor types by combining publicly accessible scRNA-Seq data from three 
different techniques. The high-resolution characterization of tumor-associated cell types allowed 
the identification of MDC subpopulations associated with a poor prognosis in tumors of different 
origins, as well as the determination of molecules that allow the specific targeting of these 
tumor-associated cells. Our thorough identification and characterization of MDC landscapes in 
the TME will pave the path for the development of effective immunotherapy strategies targeting 
specific populations of these cells. 

RESULTS 

Thorough integration strategy recovers a comprehensive pan-cancer atlas of the 
tumor microenvironment 

To define a comprehensive landscape of widespread and rare cell subtypes in the TME, 
we have integrated a large amount of scRNA-Seq data comprising 392,204 high-quality cells 
from 13 public datasets (Data file S1, Fig. S1A). The analyzed data was generated utilizing three 
different technologies (10x Genomics, InDrop, and Smart-Seq2, Fig. S1B) and samples from 
different anatomical sites of healthy donors and patients diagnosed with different cancer types, 
totaling 142 individuals (Data file S2). We developed a robust analytical pipeline with stringent 
quality control to integrate a vast and heterogeneous dataset, retaining crucial biological 
variation while removing typical contaminants like doublets and ambient RNA, as well as batch 
corrections (Fig. 1A). When compared to previous strategies that evaluated small and isolated 
datasets, our approach improved the ability to detect and define common and unusual cell states. 
The dataset encompassed seven tumors, including breast, colorectal, liver, lung, ovary, skin, and 
uveal melanoma, as well as their adjacent tissue counterparts; blood samples from patients with 
two different tumor types and one healthy donor; and adjacent lymph nodes from patients with 
breast tumors (Fig. 1B).  
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Through our approach, we identified highly homogeneous and robust cell groups (Fig. 
S1C-D), resulting in a precise map of cells distributed throughout clusters. The clusters were 
then annotated based on canonical gene markers (Data file S5) of major cell types and 
differentially expressed genes (DEGs), yielding 11 broadly recognized cell types (Fig. 1C). We 
also annotated low-quality cells as not identifiable (Fig. S1C). T and Natural Killer (NK) cells (n 
= 119,472), which expressed CD3E, CD4 or CD8A, and NKG7, were the most abundant cell 
type, followed by MDC subpopulations, such as mononuclear phagocytes (n = 51,687), which 
were positive for LYZ, AIF1, and CD68; neutrophils (n = 12,033), marked by CXCR2 and 
FCGR3B; mast cells (n = 4,539), identified by TPSAB1 and CPA3 expression; and 
megakaryocytes (n = 185), the smallest group, marked by PPBP expression. B cells (n = 22,102) 
were identified by the expression of MS4A1 and MZB1; endothelial cells (n = 28,775) were 
marked by VWF and CCL21; fibroblasts (n = 48,159) by COL1A1 and COL1A2, and 
plasmacytoid dendritic cells  (pDC) (n = 1,365) by LILRA4 and IRF7 (Fig. 1D). EPCAM and 
CDH1 expression allowed the identification of normal (n = 56,060) and malignant (n = 47,827) 
epithelial cells, which were further distinguished by the amount of copy number variation events 
observed in the malignant cells (Fig. S1E). When comparing tumor samples to normal samples, 
we found that tumors had a higher percentage of lymphocytes and mononuclear phagocytes. 
Except for lung metastasis samples, the proportion of mononuclear phagocytes was constant 
across tissue sources (Fig. 1E). 

To characterize the subsets of MDCs, we analyzed each cluster independently. We 
performed unsupervised clustering on MDCs and identified five common major lineages (Fig. 
1F): mast cells (n = 4,539), neutrophils (n = 12,033), cDCs (n = 6,212), monocytes (n = 10,321), 
and macrophages (n = 38,517) based on canonical gene markers (Figure 1G; Data file S5). 
MDCs were separated into 29 subpopulations (Fig. 1H). 

Myeloid cells are heterogeneous and phenotypically diverse across the tumor 
samples 

Mast cells, the less frequent MDC subpopulation, were identified as having a single state 
(Data file S3, Fig. S2A), equally distributed in tumor and normal samples (Fig. S2B).  However, 
in contrast to normal tissues, tumor-associated mast cells displayed higher expression of genes 
related to PD-1 signaling (Fig. S2C). Neutrophils were subdivided into three functionally distinct 
subpopulations (Fig. S2D-E): the Neutrophil_TAGLN2 (n = 6,570) population expressed 
numerous genes involved in the interferon signaling pathway (Fig. S2F), reflecting the probable 
pro-inflammatory role of these cells; the Neutrophil_MMP9 (n = 4,024) population was enriched 
in pathways related to signaling processes by VEGF (Fig. S2F); and the Neutrophil_CXCL8 (n = 
1,439) population was linked to anti-inflammatory pathways such as IL-4 and IL-13 signaling 
(Fig. S2F) - this population was found to be more prevalent in tumors (lung and breast - 
generated by InDrop technique) than in blood or normal tissues (Fig. S2G-H). 

cDCs were the third most common subpopulation of mononuclear phagocytes, 
accounting for 12% of these cells. We identified eight cDC states (Fig. 2A-B): cDC type 1 
(cDC1), expressing CLEC9A and CADM1, denoted cDC1_CLEC9A (n = 580); and six 
subpopulations of cDC type 2 (cDC2), marked by CD1C and CLEC10A expression. cDC2 
subpopulation was separated into types A, resembling an anti-inflammatory profile, and B, a pro-
inflammatory profile, named cDC2A_AREG (n = 2,044) and cDC2B_FCER1A (n = 726). These 
populations were previously described by Brown et al. (2020) (19) (Fig. S3A, top). In addition, 
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the cDC2A_AREG was enriched in tumors and lymph nodes compared to normal tissue, whereas 
the cDC2B_FCER1A was found mostly in the blood (Fig. 2C and S3B). Other subpopulations 
found predominantly in tumor samples included cDC2_CD14 (n = 765) and cDC2_FCGR3A (n 
= 314), both of which are likely monocyte-derived (Fig. 2C and S3B).  

Another cDC2 subpopulation was identified by the expression of a set of chemokines 
(CXCL1, CXCL8, and CXCL14), named cDC2_CXCL8 (n = 993) (Fig. 2B). We also identified a 
subset of CD1C+ cDC2 (cDC_CD207, n = 505) which expressed CD1A and CD207, the latter 
being a langerin protein encoder. Although langerin is primarily expressed by epidermal 
macrophages known as Langerhans cells (20, 21), cDC_CD207 is a type 2 DC subpopulation 
distinct from the aforesaid cell (Fig. 2B and S3A, top). This subpopulation was more prevalent in 
tumors (lung, ovary, and lymph nodes) than in normal samples (Fig. S3B). The transcriptional 
profile of the Langerhans-like cells closely resembled that of cDC rather than macrophages. We 
also identified a mature cDC subpopulation named cDC_LAMP3 (n = 285), which was 
distinguished by the expression of LAMP3 and CCR7 genes (Fig. 2B and S3A, top). The 
expression of genes coding for PD-1 and PD-2 ligands was found to be increased in mature 
cDC_LAMP3, indicating that this population may have an immunosuppressive role (Fig. S3A, 
bottom). The distribution of dendritic cells across cancer types and samples was consistent, 
except for the lymph node, where an increase in the frequency of the cDC2A_AREG and 
cDC_LAMP3 subpopulations was observed (Fig. 2C). Functional enrichment analysis also 
confirmed these profiles (Fig. S3C).  

We found that the populations cDC2_FCGR3A and cDC2A_AREG were enriched with 
pathways associated with an immunosuppressive role, such as PD1-signaling and  interleukin-4 
and interleukin-13 signaling. In contrast, the cDC_LAMP3, cDC1_CLEC9A, cDC2_CXCL8, 
and cDC_14 were enriched with pathways related to interferon-α/β and -γ signaling and antigen 
presentation consistent with a pro-inflammatory profile (Fig. S3C). The cDC_CD207 presented 
both anti- and pro-inflammatory pathways.   

Monocytes are important precursors of tumor-infiltrating myeloid cells. A total of 10,321 
monocytes were sub-clustered, and six major groups were identified (Fig. 2D). Mono_FCG3RA 
(n = 2,018) represents the non-classical phenotype that expressed FCGR3A, MS4A7, ITGAL, and 
SIGLEC10  in a single cluster (Fig. 2E) and was absent in lymph nodes (Fig. 2F and S3D). The 
classical phenotype was characterized by the expression of common monocyte markers such as 
CD14, SELL, and FCN1, and was further distinguished by the expression of FOS into 
Mono_CD14_FOS- and Mono_CD14_FOS+ subpopulations (Fig. 2E). When compared to other 
tissues, the Mono_CD14_FOS+ (n = 1,497) population was enriched in lymph nodes and normal 
tissues (ovary and lung) (Fig. 2F and S3D). In contrast, Mono_CD14_FOS- (n = 2,150) was 
more prevalent in blood samples; the specific role of these subpopulations remains unknown 
(Fig. 2F and S3D). Additionally, a monocyte subpopulation with a pro-inflammatory profile was 
named Mono_IL1B (n = 1,739). This subpopulation expresses high levels of IL1B, CXCL2, and 
NFKBIA (Fig. S3E), as well as other inflammatory genes when compared to other monocytes 
(Fig. S3F). Pathway enrichment analysis showed this profile has increased levels of genes 
involved with Toll-like receptor cascades (Fig. S3G). 

At this resolution, we were also able to identify two monocyte subpopulations displaying 
an intermediate phenotype, which we characterized as being between monocytes and antigen-
presenting cells, expressing genes coding for CD16 and CD14. We called this population 
Mono_Inter, from which CXCL10 and CLEC10A expression distinguished subpopulations of 
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MonoInter_CXCL10 and MonoInter_CLEC10A cells. These subpopulations express several 
markers related to antigen presentation, such as HLA-DPB1, HLA-DMA, HLA-DPA1, and HLA-
DRA, in addition to CD163, a marker of monocyte and macrophage activation, and MARCO, a 
scavenger receptor class A protein expressed on macrophages (Fig. 2E). Functional enrichment 
analysis revealed the MHC class II antigen presentation pathway was enriched in this 
intermediate monocyte phenotype (Fig. S3G). 

Macrophages are the largest subpopulation of mononuclear phagocytes found in this 
study, corresponding to 74.5% of all myeloid cells. By exploring the expression of markers 
regarding their ontogeny, macrophages were grouped into three main clusters: 1) recruited, 
which consists of cells expressing monocyte markers, such as VCAN, S100A8, FCN1, and 
CD300E; 2) resident-tissue macrophages (RTM), distinguished by the expression of  FOLR2, 
LYVE1, and PLTP; and 3) RTM-like cells, which express markers of both types of macrophages 
(recruited and RTM) (Fig. 2G-H). RTM were enriched in tumors but also found in normal 
samples (Fig. S3H-I). RTM-like cells were found in all conditions, except for metastatic and 
primary uveal melanoma, skin melanomas, liver tumors, and normal breast  tissue. Also, we 
highlight the RTM-like enrichment in ovarian tissue both in normal and tumor samples (Fig. 
S3J). In general, uveal and skin melanoma samples were enriched with resident cells, while in 
other tumors, recruited macrophages were predominantly found (Fig. S3J). 

Besides classifying macrophages based on origin, we also identified 12 subpopulations 
based on gene programs (Fig. 2I). The diversity of the macrophage populations was higher in 
tumors compared to normal samples from the same tissue (Fig. 2J). The subpopulations were 
stratified according to their functional gene signatures, mostly following the suggestion of a 
consensus model for TAM diversity (22). The alveolar-like Mac_Alv-like (n = 8,816), marked 
by the expression of PPARG and MCEMP1, was predominantly found in lung samples (Fig. 2K, 
S4A). The Mac_Angio subpopulation (n = 3,108) displayed high expression of genes associated 
with a pro-angiogenic signature, such as VEGFA, VCAN, and EREG (Fig. 2K, S4B); and 
Mac_Hypo (n = 1,802) presented an enrichment of genes associated with hypoxia (Fig. 2K, 
S4C), such as SLC2A1 and ERO1. The Mac_Hypo subpopulation was majoritarily found in the 
tumor samples (lung and ovary) (Fig 2J, S3K). Two populations expressing high levels of 
interferon-primed genes (Fig. S4D), such as CCL8, IDO1, and CXCL9, were named RTM_IFN 
and Mac_IFN. While Mac_IFN was abundant in lung tumor samples, RTM_IFN was found in 
melanoma tumors (Fig. 2J-K and S3K). Two subpopulations revealing a lipid-associated (LA) 
metabolism transcriptional signature (Fig. S4E), including genes such as FABP5, LPL, and LIPA, 
named RTM_LA (n = 3,569) and Mac_LA (n = 1,230), were found enriched in breast tumors 
(Fig. S3K); We identified a large population of macrophages expressing high levels of CCR2, a 
receptor for monocyte chemoattractant protein-1, and FCN1, which is predominantly expressed 
in the peripheral blood leukocytes. Therefore, this population was named recruited macrophage 
Mac_Rec (n = 4,075) (Fig. 2K, S4F); One subpopulation expressing high levels of MKI67 and 
STMN1 was identified as Mac_Prolif (n = 2,234) and enriched in lung and ovary tumor samples 
(Fig. S3K).  

We also identified one recruited subpopulation enriched for regulatory molecules 
(CXR3C1, TREM2) and antigen-presentation signatures (HLA-A/C, HLA-DQA1/B1) named 
Mac_Reg (n = 3,965) (Fig. 2K, S4G). In contrast, another population expressing high levels of 
resident markers such as LYVE1, FOLR2, and PLTP, resembled interstitial macrophages (IM) 
with specific and marked expression of genes such as MAF and SEPP1. This subpopulation was 
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named RTM_IM (n = 3,507) (Fig. 2K, S4H) and consisted of a well-described macrophage type 
related to vessels and connective tissue (22, 23). The RTM-like subpopulation was characterized 
by a high expression of metallothioneins (Fig. S4I) and named RTM-like_MT (n = 1,209) (Fig. 
2G-K).  

To confirm the consistency and reproducibility of the mononuclear phagocyte 
populations described in this work, we correlated the gene expression profile of these 
populations with populations described by other groups (24, 25) (Fig. 2L-M, S5A-F). When 
evaluating cluster purity, our approach retrieved highly homogenous clusters, higher than the 
ones found for mononuclear phagocytes previously identified also using an integrative approach 
(Fig. S5G). Overall, our findings strongly suggest that, when compared to previous studies, our 
method for integrating data, clustering, and characterizing subpopulations were capable of 
significantly expanding the catalog of mononuclear phagocyte subpopulations in the TME, also 
highlighting rare populations poorly described before, such as the cDC2_CXCL8, unreported in 
previous works (Fig. 2L-M), the RTM distinct phenotypes (interstitial, lipid-associated 
metabolism and interferon-primed macrophages), and the monocyte-derived subpopulations, 
such as the Mac_Rec, Mac_Hypo and RTM-like_MT.  

Macrophages exhibit diverse phenotypes and functional states in the TME 

Since M1 and M2 polarization gene programs are well characterized in the literature (26–
28) and they reflect important macrophage-related features, we attempted to assign these profiles 
to the 12 macrophage subpopulations we identified (Fig. 3A-C). Although the RTM-IFN and 
RTM_IM were, respectively, the subpopulations displaying the higher scores for M1 and M2 
gene signatures (Data file S4), none of the subpopulations clearly presented overexpression of 
genes connected to either polarization profile. In fact, populations such as the RTM-IFN express 
high levels of pro-inflammatory cytokines such as CXCL9, CXCL10, and CXCL11 (Fig. 3A), but 
also immunosuppressive molecules such as PDL-1 and PD-L2 (Fig. 3B). Although M1/M2 ratio 
scores (Fig. 3C) discriminate the subpopulations regarding their polarization states, this 
dichotomy oversimplifies the highly specialized, transcriptomically dynamic, and extremely 
heterogeneous nature of macrophages in vivo. 

To further dissect the roles of macrophage subpopulations in the TME, we examined if 
each population was related to important cancer hallmark signatures (Fig. 3D-H). Mac_Angio 
and Mac_Hypo subpopulations exhibited high scores related to angiogenesis (Fig. 3D). 
Regarding the hypoxia signature, the Mac_Hypo, Mac_IFN, and Mac_Angio subpopulations 
exhibited higher scores (Fig. 3E). Interestingly, these Mac_Hypo and Mac_Angio 
subpopulations also exhibited an epithelial-mesenchymal transition score (Fig. 3F). Interestingly, 
the signature of the extracellular matrix on macrophages (29) is enriched in Mac-Alv-like and 
Mac_LA (Fig. 3G). The antigen presentation score was higher in RTM_LA, RTM_IFN, and 
Mac_Reg (Fig. 3H).   

Given the possible role of macrophages as immunosuppressive cells, we also investigated 
the co-expression of checkpoint genes and immune regulators. We observed higher expression of 
PDCD1 (the gene coding for PD1 protein) and TREM2 (identified as a marker for TAMs (30)) in 
the Mac_LA, a subpopulation displaying a low M1/M2 score (high anti-inflammatory profile) 
(Fig. 3C, 3I, and S6A). TREM2 expression was found to be significantly higher in both LA 
populations as well as the Mac_Reg and RTM_IFN (Fig 3I and S6A, top). Furthermore, 
RTM_IFN and Mac_IFN had higher pro-inflammatory scores (Fig. 3A) and higher expression of 
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CD274 and PDCD1LG2, the genes that encode for PD-L1 and PD-L2 proteins, respectively (Fig. 
3I). Of note, TREM1, which is normally highly expressed on macrophages in inflamed tissues 
(31, 32), was mainly expressed by the Mac_Alv-like, Mac_Hypo, and Mac_Angio 
subpopulations (Fig. 3I and S6A, bottom).  Although we have investigated the myeloid-derived 
suppressor cell signature proposed by Alshetaiwi and colleagues (2020) (33) in all MDCs 
observed in our research, none of the subpopulations showed consistently elevated genes from 
that signature (Fig S6B). Interestingly, Mac_LA and RTM_LA showed higher suppressive 
profiles based on CD84 expression, followed by RTM_IM, RTM_IFN, Mac_IFN, and mast cells 
(Fig. S6B).     

We also investigated the pathways enriched in each macrophage subpopulation, and we 
discovered pathways compatible with the pro- and anti-inflammatory gene expression patterns 
observed in some phenotypes. Enriched pathways in the Mac_Rec, Mac_IFN, and RTM_IM 
phenotypes were associated with the interferon signaling pathway and Toll-like receptor 
cascades, for example, which is consistent with a pro-inflammatory profile. Interestingly, the 
Mac_Hypo and Mac_Angio exhibited an enrichment of the interleukin-10 pathway, which 
relates to anti-inflammatory processes such as angiogenesis, confirming the score presented in 
Fig 3D. The expression of genes implicated in pathways including IL-4 and IL-13 signaling in 
the RTM_IFN, RTM_IM, Mac_Rec, Mac_Hypo, and Mac_LA subpopulations indicates their 
probable anti-inflammatory function. Activation of matrix metalloproteinases, collagen 
formation, and degradation of the extracellular cellular matrix are just a few of the pathways 
displayed by macrophages engaged in matrix remodeling, such as Mac_LA and Mac_Hypo 
(Data file S3, Fig. 3K).  

 We also investigated the main metabolic pathways that were enriched in each 
macrophage phenotype. Macrophages can use different sources to fuel energy metabolism, 
shifting between glucose and lipid metabolism depending on the TME context and their 
inflammatory role (pro-inflammatory or anti-inflammatory) (34). Thus, in our analysis,  the 
macrophages that exhibited high levels of TREM2, such as Mac_LA, RTM_IFN, and Mac_Reg, 
were enriched in arginine and proline metabolism genes. In contrast, macrophages that presented 
high expression of  TREM1, such as Mac_Alv-like, Mac_Hypo, and Mac_Angio, were enriched 
in glycolysis and gluconeogenesis metabolism genes (Data file S3, Fig 3K). NAD metabolism 
genes were highly enriched in the Mac_Rec subpopulation (Fig 3L). An overview of the main 
metabolic pathways is described in Fig. S6C.  

In order to clarify the complex trajectory of differentiation in the monocyte-macrophage 
and monocyte-DC axes, we applied an unsupervised strategy of pseudo-time analysis. Using 
Mono_CD14_FOS- as the "root" for the trajectory inference, our analysis supported the notion 
that CD14hi monocytes represent the precursor population of both Mono CD16hi and monocyte-
derived cells in tissues (Fig. 3M). Intermediate monocytes (MonoInter_CXCL10 and 
MonoInter_CLEC10A) can be sources for both cDC2 and Mac_Rec (35) (Fig. S6D-E). 
Interestingly, the Mac_Rec appears to be, ontologically, the first monocyte-derived macrophage 
subpopulation and a key precursor of other macrophage states, including RTM-like. Two 
different phenotypes, arising from two main branches, were shown as the most distant from the 
root: 1) Mac_Reg and 2) Mac_LA (Fig. S6D-E).  Through the analysis of the genes that co-vary 
over pseudo-time, we were able to identify a set of monocyte-related genes (VCAN, SELL, and 
FCN1) at the beginning of the trajectory and both specific and general phenotype markers of the 
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macrophage lineages (APOE, TREM2, SPP1, HLA-DRA, C1QA, and CD63) in late branches 
(Fig. 3N). 

Macrophages and monocytes are associated with distinct clinical outcomes 
depending on their niche  

We next sought to investigate the clinical impact of the MDC subpopulations in different 
tumor types using larger cohorts. Forty-seven subpopulation signatures were used to estimate 
cell type proportions in bulk RNA-Seq samples from The Cancer Genome Atlas (TCGA) in nine 
tumor types through deconvolution analysis. We calculated the correlation between bulk and 
scRNA-Seq data to confirm whether our signature matrix could be used to estimate cell 
populations in the TCGA data and found a significant correlation in all TCGA cohorts (Pearson 
R2 > 0.7, p-value ≤  0.05) (Fig. S8).  

As expected, all the tumor samples were enriched with malignant cells (~75%), except 
for lung adenocarcinoma (LUAD), which had very similar proportions of malignant cells (16%) 
and fibroblasts (19.9%) and a higher content of epithelial cells (43.4%) (Fig. 4A and Fig. S8B). 
Breast cancer (BRCA) presented a higher proportion of non-epithelial cells, and together with 
LUAD, these tumors were the most enriched in MDCs (Fig. 4A). Stratifying for mononuclear 
phagocyte subpopulations, macrophages were among the most abundant cell types (7.69% of 
total MDCs), and the RTM_IFN subpopulation was more commonly found in different tumor 
types, especially in skin melanoma (SKCM) (7.6% for metastatic and 5.6% for primary tumor) 
and uveal melanoma samples (1.9%), whereas RTM_IM was predominantly found in lung 
tumors (6.06% in LUAD and 3.9% in LUSC). The Mac_LA subpopulation was mainly found in 
LUAD and BRCA tumors, while Mac_Reg (2.6%) was mainly found in colorectal tumors  (Fig. 
4B).  

By associating clinical parameters such as overall survival with TME subpopulation 
estimates, the Mac_Angio subpopulation was associated with a poorer prognosis in LUSC, 
LUAD, and breast cancer subtype Luminal B (BRCA_LumB), whereas the Mac_Reg and 
cDC2_FCGR3A subpopulations showed a better prognosis in the liver tumor (LIHC) and breast 
cancer subtype basal (basal BRCA). Interestingly, populations such as RTM_IM, RTM_INF, and 
cDC2_CXCL8 were associated with distinct prognoses depending on the tumor type (Fig. 4C). 
Of note, RTM_IM (Fig. 4D and 5C) and Mono_FCG3RA (Fig. 4D, 6C-D) showed as 
independent predictive biomarkers of poor prognosis in ovary cancer (OV) and basal BRCA 
cancer patients. Complete results of the univariate and multivariate Cox regression survival 
analysis are in Data file S7 and S8. 

TREM2-expressing macrophages have been associated with a poor prognosis in cancer 
patients (36). Even though this scenario was observed for RTM_LA and Mac_IFN in LIHC (Fig. 
4C), the opposite was verified in the same tumor type for Mac_Reg, the second most highly 
TREM2 expressing subpopulation (Fig. S6A). Univariate Cox analysis linked this cell type to a 
better LIHC outcome (Fig. 4C), most likely due to the absence of known immunosuppressive 
genes co-expressed in this subpopulation (Fig. 3J). Compared to RTM_LA, Mac_IFN had lower 
TREM2 expression but higher CD274 and PDCD1LG2 expression (Fig. 3J).  

The clustering of OV samples from  TCGA based on the inferred TME profile revealed 
two major groups: one enriched in fibroblasts (14.2%) (Fig. 5A, yellow bars), primarily 
composed of tumors classified as mesenchymal subtype, which is known to present a poorer 
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prognosis subtype; and a second group with a more diverse profile. Furthermore, Kaplan-Meier 
analysis reveals that OV patients with the highest RTM_IM enrichment have poor overall 
survival (log-rank p-value = 0.017) but no significant difference regarding disease progression 
(log-rank p-value = 0.65) (Fig. 5B). This subpopulation was enriched in the mesenchymal 
molecular type (p-value = 1.6e-15) (Fig. 5D, first). Moreover, increased enrichment of RMT_IM 
was significantly associated with recurrence among patients with OV (Fig. 5D, third). 
Additionally, RTM_IM levels differed significantly (p-value = 0.04) between patients with 
complete (R0) and incomplete (R1) therapy responses (Fig 5D, second). While investigating the 
clinical impact of subpopulations with tumor suppression-related markers such as TREM2 (37), 
Mac_LA was found to be significantly augmented in the mesenchymal molecular subtypes (p-
value = 0.0005). Furthermore, it was increased in patients with an incomplete response (R1) to 
treatment (Fig. 5E). Additionally, through Pearson correlation analyses between cell subtypes in 
ovarian tumors, a significant positive moderate correlation (R2 = 0.3, p-value = 6.69x10-9) was 
observed between RTM_IM and endothelial cells, MonoInter_CLEC10A (R2 = 0.24, p-value = 
6.84x10-6), and with TCD4_em (R2 = 0.14, p-value = 9.94x10-3). For Mac_LA, no significant 
correlation was found (Fig. S11A).   

When examining the inferred TME subpopulations in BRCA tumor types that have a 
significant clinical impact on survival, such as Luminal A and basal, it is noteworthy the high 
percentage of malignant cells (4.2% for LumA and 4.6% for basal), following of Mac_Rec (9.4% 
for LumA and 6.3% for basal), and Mac_LA (6.3% for LumA and 8.4% for basal). When it 
comes to Mono_FCG3RA, the basal subtype had a larger enrichment than the LumA subtype 
(3.9% and 1.2%, respectively). Intriguingly, Mono_FCG3RA subpopulations showed different 
prognoses between LumA and basal subtypes. Patients with a higher level of Mono_FCG3RA 
enrichment in the LumA had a significantly better prognosis (log-rank p-value = 2 x 104) (Fig. 
6C and E). In contrast, patients with the basal subtype and higher monocyte FCG3RA 
enrichment had a worse prognosis (log-rank p-value = 0.0045) (Fig. 6D and E, second). 
Moreover, Mono_FCG3RA was significantly enriched in metastasis (p-value = 0.0023) and in 
patients with incomplete response to treatment  (p-value = 0.0095) in the basal subtype (Fig 6E). 
Furthermore, for the LumA subtype, Mac_LA was significantly enriched in stage 3 (p-value = 
0.05) (Fig. 6G). Additionally, through Pearson correlation analyses between cell subtypes in 
breast tumors, significant positive correlations were found for the LumA subtype, between 
Mono_FCG3RA and malignant cells (R2 =0.18, p-value= 3.52x10-3) and TCD4_em cells 
(R2=0.12, p-value = 1.49x10-5) (Fig. S11D). For the basal subtype, a moderately significant 
negative correlation was observed between Mono_FCG3RA and MonoInter_CXCL10 (R2= - 
0.23, p-value = 1.21x10-3). Regarding Mac_LA, a significant moderate to strong negative 
correlation was found with TCD4_em (R2 = -0.49, p-value = 2.43x10-2) (Fig. S11C). All 
proportions of subpopulation cells across tumor types are shown in Fig. S9, and survival 
analyses, including Cox regression multivariate analysis, are shown in Fig. S10A.   

To confirm our findings, immunohistochemical staining on tissue microarrays was 
performed to evaluate the expression of specific macrophage subpopulations (CD68+, TREM2+), 
T lymphocytes (CD8+, PD-1+), and malignant cells (Ki67+) in high-grade serous ovarian cancer  
(HGSOC) primary tumors, the most lethal gynecologic malignancy. Overall,  69.8% (n = 44) of 
the patients were in stage 3 and 17.4% (n = 11) were in stage 4, both advanced stages, while the 
early stages corresponded to 6.3% in stage 1 (n = 4), and 6.3% in stage 2 (n = 4). In addition, 
25% (n = 13) of patients underwent neoadjuvant chemotherapy,  91.1% (n = 41) of patients had 
adjuvant chemotherapy, and 6.5% (n = 11) of the patients underwent both approaches. 
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Furthermore, 82.5% died (mean 31 months), and 17.4% are still alive (Data file S9). The markers 
were classified as having high or low expression and categorized as peritumoral or intratumoral, 
depending on their localization. The presence of macrophages expressing both CD68+ and 
TREM2+ markers (high > 1 cell) in the peritumoral was significantly associated with a better 
prognosis for HGSOC patients (log-rank  p = 0.015) (Fig. 4O). Representative images of tissue 
microarrays are shown in Fig. 4P and S10A. No significant differences in overall survival (OS) 
were found between the low- and high-PD-1, CD8, and TREM2-expression groups using the 
Kaplan-Meier analysis (Fig. S12B).  

Crosstalk between macrophages, T, NK, and malignant cells in TME 

To identify communication axes mediated by MDC subpopulations, ligand-receptor 
inference analysis was performed between MDC subpopulations and T lymphocytes, key players 
in the development of the immune response, as well as with malignant cells (divided per their 
tumor origin). To accomplish this, it was necessary to classify lymphocytes into subpopulations. 
In our analysis, we were able to differentiate three populations of NK cells: NK resting 
(NK_rest), NK cytotoxic (NK_cyto), and NKT. Both CD4+ and CD8+ subpopulations were 
divided into three groups according to their functional roles: naïve (TCD4_naive and 
TCD8_naive); effector memory (TCD4_em and TCD8_em); and the exhausted state (TCD4_ex 
and TCD8_ex). For CD4+, we also identified the subpopulation of regulatory T cells. 
Additionally, a subpopulation that expresses both γ and δ T-cell receptors (named TGD) was 
identified (Fig. S7A). The clusters were annotated based on canonical gene markers and DEGs, 
yielding 11 broad cell types, as mentioned: NK_rest which expressed XCL1 and AREG; 
NK_cyto positive for GZMB, FGFBP2, and FCGR3A; NKT which expressed CD8A, CD8B, and 
FGFBP2; TCD4_ex which expressed CTLA4, PDCD1, and CD200; TCD4_em positive for 
IL7R, CD40LG and ANXA1; TCD4_naive positive for CCR7, LEF1, SELL and TCF7; 
TCD4_reg enriched of FOXP3 and CTLA4; TCD8_em which expressed GZMK, EMOS, and 
ITM2C; TCD8_ex enriched of LAG3 and GZMB; TCD8_naive IL7R and ANXA1; and the last 
subpopulation TGD positive for TRDV1, TRDV2, and TRGV9 (Fig. S7B).  

We obtained 3422 putative intercellular communications, as assessed by ligand-receptor 
pairings between macrophages and lymphocytes, of which 526 were with NKT, 484 with 
TCD4_ex, 587 with TCD4_reg, 645 with TCD8_em, 644 with TCD8_ex, and 536 with TGD. 
We also explored the axis of macrophage and malignant cell interaction, which were subdivided 
according to tissue origin. This interaction returned 4986 putative intercellular communications. 
Of these, 942 occur between macrophages and breast cancer, 543 with colorectal cancer, 1474 
with liver cancer, 900 with lung cancer, 297 with melanoma, and 830 with ovarian cancer. 

Considering the clinical impact of RTM_IM, we explore the specific communication axis 
between it, malignant cells, and T/NK cells. We detected 10 specific intercellular 
communications involving the “RTM_IM” cell type and malignant cells that were not detected 
between other types of macrophages, tumor cells, or lymphocytes. Of these, the APOE:SDC3 
interaction was specific between RTIM_IM and malignant cells in ovarian tumors, IGF1:INSR 
in liver tumors,  and TNF:TNFRSF1A in breast tumors (Fig. S7C). Among the 27 interactions 
involving RTM_IM and lymphocytes and NK cells, AIMP1:RRBP1, CALR:CD44, 
ITGB1:CD47, PECAM1:CXCR4 and THBS1:CD47 were specific with “TGD lymphocytes'', 
CD28:CD4 with “TCD4_ex”, CD320:TGFBR2 and TNF:RASA3 with “NKT”, ITGB1:RACK1, 
TNF:FAS with “TCD4_reg” (Fig. S7D). By analyzing intracellular signaling led by the aforesaid 
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receptors, RACK1→NPM1 (Fig. S7E) is highlighted given its role as a transcription regulator of 
PD-L1 in tumors (38).  
 

DISCUSSION 

Integration of single-cell data has proven to be a game changer for analyzing large and 
complex volumes of data. Indeed, this information is critical in the search to better understand 
the role of cells that compose the TME, which have been described as heterogeneous in several 
types of cancer and have a direct influence on tumor progression. The immune cells within the 
TME have either pro- or anti-tumor properties and have been widely researched for their 
immunotherapeutic potential. Here we have thoroughly integrated and characterized cell 
subpopulations in the TME, yielding a large and comprehensive dataset comprising different 
tumors, technologies, and sample types, generated across multiple conditions and obtained from 
multiple donors.  Although high correlations were observed when comparing subpopulations 
identified in previous works with ours, showing the consistency of our approach, only a few 
subpopulations exclusively matched the populations we identified, showing our ability to 
identify novel, more well-defined subpopulations/states. Of note, TREM2 macrophages (24) 
highly correlate with different cells in our catalog, such as RTM_LA, Mac_LA, RTM_IFN, 
Mac_IFN, Mac_Angio, and Mac_Hypo, highlighting that there is no single TREM2+ 
macrophage phenotype, as observed by our data. A rigorous methodology and extensive curation 
allowed us to identify more homogeneous clusters than previous approaches (24, 25), unraveling 
high-quality clusters that represent a wide range of cells found in the TME of solid tumors, 
including rare states never previously characterized. These findings can be used to guide future 
research into obtaining novel biological insights and developing new immune checkpoint 
blockades and target therapies.  

Our work has compiled and analyzed in great detail, at the single-cell level, the largest set 
of mononuclear phagocytes subpopulations within the TME. The cells we studied include 
monocytes, macrophages, and cDCs beyond other MDCs, such as neutrophils and mast cells, 
which are traditionally poorly characterized cells in the tumor context. While no integrative 
approach has previously described different mast cell phenotypes/states in the TME, our findings 
showed that they are linked to a better prognosis in LUAD, although they can display gene 
programs involved in immune response inhibition, such as PD-1 signaling. Because single-cell 
characterization of tumor-associated neutrophils has been limited due to technological 
limitations, our work has yielded the largest collection of these cells within the TME by 
integrating data from different technologies, including InDrop Seq, which does not carry bias in 
granulocyte retrieval (39). In this study, all identified neutrophil subpopulations, particularly 
neutrophil_CXCL8, were associated with an anti-inflammatory profile involving interleukin-4 
and -13 signaling. According to Xiong and colleagues (2022),  CXCL8 mediates neutrophil 
extracellular traps, which have been associated with poor outcomes in colorectal cancer (19). 
The lack of neutrophils in normal tissues could be a possible bias for only observing an 
association with pro-tumorigenic activities in these cells. 

Mononuclear phagocytes are key cells in organ development and homeostasis 
maintenance (40). Their great plasticity enables them to take part in organogenesis, tissue repair, 
and protection against infections. In addition to producing essential growth and inflammatory 
factors that orchestrate lymphocyte responses, they are involved in extracellular matrix 
maintenance, angiogenesis, tissue enervation, and the clearance of apoptotic cells. Given that 
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tumor development resembles the development of a tissue or organ, it is not surprising that these 
functions have also been found in these cells within the TME. 

Among the eight cDC states identified, cDC1 was the least representative subpopulation 
within the TME scRNA-Seq. Their function is well understood and is related to CD8+ T cell 
activation, whereas cDC2 are more pleiotropic, with their main function being the presentation 
of exogenous antigens to CD4+ T cells, thereby initiating T helper cell differentiation (37). 
Interestingly, the clinical impact assessment of cCD2_CXCL8 cells, a newly described 
phenotype,  in different cancer types using Cox multivariate analysis showed that these cells are 
associated with poor prognostics in lung cancer but good prognostics in liver tumors, similar to 
the results found by Li and colleagues (41) that identified CXCL8 in a high-ImmuneScore 
population that contributed to better survival in colorectal cancer using bulk RNA-Seq, 
demonstrating that the TME context determines the function of each cell. The cDC_CD207 
phenotype was previously demonstrated by Qian and colleagues (2020)  who found a population 
called C5_CD207 that expressed CD207 and CD1A but not the epithelial markers CDH1 and 
EPCAM (42), which are typically expressed in macrophages known as Langerhans cells. This is 
in agreement with other studies that show the presence of Langerin expression in cDC2 CD1C+, 
a distinct subpopulation of Langerhans cells (43). As these cells were discovered among cDC2s, 
in this work they were deemed as such, needing more investigations for confirmation. 

Monocytes play a role in orchestrating the immune system, not only in homeostatic 
conditions but also in tumor progression (44), besides being important precursors for 
macrophages and cDCs (45). They can be derived from hematopoietic stem and progenitor cells 
in the bone marrow, and their production is enhanced under certain circumstances (46, 47). The 
adult spleen also contains a reservoir of monocytes that can be rapidly recruited in response to 
injury or inflammation (48). These monocytes can be pro- or anti-tumoral, regulating a variety of 
processes from angiogenesis to immune modulation in a context-dependent manner (49, 50). We 
observed two classical monocyte subpopulations (Mono_CLEC10A and Mono_CXCL10) 
enriched in the tumor samples. These monocytes have been reported to play pro-tumoral 
functions once recruited to the TME (50). Our findings show that one subtype, Mono_FCGR3A, 
is independently associated with a worse prognosis in the basal subtype of breast cancer, which 
is consistent with the findings of Chen et al. (44) and Jung et al. (45), who have linked non-
classical monocytes with immunosuppressive functions. Interestingly, these monocytes were 
negatively correlated with MonoInter_CXCL10, a macrophage precursor, suggesting that in this 
context, monocyte differentiation into pro-inflammatory macrophages is hampered (51) An 
antagonistic impact was observed in the Luminal A subtype, reinforcing that MDCs association 
with cancer prognosis is context-dependent. 

Macrophages are present in different tissues, and according to changes in their 
environment, mainly verified by in vitro studies, they can be polarized  into at least two different 
states, namely M1 and M2 (12, 52, 53). However, as evidenced by our results, none of the 
macrophage states clearly display gene programs associated with the M1 or M2 signatures. In 
fact, some populations simultaneously expressed genes associated with both signatures. 
Although the traditional binary division into M1 and M2 states has been adhered to for many 
decades, it has become clear that this classification does not convey the complex nature imposed 
by macrophage plasticity, mainly in the TME context. Following a recent effort to standardize 
nomenclatures, pushed mainly by the popularization of single-cell analyses, we based our 
annotation mainly on recent signature genes (22), which propose a consensus model of TAM 
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diversity. Moreover, using our in-depth analysis, we dissected twelve states according to TAM 
ontogeny and functionality, each with a distinct transcriptional profile. We confirmed all the 
phenotypes described by Ma et al. (22), except for the cytokine-enriched inflammatory 
macrophages (Inflam-TAMs), presumably because our data show a multitude of cytokines 
expressed simultaneously by many macrophages. Beyond the aforementioned confirmations, we 
reported a new macrophage state (RTM-like MT), which will be discussed in conjunction with 
the other RTMs. Furthermore, we identified Mac_Hypo in several tumor types (uveal, ovary, 
lung, and colorectal), which had previously only been linked to breast cancer (54).   

Our study brings substantial contributions regarding MDC ontogeny. It allowed 
distinguishing subpopulations of resident macrophages, which were frequently lumped together 
in a single group of cells in multiple TME studies (22, 55). We showed for the first time that 
these resident macrophages can develop highly specialized phenotypes and be derived not only 
from embryonic progenitors but also from adult monocytes, such as the population called RTM-
like_MT that expresses genes associated with both residents and recruited macrophage 
signatures. These cells also express genes that can regulate  metastasis such as VEGF, IL-6, and 
TNF-α (56). In addition, they express high levels of metallothioneins, which are oxygen-
regulated proteins and, therefore, induced by the hypoxic TME (57, 58). There has been 
substantial debate regarding the development of macrophages. It is believed that the majority of 
RTM populations derive from both intra- and extra-embryonic precursors that are seeded in 
target organs before birth, playing an important role in development and  homeostasis (59). 
Under steady-state conditions, RTMs are mostly maintained via self-renewal. However, bone-
marrow-derived circulating monocytes can give rise to self-renewing tissue-resident populations 
if an adequate habitat is provided (60). Although recruited monocytes can be clearly 
distinguished from RTMs during the initial stages of inflammation, they can progressively 
acquire a very similar profile to the RTM population (61). 

 Our data allowed us to draw parallels regarding biological functionality between the 
recruited and RTM subpopulations. Markers linked with the interferon-primed gene signature 
connected to an inflammatory profile (IFIT1, IDO1, and CXCL9), for example, were detected in 
both the RTM_IFN and recruited Mac_IFN states. Similarly, two populations with distinct 
ontogenies expressing a lipid-associated phenotype were observed. Both express high levels of 
TREM2, which has been linked to systemic metabolism and adipose tissue function (62) and has 
emerged as a marker of pro-tumorigenic macrophages (63).  

By analyzing large cohorts of individuals affected by different types of cancer, we were 
able to assess the clinical impact of all MDC subpopulations. Among the twelve populations we 
identified to be associated with cancer prognosis, we highlight the RTM_IM subpopulations, 
which may represent attractive targets for future studies aimed at understanding the roles of 
specific TAM subpopulations in the TME. Although  RTM_IM seems to be more enriched in 
lung tumors, this cell type is associated with a worse prognosis in OV patients, where it has been 
identified as an independent prognostic factor. Furthermore, despite the absence of tumor 
suppressor gene signatures, such as TREM2 and PD-L1, this macrophage subpopulation 
expresses IL-10, which promotes the release of IL-6, TGF-β, and VEGF-A and contributes to 
activating processes related to cell proliferation, tumor invasion, tumor growth, angiogenesis, 
and metastasis (64). Interestingly, RTM_IM seems to use the APOE:SDC3 axis to interact with 
malignant cells. Apolipoprotein E (apoE) facilitates the cellular transport and metabolism of 
lipids (65) and different studies have linked higher expression of ApoE with tumorigenesis and 
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cancer progression, such as cell proliferation, angiogenesis, and metastasis (66, 67). Analysis of 
transcriptome-wide gene expression in ovarian cancer showed that ApoE is upregulated in most 
high-grade serous carcinomas compared to low-grade serous carcinomas (68). On the other hand, 
syndecans (Sdc) are transmembrane heparan sulfate proteoglycans (69) expressed in TAM, 
cancer cells, and endothelial cells, and their expression is positively correlated with a 
macrophage gene signature across several TCGA cancer types (70). The studies regarding the 
role of  SDC3 and apoE in cancer development are sparse. Thus, the uniqueness of the apoE-
SCD3 interaction by ovarian tumor cells and RTM-IM needs to be further investigated, 
especially given the role of these cells in ovarian cancer prognosis as demonstrated here.  

Although recent reports have shown that TREM2 is a key phenotypic marker for TAMs 
and monocytes in a variety of cancer patients and tumor models with potent immunosuppressive 
activity (71), our findings strongly suggest that distinct TAMs phenotypes expressing TREM2 
can coexist in the TME, exerting different roles, supporting it's unclear dual function on 
prognosis (72, 73). Of note, the populations expressing high levels of TREM2 - RTM_LA and 
Mac_Reg - were respectively associated with poor and good prognoses in LIHC. By analyzing a 
Brazilian cohort of HGSOC, we found that the presence of TREM2+ macrophages in the 
peritumoral space is associated with a better prognosis for OV patients. In contrast to the 
findings by Binnewies and collaborators (2021), where intratumoral TAM-expressing TREM2 
was shown to be associated with T cell exhaustion and anti-PD-1 resistance (63), our data show 
that the role of TREM2 can be dependent on localization inside the TME and the co-expression 
of other immunosuppressive markers. Our study highlights the complexity of TREM2+ 
macrophages, calling for more investigation to clarify their function in tumors.  

Overall, even though there is currently no general method for accurately defining cell 
identity, we were able to create a high-resolution, dynamic cell atlas of mononuclear phagocytes 
in the TME through a robust pipeline by combining analysis of cluster-specific gene expression 
to infer cell type, distribution, function, ontogeny, phenotype (state), possible cellular 
interactions, and disease associations. This atlas reveals new aspects of MDC identities as well as 
new avenues for understanding and manipulating their fate in cancer. 
 

MATERIALS AND METHODS 

Data download and pre-processing 

Pre-processed scRNA-Seq data (Data file S1) from patients with breast cancer 
(GSE114727), hepatocellular carcinoma (GSE140228, GSE125449), lung cancer (GSE127465), 
melanoma (GSE115979), ovarian cancer (GSE154600, GSE72056), uveal melanoma 
(GSE139829), skin (GSE130973) and metastasis from uveal melanoma and lung (GSE158803) 
samples were obtained from the public repository Gene Expression Omnibus (GEO) using the 
GEOquery Bioconductor package (74). Additionally, datasets from lung, ovarian, and breast 
cancer were downloaded from Qian et al. (42), on its platform (blueprint.lambrechtslab.org/). We 
downloaded datasets from the Human Lung Cell Atlas project (75) on the Synapse platform 
(SYN21560407). Finally, the dataset containing PBMCs (10x Genomics standard) was 
downloaded from the company platform (support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc3k).  
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Raw gene expression (counts) matrices were analyzed with the Seurat package (v4.0) 
(76) for each study. We converted all gene symbols to Ensembl format (hg v38). Different filters 
of quality control were applied by technology: for 10x Genomics data the cutoff points were <10 
to mitochondrial percent, number of counts (nCounts) > 200, and ratio nCounts by number of 
features (nFeatures) <5; for Smart-Seq2 were <15 to mitochondrial percent, > 200 nCounts, and 
ratio nCounts/nFeature < 1000; and for inDrop were < 15 to mitochondrial percent, > 200 
nCount, and ratio nCounts/nFeature < 1000. The remaining cells were grouped by patient and 
sample type in each dataset, individually, and submitted to the doublet removal step through the 
Scrublet package (77). Each group of cells was separately analyzed through the doublet score 
histogram distribution by samples (since doublets only form from cells from the same sample), 
and a cutoff value was determined for each case, by manually setting the threshold between the 
two peaks of the distribution, eliminating cells with a higher probability of being doublets.  

Integration and cluster annotation 

The datasets were concatenated with Scanpy (1.7.2) (78), and the 3000 highly variably 
expressed genes were selected using flavor = "Seurat". The integration was performed with scVI 
(0.6.8) (79) from scvi-tools (0.19.0) (80). For training the variational autoencoder neural 
network, we used the following hyperparameters: n_latent=20, n_layers=4, dropout_rate=0.1. 
After we trained the scVI and corrected for the batch using study and tissue origin as batch keys 
in order to remove the technical bias, the clusters were calculated through the Leiden algorithm 
(81), where after evaluating the range from 0.3 to 2.0, the resolution of 0.6 was defined for the 
annotation of the first level of clustering. The latent space generated by scVI was then projected 
to a 2D space using the Uniform Manifold Approximation and Projection (UMAP) dimensional 
reduction method (82). To determine the broad cell types, we use canonical markers (Data file 
S5). We found and removed three (3) undefined/contaminated subsets with low quality (clusters 
17, 19, and 29). After this first level of annotation, we applied DecontX (83), from the celda 
package (1.14.1), using default parameters, to estimate and remove ambient contamination in 
individual cells. For the other levels of annotation, we subset the broad cell types and then rerun 
highly variable genes and scVI models with the same parameters, except for batch correction, 
which was performed by patients and technology, and also excluding samples with a contribution 
of fewer than ten cells. In order to classify clusters in cell types or states, we apply differential 
gene expression by Wilcoxon rank-sum and MAST (84), using logfc.threshold = 0.25, and 
min.pct = 0.1. The FDR method was used to adjust p values. In addition, we evaluated the purity 
of the clusters through the ROGUE (1.0) (85) algorithm with default parameters.  

Copy Number Variation inference 

The copy number variation signal for individual cells was estimated using the 
inferCNVpy (0.4.0) (https://github.com/icbi-lab/infercnvpy), inspired by the inferCNV (86), by 
comparing all normal cells in the TME with epithelial cells, in order to classify malignant cells. 
Epithelial cells were classified according to the copy number variation signal, cells with a score 
lower than the median score (0.004 for all tumor types) were classified as “normal”, while those 
with a higher score were classified as “malignant”. 

In silico validation 
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In order to validate our findings, we correlated the populations we have defined with 
those from previous works. Another set of pre-processed scRNA-Seq data was downloaded 
(25)(24) (Data file S6). Those two datasets were selected because they are considered robust 
amounts of data, well-annotated, mainly with regard to mononuclear phagocytes, and with a 
great diversity of tumor types, including those we have worked with in this paper.  

We used the same strategy and quality control filters that were used with our main 
datasets. Cheng´s and Mulder´s datasets were analyzed separately, using the authors' annotations 
for macrophages, monocytes, and cDCs subpopulations. The dataset generated by Cheng and 
colleagues (2021) (25) is composed of more than 56,000 mononuclear phagocyte cells retrieved 
from samples of eight tumor types, tissues adjacent to the tumors, and blood. The subpopulations 
were identified separately in each tumor type, yielding nine macrophage subtypes, three 
monocyte subtypes, and nine cDCs subtypes. Meanwhile, the dataset from Mulder and 
collaborators (2021) (24) has more mononuclear phagocytic cells (approximately 133 thousand 
cells), which were derived from an integrative approach of 13 tumor samples, tissues adjacent to 
the tumor, and other sample types, totaling eight macrophage clusters, four monocyte clusters, 
and one cDCs type (for details, see Supplementary Methods).  To perform the correlation, 
expression data was log-normalized using the NormalizedData function of the Seurat package 
(v4.0) (76), followed by the AverageExpression function from the same package to determine 
the average expression of each gene for each subpopulation. Cor function (87) from the stats R 
library was used to correlate the expression of all genes between subpopulations, and ggplot2 
(88) was used to plot the correlation graphs.  The purity of clusters was verified by using the 
ROGUE (85) with the same parameters used for our integrated dataset.  

   

Metabolic characterization  

We characterized the metabolic pathways of each cluster using Compass (89). Cells were 
subsetted into clusters prior to running Compass with the following parameters: --calc-
metabolites --microcluster-size 10 --lambda 0. Raw reaction penalties were converted to reaction 
scores as described in the original publication, and reactions with zero variance were removed. 
Pairwise comparison was performed for each cluster (e.g. Cluster 1 vs. Cluster 2; Cluster 1 vs. 
Cluster n; etc) applying Wilcoxon’s test and calculating the Cohen’s d effect size between 
means. The FDR method was used to adjust p values. Reactions with confidence scores other 
than 4 (most confident) or zero (unknown) or with an adjusted p-value greater than 0.1 were 
removed. Cohen’s d median scores were calculated for each pairwise comparison and metabolic 
pathway. Those median scores were again aggregated by median comparing the median Cohen’s 
d value across all clusters to obtain a single value per cluster and metabolic pathway, which were 
z-scored to compare across macrophage clusters. 

 Reaction scores were calculated for each myeloid cluster as previously described  and 
used to perform a pairwise comparison between all clusters. Reactions were filtered for adjusted 
p-value below 0.1 and a measure of the effect size was calculated using the median of Cohen’s 
values for each metabolic pathway. Next, Cohen’s medians for each metabolic pathway were 
summarized for each cluster to reflect the activity of the respective pathway in the cluster. 

The metabolic reactions Glycolysis/Gluconeogenesis, Citric Acid Cycle, NAD 
Metabolism, Oxidative Phosphorylation, Arginine and Proline Metabolism, Transport, 
Mitochondrial, Fatty Acid Oxidation, Fatty Acid Synthesis, Glycerophospholipid Metabolism, 
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Glycosphingolipid Metabolism, Sphingolipid Metabolism are used to classified the macrophage 
based in the metabolic pathway.  

Trajectory analysis through pseudo-time 

The Seurat object was converted into a CellDataSet to use the UMAP generated in the 
integration as the partition. We next employed Monocle 3 version 1.3.1 (90) and set the 
parameter use_partition = FALSE of the function “learn graph” in order to create a linear 
trajectory, with default parameters. To order cells, the root used to infer the pseudotime was the 
Mono_CD14_FOS- cluster, with default parameters. We also used Monocle 3 to perform gene 
module analysis based on graph autocorrelation to identify genes that co-vary over pseudotime. 

Module and Pathway Enrichment 

The top hundred genes identified in the DEG analysis, sorted by the log fold change for 
each cluster, were selected to perform the functional enrichment analysis from the curated 
database Reactome (2021), through the clusterProfiler version 3.0 R package (91–93). 
Significant pathways were those with a p-value ≤  0.05. The authors selected the pathways and 
genes included in the gene set list based on their scientific experience, and the redundancy was 
removed from the enriched pathway set by selecting the pathway with the lowest p-value. The 
gene signature scores were computed by combining the AddModuleScore function and the 
MSigDB (94) following signature. 
 

Cell-cell communication 

To perform cell communication analyses, we filter cells with the detection of more than 
200 genes and genes with detection in more than 50 cells and use the CellComm algorithm (95) 
between pairs of cell types of macrophages and tumors or macrophages and lymphocytes. We 
used as a set of possible intercellular communications the 688 ligands and 857 receptors 
contained in the NicheNet database (96) resulting in 12650 possible pairs. In communications 
between macrophages and tumors, we used cells classified as “MacAlv-like”, “Mac_Angio”, 
“Mac_Hypo”, “Mac_IFN”, “Mac_LA”, “Mac_Rec”, “Mac_Reg”, “RTM-like_MT”, 
RTM_IFN”, “RTM_IM” and “RTM_LA” and breast, colorectal, liver, lung, melanoma and 
ovarian tumor cells. In communications between macrophages and lymphocytes, we used cells 
classified as macrophages “Mac_IFN”, “Mac_LA”, “Mac_Rec”, “RTM_IFN” and “RTM_IM” 
and lymphocytes “NKT”, “TCD4ex”, “TCD4reg”, “TCD8em”, “TCD8ex” and “TGD”. For 
consideration of intercellular communication, the expression of ligands and receptors should be 
greater than 0.25 normalized counts and show a p-value less than 0.01 in a permutation test of 
cluster annotation containing 1000 permutations. To get paths, molecular interactions that 
connect receptors participating in communications of interest to possibly active transcription 
factors, CellComm created weighted interaction networks based on the co-expression of genes in 
single cells and mapping them to protein-protein interaction data from the iRefIndex database. 
The paths are then obtained using a flow network with a multiple source and multiple sink 
structure as described in the original work (95). Each receptor-to-regulator path scores consider 
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the presence and enrichment of regulator regulon genes in cell type-specific signatures based on 
hypergeometric tests. 

Deconvolution analysis 

To better understand the heterogeneity of the tumor microenvironment, as well as the 
cellular composition in each tumor type, we applied deconvolution methods to predict the 
abundance of cell types by modeling gene expression levels through bulk RNA-seq data. For 
these analyses, gene expression data (HTSeq counts), and clinical-pathological information from 
the database portal TCGA (http://cancergenome.nih.gov/) were downloaded using the R 
environment package TCGAbiolinks (97) of nine different tumor types, using the identifiers: OV 
(n=354), LUAD (n =510), LUSC (n=496), UVM (n=77), SKCM (divided into Metastatic 
(n=385) and Primary (n= 103) tumor samples), COAD (n=454), READ (n=170), LIHC (n = 369) 
and BRCA (n = 1195) where it comprises Luminal A (n= 569), Luminal B (n=210), HER2 
(n=81) and basal (n= 188) subtypes.  Next, we excluded genes from each patient for which the 
expression sum equals zero and filtered for the 12,854 genes that make up the signatures of the 
cell types identified by single-cell analysis. In addition, for the cell signature matrix, we filtered 
for tumor samples and cell types that represent more than 1% of all other cell types in each tumor 
type. 

Therefore, we used the single-cell signatures identified in this work as a reference, to 
predict the relative frequency of cell types for each patient of each tumor type from TCGA. We 
considered 47 cell signatures, including cell types identified in the first level of annotation, such 
as fibroblasts, endothelial cells, mast cells, pDC, malignant cells, and normal epithelial cells, and 
cell states/subtypes identified in other levels of clustering, including macrophages (except the 
Mac_Prolif subpopulation), monocytes, cDC, lymphocytes, NK cells, and neutrophil 
subpopulations. 

For this analysis, we use the BayesPrism package (98), version 2.0, in the R environment, 
which is based on statistical marginalization (a Bayesian method). For each bulk RNA-seq 
sample, it evaluates the gene expression of each cell state as well as the proportion of each cell 
state. Because it eliminates batch effects and variations between the scRNA-Seq matrix and the 
bulk RNA-seq, predicting the expression of each cell type in each bulk RNA-seq sample, it 
produces a more robust result. As a first step, we removed ribosomal and mitochondrial genes 
with high expression using the cleanup.genes() function. In addition, genes expressed in less than 
5 cells were excluded. After that, to get more consistent results, we filtered for protein-coding 
genes, and used the function get.exp.stat() to select differentially expressed genes between cell 
states of different cell types using the default parameters, except for the parameter pseudo.count 
(0.1 for 10x data and 10 for Smart-seq data). Finally, we set up the prism object using the 
new.prism() function for each tumor type by setting the following parameters: 

reference=scRNAfiltered_matrix,mixture=bulk_matrix,input.type="count.matrix",cell.type.l
abels = celltype, cell.state.labels = states, key="Malignant Cells", outlier.cut=0.01, 
outlier.fraction=0.1. And then running BayesPrism, run.prism(prism = prism object , 
n.cores=70). 

Study design, ethical considerations, and patient selection 
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This retrospective study was approved by the Ethics in Human Research Committee of 
the Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil, and was conducted 
following the Good Clinical Practice Guidelines. All women diagnosed with HGSOC at INCA 
between 2000 and 2019, regardless of adjuvant or neoadjuvant treatment, were identified through 
the internal database. Clinical data regarding age at diagnosis, staging, surgery, histological 
subtype, chemotherapy, and survival were retrospectively obtained from the medical records. 
The TNBC (99) cohort was described previously. The study was approved by the institution, 
reviewed, and approved by the Ethics in Human Research Committee of the INCA, Rio de 
Janeiro, Brazil, and conducted in accordance with Good Clinical Practice Guidelines. The ethics 
committee waived the requirement of written informed consent for participation. 

Immunohistochemistry  

The blocks were cut with a microtome into fine slivers of 4-mm sections to form the 
tissue microarray which encompasses the most representative areas of greatest tumor cellularity 
in formalin-fixed paraffin-embedded tissue specimens. The immunohistochemistry was 
processed using a NOVOLINK™ Polymer Detection Systems (Leica), followed by DAB. 
Antigen retrieval was performed with the Trilogy (Cell Marque) reagent. For double staining, 
TREM2 was combined with anti-CD68. Briefly, after completing the first immune reaction with 
Mach 4 MR-AP (Biocare Medical), the second immune reaction was visualized using DAB. 

A total of 63 patients from the INCA, between the years 2001-2017, were investigated for 
CD8+, PD-1+,  Ki67+, CD68+ and TREM2+  expression. The prognostic value of  CD8+, PD-1,  
CD68+, and TREM2+ expression was associated with clinicopathological characteristics by  
multivariate Cox regression analyses. The samples were immunostained for Ki67 (clone 30-9 at 
1:7, Ventana- Roche), CD8 (clone SP57 at 1:7, Ventana- Roche), PD-1 (clone NAT105, Cell 
Marque, diluted 1:100), CD68 (clone KP-1 at 1:20, Ventana- Roche) and TREM2 (clone D814C, 
1:100, Cell Signaling Technology). The entire analysis was carried out at the Division of 
Pathology-National Institute of Cancer by two experienced pathologists. 

Tissue microarrays were assessed by determining the percent of immune cells and their 
distribution with the markers TREM2+ and CD68+ peritumoral (low = 0 cells, high ≥ 1 cell) and  
intratumoral (low = 0 - ≤ 1 cell, high > 1 cells), CD68+ peritumoral and intratumoral (low = 0 
cells, high  ≥ 1 cells) and PD-1+ and CD8+ peritumoral and intratumoral (low = 0 - 1 cell, high > 
5-30 cells). 

Survival and statistical analysis 

Using the results of deconvolution analysis on the bulk RNA-seq samples, we 
investigated the clinical impact of each cell type identified by the single-cell analyses. To do this, 
we calculated the hazard ratio (HR) of the relative fractions of each cell population type divided 
into quartiles, with 95% confidence intervals (CI) based on maximum likelihood estimates for 
each covariate using a univariate Cox regression model (p ≤  0.05). Subsequently, significant 
variables were tested in the multivariate Cox regression model (p ≤ 0.05), adjusting for 
covariates known to be prognostic factors, such as age and clinical staging. For these analyses, 
we used the Survival and Survminer packages for the R environment. In addition, we 
investigated the correlation between clinical variables and the relative proportions of each cell 
type predicted by BayesPrism. For this, clinical variables such as response to treatment 
(responders and non-responders), clinical staging, mutational burden, tumor grade, molecular 
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subtype, tumor residual disease, tumor event type (recurrence or non-recurrence), and age were 
investigated. Only results with p ≤ 0.05 were presented. For the division of high and low groups, 
the surv_cutpoint function from the survminer package was used. The statistical analyses were 
done by Kruskal-Wallis for global comparisons, followed by the Wilcoxon test for paired 
comparisons.  

For the Brazilian cohort, overall survival (OS) was calculated from the diagnosis to the 
date of death of any cause if the patient was known to be alive on the last day of data collection. 
A further analysis comparing the paired scores of immunohistochemistry factors (IHC markers) 
for intratumoral and peritumoral components was performed by a multivariate Cox regression 
model using stage and score of high and low expression. The statistical analyses were conducted 
using R project version 3.5.3 
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Fig. 1. Multi-tissue single-cell atlas of tumor and healthy samples. (A) Workflow of 
experimental design.  (B) Dot plot showing the distribution of sample types across the eight 
tissues analyzed in this study. Dot size indicates the number of cells by sample type. (C) The 
latent space generated by scVI was used to construct an unbiased Uniform Manifold 
Approximation and Projection (UMAP) of 408,476 cells. Broad cell types are color-coded: 
fibroblasts (yellow), endothelial cells (orange), epithelial (light pink) and malignant cells (pink), 
pDC cells (dark blue), B cells (green), T and NK cells (blue), neutrophils (lavender), mast cells 
(eggplant), megakaryocytes (aquamarine), and mononuclear phagocytes (purple). (D) Heatmap 
showing the markers' genes across the 11 broad cell types and the number of cells per type. The 
color scale reflects the log10-normalized gene expression range.  (E) Bar plot showing the 
proportion of clusters across conditions and sample types. Left: Each column represents the 
sample types for a given condition, if any, such as normal (_N), primary tumor (_T), and tumor 
metastasis (_M). Right: Proportion of clusters for summarized sample types from the left plot. 
(F) UMAP of 68,259 myeloid-derived cells, color-coded according to cell types. (G) Dot plot 
showing the expression of specific markers by each myeloid-derived subpopulation. Dot size 
indicates the fraction of expressing cells. (H)  Dendrogram illustrating the relationship between 
the mononuclear phagocytes populations. 
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Fig. 2.  Mononuclear phagocytes are the major myeloid subpopulations in the TME, 
displaying several polarization states according to the local cue. (A) UMAP of cDC 
subpopulations colored by the eight states. (B) Heatmap showing the average expression of the 
top five DEGs per cluster. (C) Bar plot showing the distribution of cDC cells across sample 
types. (D) UMAP of Mono subpopulations colored by the six states. (E) Heatmap showing the 
average expression of the top five DEGs per cluster.  (F) Bar plot showing the distribution of 
Mono across sample types. (G)  UMAP of Mac color-coded by the ontogeny subdivision. (H) 
Dot plot showing the mean expression of the resident and recruited related markers. Dot size 
indicates the fraction of expressing cells, colored based on normalized expression levels. (I) 
UMAP represents the twelve Mac states. (J) Bar plot showing the distribution of Mac across 
sample types. (K) Heatmap showing the average expression of the top five DEGs per cluster. (L) 
and (M) Heatmap showing the correlation between the MDC subpopulations described in the 
present work and those described by Mulder et al. 2021 (25) and Cheng et al. 2021 (24), 
respectively. 
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Figure 3: Macrophages exhibited diverse phenotypes and functional states. Heatmap 
showing the distribution and score signature of (A) M1 and (B) M2 markers across the Mac 
types. (C) Ratio of M1 and M2 scores. (D-I) Violin plot showing the gene signature of five 
hallmarks of cancer: (D) angiogenesis, (E) hypoxia, (F) EMT, (G) ECM, (H) antigen 
presentation, and (I) phagocytosis. (J) Heatmap of immunosuppressive gene signature.  (K) 
Enrichment analysis of signaling pathways using the Reactome database. (L) Heatmap showing 
main metabolism signature for each Mac phenotype. (M) Pseudotime analysis of monocytes, 
macrophages and dendritic cells derived from monocytes using Monocle 3. (N) heatmap 
showing expression variation of the indicated transcripts (only genes with q-value = 0 
and morans_I > 0.25, are depicted. EMT: Epithelial-Mesenchymal Transition; ECM: 
extracellular matrix. 
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Fig. 4: Macrophages and monocytes are associated with the clinical outcome in different 
tumor types. (A) Bar plot showing the distribution of cell types across the TCGA database. (B) 
Bar plot showing the distribution of cell states across the TCGA database.  (C) Cox regression 
univariate and (D) multivariate analysis (p-value log-rank < 0.05). 
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Figure 5: Interstitial Macrophages (RTM_IM) are associated with the clinical outcome in 
ovary tumors. (A) Bar plot showing the predicted proportion of subpopulation cells for ovarian 
cancer from TCGA-OV. (B) Overall Survival (p-value= 0.01) and Progression-Free Interval (p-
value= 0.650 for HIGH and LOW groups of RTM_IM. (C)  Cox regression multivariate analysis 
for TCGA-OV cohort.  (D) Box plots demonstrating the clinical impact of RTM_IM in relation 
to molecular subtype, and tumor event types in ovary samples. (E) Box plots demonstrating the 
clinical impact of Mac_LA in relation to molecular subtype and tumor residual disease in ovary 
samples. (F)  Forest plot representing the survival hazard ratio of relative fractions, divided in 
quartiles, in the Brazilian cohort of HGSOC. First, the markers CD8+, PD-1, TREM-2+ were 
classified in high and low expression and, then, the percentages of each marker evaluated 
intratumoral and peritumoral. (G) IHC representative of TREM2+ CD68+ expression in HGSOC 
cohort. Image obtained by Aperio ImageScope v12.4.6.5003. Scale bar: 100 µm. 
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Figure 6: Monocytes FCGR3A (Mono_FCGR3A) are associated with the clinical outcome 
in breast tumors. (A) Bar plot showing the predicted proportion of subpopulation cells for 
breast cancer from TCGA-BRCA: Luminal A and (B) TCGA-BRCA: Basal. (C) Cox regression 
multivariate analysis for TCGA-BRCA: Luminal A cohort. (D) Cox regression multivariate 
analysis for TCGA-BRCA:Basal cohort. (E)  Overall Survival for HIGH and LOW groups of 
Mono_FCGR3A (p-value= 2x104) for Luminal A and Basal subtypes. (F) Box plots 
demonstrating the clinical impact of Mono_FCGR3A in relation to sample type (metastasis and 
primary situ) and tumor status (tumor free and with tumor) in both breast cancer subtypes Basal 
and Luminal-A. (G) Box plot demonstrating the clinical impact of Mac_LA in relation to stage 
(1 to 4) in both breast cancer subtypes Basal and Luminal A. 
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