Effects of Alzheimer’s Disease Drug Candidates on Disordered Aβ42 Dissected by Comparative Markov State Analysis (CoVAMPnet)

Sérgio M. Marques¹,²,#, Petr Kouba³,#, Anthony Legrand¹,²,#, Jiri Sedlar³, Lucas Disson³, Joan Planas-Iglesias¹,², Zainab Sanusi¹,², Antonin Kunka¹,², Jiri Damborsky¹,², Tomas Pajdla³, Zbynek Prokop¹,², Stanislav Mazurenko¹,²,*, Josef Sivic³,*, David Bednar¹,²,*

¹Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
²International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
³Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslavskych partyzana 1580/3, 160 00 Praha 6, Dejvice, Czech Republic
#These authors contributed equally to this study.
*Corresponding authors: Stanislav Mazurenko (stan.mazurenko@gmail.com), Josef Sivic (josef.sivic@cvut.cz), David Bednar (222755@mail.muni.cz).

ABSTRACT

Alzheimer’s disease (AD) is characterized by the deposition of misfolded tau and amyloid-beta (Aβ). Tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) are phase 3 therapeutics believed to target Aβ oligomers. It is of paramount importance to understand how TMP/SPA modulate the conformations of Aβ. Here, we studied the Aβ42 alone and in the presence of TMP or SPA by adaptive sampling molecular dynamics. Next, to quantify the effects of drug candidates on Aβ42, we developed a novel Comparative Markov State Analysis (CoVAMPnet) approach: ensembles of learned Markov state models were aligned across different systems based on a solution to an optimal transport problem, and the directional importance of inter-residue distances for assignment to the Markov states was assessed by a discriminative analysis of aggregated neural network gradients. TMP/SPA shifted Aβ42 towards more structured conformations by interacting non-specifically with charged residues and destabilizing salt bridges involved in oligomerization. SPA impacted Aβ42 the most, preserving α-helices and suppressing aggregation-prone β-strands. Experimental biophysical analyses showed mild effects of TMP/SPA on Aβ42, and activity enhancement by the endogenous metabolization of TMP into SPA. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on conformational behavior of intrinsically disordered biomolecules.
Keywords
Aβ42 peptide; Alzheimer’s disease; small molecules, Markov state models, adaptive molecular dynamics.

INTRODUCTION

Alzheimer’s disease (AD) is globally the fifth leading cause of death and fourth cause of disability in people aged 75 years and above. With 416 million people worldwide estimated to have some stage of AD, it represents an enormous societal burden1. Amyloid-beta (Aβ) peptides play a major role in the development of AD, although the mechanism behind their toxicity is still debated2,3. A model of toxicity known as the amyloid cascade hypothesis posits that Aβ peptides are first released into the periplasm from the sequentially cleaved amyloid precursor protein (APP), then aggregate into fibrils, and finally trigger inflammation and neuron damage. A competing model for the toxicity of Aβ is the oligomer hypothesis, which states that fibrils are rather harmless since healthy brains also contain Aβ fibrils. Instead, according to this model, Aβ would oligomerize into pore-forming oligomers at the neuronal plasma membrane, ultimately leading to cell death. Among the different Aβ peptides, the 42-residue long (Aβ42) is the most aggregation-prone isoform4,5.

Due to the prevalence and severity of the disease, there is a growing interest in pharmaceuticals capable of preventing the early stages of the Aβ42 oligomerization and stopping the pathogenic amyloid cascade5,4,6. The latest FDA-approved drug against AD is aducanumab (marketed as Aduhelm), an engineered antibody targeting Aβ fibrils. The drug was approved for treatment upon revealing its effectiveness in a subset of patients expressing the apolipoprotein E gene APOE4 (ε4 allele form of APOE), the first genetic risk factor for AD, in ad hoc analysis of its phase 3 clinical trial3,7.

Tramiprosate (TMP), also known as homotaurine or 3-amino-1-propane sulfonic acid, is a naturally occurring aminosulfonate. Even at high concentrations, it is well tolerated in the human brain and is metabolized into 3-sulpropanoic acid (SPA) (Fig. 1A). TMP was reported to prevent the formation of fibrillar forms of Aβ, reduced the Aβ-induced death rate of neuronal cell cultures, and lowered the amyloid plaque deposition in the brain8–10. Clinical trials have shown its ability to slow down the cognitive decline in patients with homozygous expression of the APOE4 isoform, similarly to aducanumab6,11. TMP can act not only on Aβ, but also on other pathways that contribute to cognitive impairment in AD and other neurologic disorders12,13. ALZ-801 is a valine-conjugated prodrug of TMP that is currently in phase 3 of clinical trials in patients with early-stage AD14,15. Preliminary in vitro and in silico studies suggested that both TMP and SPA can lock the Aβ peptides in monomeric
conformations that are less prone to oligomerization, thus inhibiting the first step in the pathological assembly pathway of Aβ16-18. However, these studies do not provide sufficient insights to fully explain the mechanism of action of these molecules on Aβ.

The Aβ peptides are intrinsically disordered, which complicates their study both experimentally and computationally. Intrinsically disordered proteins do not adopt a single well-defined structure, but rather exist as ensembles of conformations with similar energies that are best characterized by statistical probabilities and their population distribution over several properties or descriptors19,20. The disordered nature of Aβ42 thus significantly complicates the analysis of its MD trajectories, namely the definition of Markov states, which is a critical step for understanding the long-timescale behavior of the system. The conventional manual selection of collective variables for finding those states is typically laborious and often results in inadequate Markov state models (MSMs). Recent progress in variational approaches for conformation dynamics has allowed scoring different MSMs, e.g., based on their ability to approximate the slowest modes of the dynamics, thus facilitating the development of automatic frameworks for the identification of Markov states21. One such framework is VAMPnet, a deep neural network that learns a probabilistic assignment of each simulation frame to individual Markov states in an unsupervised manner by maximizing a variational score22. The application of this framework to the analysis of Aβ42 trajectories has already shown great potential in producing robust MSMs for quantification of the Aβ42 kinetics and equilibrium properties23.

Herein we developed a new computational framework to understand how TMP and SPA may affect Aβ and prevent the formation of Aβ oligomers and fibrils. We simulated the monomeric 42-residue Aβ42 peptide (Fig 1A) in its free form and in the presence of TMP or SPA. To attain structural, thermodynamic, and kinetic information on this intrinsically disordered peptide, and reveal the effects of the small molecules on the conformational space and dynamics, we introduced the Comparative Markov State Analysis (CoVAMPnet), which aligns learned Markov states across systems and characterizes them by molecular features based on network gradients. First, we computed an ensemble of soft MSMs for each system by training VAMPnet neural networks23. Then, using our novel alignment method, we aligned these ensembles to identify similar Markov states across the different systems based on a solution to an optimal transport problem. This proved useful to quantify the similarities and differences of Aβ42 conformations in response to the presence or absence of the small molecules. Finally, to elucidate the decisions made by the learned MSMs and understand the relevance of the molecular features for classification into each Markov state, we developed a new approach based on analyzing gradients of the learned neural networks. To our knowledge, this is the first time that such analysis has been used to interpret the MSMs built by unsupervised machine learning methods. Experimental comparison of Aβ42 in its free form and in the presence of TMP or SPA by various methods, namely
circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and fluorometry, has further shown the effects of the small molecules on longer time scales, complementing our computational findings.

MATERIALS AND METHODS

Here we present only a concise description of the used methods, focusing mainly on the novel methodology. A complete and detailed description is provided in Supplementary Materials and Methods.

Molecular dynamics (MD) simulations

System preparation

The structures of tramiprosate (TMP) and 3-sulfopropanoic acid (SPA) were constructed and minimized using Avogadro 2. During the calculation of partial charges, the structures were further optimized by using Gaussian 09 and the antechamber module of AmberTools 16, and then used to calculate force field-compatible parameters. The three-dimensional structural data of the Aβ42 peptide was obtained from the RCSB Protein Data Bank (PDB entry 1Z0Q). It resulted from NMR experiments and contains 30 structures, which were saved separately. The Aβ42 peptide was protonated using PROPKA at physiological pH, and small molecules were embedded (when appropriate), the systems solvated, and their topologies built using High-Throughput Molecular Dynamics (HTMD) in combination with either AMBER ff14SB (A14SB) or CHARMM36m (C36m) force fields, depending on the type of simulation to perform (adaptive sampling or classical MD).

MD simulation protocols

All systems were equilibrated using HTMD. The endpoint of the equilibration cycle was taken as a starting point for subsequent MD simulations, either classic or adaptive sampling ones. The simulations employed the same settings as the last step of the equilibration, and their trajectories were saved every 0.1 ns. HTMD was used to perform adaptive sampling of the Aβ42 conformations. Due to the conformational complexity of Aβ42, three adaptive sampling protocols (namely A, B, and C) were assessed. Each protocol differed from the others in the starting structure set, the adaptive metric, the number of adaptive epochs and replicas, and the total cumulative MD time (Supplementary Table 1). Protocols A and B were only applied to free Aβ42, while protocol C was applied to free Aβ42, Aβ42 + TMP, and Aβ42 + SPA.
Classical MD simulations were also performed using HTMD, where only the structure of the first model of the PDB entry 1Z0Q was used as the starting point. The free Aβ42, Aβ42 + TMP and Aβ42 + SPA systems were prepared and equilibrated as described above. These MDs were performed using only the CHARMM36m force field. Each MD was run in sequential batches of 200 ns each, for a total of 5 μs, and 10 independent replicates were performed for each system.

Analyses of properties in combined MD ensembles

In order to analyze the produced MD simulations their topologies were converted from CHARMM to AMBER using ParmEd when required. Water molecules and ions were filtered out from the resulting MDs, which were then compiled into a simulation list using HTMD. The cpptraj module of AmberTools 16 was used to compute several properties in the combined ensembles: root-mean square deviation (RMSD), radius of gyration (Rg), and linear interaction energy (LIE) between Aβ42 and TMP or SPA. DSSP 3.0 was used to assign secondary structures to every snapshot of the combined trajectories. Mechanics/generalized Born solvent accessible surface area (MM/GBSA) calculations were performed with the MMPBSA.py.MPI module of AmberTools 14, to obtain the free energy of the peptide for every frame of the ensemble, from which intramolecular peptide interactions were derived.

Comparative Markov State Model Analysis (CoVAMPnet)

This section describes our Comparative Markov State Analysis (CoVAMPnet) of adaptive sampling MD simulations of the free Aβ42, Aβ42 + TMP, and Aβ42 + SPA systems. CoVAMPnet builds on the Variational Approach to Markov Processes by VAMPnet neural networks, followed by two new methods: (i) alignment of the learned MSM ensembles across different systems based on a solution to an optimal transport problem, and (ii) characterization of the learned Markov states by the inter-residue distances based on the neural network gradients.

Conventional Markov state models

MD simulations using different adaptive sampling protocols were exploited to study the conformational dynamics of Aβ42. Markov state models (MSMs) were derived by HTMD using the same metric employed in the adaptive sampling: the self-distance of the Cα atoms of the protein, the secondary-structure in the simplified form (3-letter DSSP alphabet), or a combination of those two. To better pinpoint the state composition of Aβ42 conformational dynamics, several MSMs were derived using diverse parameters for dimensionality reduction, lag time, and target number of states. Their quality of the models was assessed by Chapman-Kolmogorov tests.
Learning Markov state models using neural networks

The Variational Approach to Markov Processes (VAMP)21 was used to learn MSMs via unsupervised training of VAMP neural networks (VAMPnets)22 with physical constraints38. VAMPnet learns a nonlinear function that maps the peptide tertiary structure to a vector of Markov state probabilities. The physical constraints ensure that the learned MSM is reversible and that the elements of the matrix representing the governing Koopman operator22 (a linear operator propagating the Markov state probabilities in time) are non-negative. In this work, we used the VAMPnet implementation by Löhr et al.23, including the self-normalizing set-up39.

The VAMPnet architecture consists of two parallel weight-sharing lobes: one for a frame at time t and the other for a frame at time $t + \tau$ in the same trajectory, where τ is a fixed lag time. Each frame was represented on the input as a vector (780 elements) of the upper triangular part of the peptide inter-residue heavy atom distance matrix without the diagonal and the first two subdiagonals (i.e., without the distances to the first and second neighboring residues). The output nodes in each lobe measure the probabilities of the constructed MSM states for the input frame. The network was trained on pairs of MD simulation frames separated by a selected lag time τ. To obtain the probabilities of the learned Markov states, the frames were run through one of the lobes. For each system, an ensemble of 20 models was built. The pairs of frames were divided into 20 random splits (90% training and 10% validation) and for each split, three VAMPnet models were trained with different initialization and the one with the highest VAMP-E score21 was selected for the MSM ensemble. The soft assignment of a frame was defined as the average of its Markov state probabilities across the ensemble, whereas the hard assignment was defined as the state with the highest probability in the soft assignment of the frame. Further details of our VAMPnet setup are described in Supplementary Materials and Methods.

Alignment of learned Markov states for comparative analysis

The order of the Markov states on the output of a trained VAMPnet is not well-defined and may thus vary. To construct a MSM from multiple models or compare MSMs of different systems, a correspondence between Markov states across the models had to be established. In this work, we generalized the approach from Löhr et al.23 for the alignment of Markov states within a single system to obtain an ensemble of aligned Markov states. Then we introduced a new method for the alignment of ensembles of Markov states between different systems in order to compare the systems and further understand the effects of the small molecules on the conformational dynamics of Aβ42.

Aligning Markov states within a single system

\textit{Learning Markov state models using neural networks}

The Variational Approach to Markov Processes (VAMP)21 was used to learn MSMs via unsupervised training of VAMP neural networks (VAMPnets)22 with physical constraints38. VAMPnet learns a nonlinear function that maps the peptide tertiary structure to a vector of Markov state probabilities. The physical constraints ensure that the learned MSM is reversible and that the elements of the matrix representing the governing Koopman operator22 (a linear operator propagating the Markov state probabilities in time) are non-negative. In this work, we used the VAMPnet implementation by Löhr et al.23, including the self-normalizing set-up39.

The VAMPnet architecture consists of two parallel weight-sharing lobes: one for a frame at time t and the other for a frame at time $t + \tau$ in the same trajectory, where τ is a fixed lag time. Each frame was represented on the input as a vector (780 elements) of the upper triangular part of the peptide inter-residue heavy atom distance matrix without the diagonal and the first two subdiagonals (i.e., without the distances to the first and second neighboring residues). The output nodes in each lobe measure the probabilities of the constructed MSM states for the input frame. The network was trained on pairs of MD simulation frames separated by a selected lag time τ. To obtain the probabilities of the learned Markov states, the frames were run through one of the lobes. For each system, an ensemble of 20 models was built. The pairs of frames were divided into 20 random splits (90% training and 10% validation) and for each split, three VAMPnet models were trained with different initialization and the one with the highest VAMP-E score21 was selected for the MSM ensemble. The soft assignment of a frame was defined as the average of its Markov state probabilities across the ensemble, whereas the hard assignment was defined as the state with the highest probability in the soft assignment of the frame. Further details of our VAMPnet setup are described in Supplementary Materials and Methods.

Alignment of learned Markov states for comparative analysis

The order of the Markov states on the output of a trained VAMPnet is not well-defined and may thus vary. To construct a MSM from multiple models or compare MSMs of different systems, a correspondence between Markov states across the models had to be established. In this work, we generalized the approach from Löhr et al.23 for the alignment of Markov states within a single system to obtain an ensemble of aligned Markov states. Then we introduced a new method for the alignment of ensembles of Markov states between different systems in order to compare the systems and further understand the effects of the small molecules on the conformational dynamics of Aβ42.

Aligning Markov states within a single system
The states from the 20 models within an ensemble were aligned by a constrained k-means clustering algorithm using the average inter-residue distance matrices D_{mn}, where n indexes the models in the ensemble and m indexes the Markov states in each model. The cluster centers were initialized by the D_{m0} matrices of a randomly selected model n_0 in the ensemble. The clustering iterated in two steps: 1) for each model n, its Markov states were sequentially assigned to different clusters in the order of the proximity of the D_{mn} matrix to the closest unassigned cluster center and respecting the constraint that two matrices from the same model cannot be assigned to the same cluster; 2) each cluster center was recomputed as the mean of the D_{mn} matrices of the corresponding Markov states. These two steps were iterated until the cluster assignment did not change. The Markov states in each model were then re-numbered according to the final assigned cluster. The method by Löhr et al. is equivalent to performing only one iteration of our method. Our approach is thus less susceptible to incorrect initialization and can lead to a better alignment.

Aligning ensembles of Markov states between different systems

With each system described by an ensemble of N mutually aligned MSMs after the single system state alignment (see above), we proposed a novel method for aligning ensembles of MSMs across different systems. In particular, we (i) characterized each Markov state of the given system by a non-parametric distribution over the ensemble, (ii) defined a distance metric to compare such distributions, and finally, (iii) computed an alignment of the ensembles of Markov states between the two systems by solving an optimal matching problem. Details of these steps are given next. The N instances of the VAMPnet network learned for a given system s output N different feature matrices $\{D_{msn}\}_{n=1}^N$ (average inter-residue matrices, see Supplementary Materials and Methods for a formal definition of the feature matrix) describing each of the M Markov states of the system. Each Markov state m was, therefore, characterized by the distribution $\theta_{ms}^s(\xi)$ of the features over the different VAMPnet instances as:

$$\theta_{ms}^s(\xi) = \frac{1}{N} \sum_{n=1}^N \delta(\xi - D_{msn})$$

where δ is the Dirac delta function defined over the feature space of inter residue distances in which the simulation frames are represented and D_{msn} is the inter-residue distance matrix representing state m of the learned model n for system s. θ_{ms}^s thus represents the state m of system s with a non-parametric distribution given by the set of Dirac functions centered at the feature matrices D_{msn} obtained by the instances of the learned ensemble.

To exploit the entire distribution of the features of each state, the distance between two different states was evaluated by comparing their respective distributions. In particular, we employed the Wasserstein distance of two distributions as a distance measure quantifying the cost of aligning two Markov states from different MSMs as:
$c^{s_1s_2}_{m_l} = d_W(\theta^{s_1}_m, \theta^{s_2}_l)$ \quad (2)

where $c^{s_1s_2}_{m_l}$ is the cost of aligning state m of system s_1 with state l of system s_2 and $d_W(\theta^{s_1}_m, \theta^{s_2}_l)$ is the Wasserstein-1 distance of the two respective distributions defined as:

$$d_W(\theta^{s_1}_m, \theta^{s_2}_l) = \inf_{\gamma \in \Gamma(\theta^{s_1}_m, \theta^{s_2}_l)} \int ||\xi, \xi'|| \gamma(\xi, \xi')$$ \quad (3)

where $\Gamma(\theta^{s_1}_m, \theta^{s_2}_l)$ is the set of joint distributions whose left and right marginals are $\theta^{s_1}_m$ and $\theta^{s_2}_l$ respectively and $||\xi, \xi'||$ is the Euclidean distance of the two feature vectors ξ, ξ' distributed according to the joint distribution $\gamma(\xi, \xi')$. In the case of empirical non-parametric distributions (such as in our case), the problem of Wasserstein-1 distance computation has an equivalent linear program formulation and it was solved using an optimal transport algorithm41.\

Finally, the alignment of MSM ensembles was formulated as an optimization problem. Under the assumption that the MSM representing system s_1 does not have more states than the MSM representing system s_2 the problem was defined as:

$$\hat{\pi}^{s_1s_2} = \arg\min_{\pi^{s_1s_2} \in I^{s_1s_2}} \sum_{m=1}^{M_{s_1}} c^{s_1s_2}_{m\pi(m)}$$ \quad (4)

where M_{s_1} is the number of states of the Markov state model estimated for system s_1, $I^{s_1s_2}$ is the set of all bijections from the Markov states of system s_1 into any M_{s_1}-sized subset of Markov states of system s_2 and the bijection $\hat{\pi}^{s_1s_2}$ is the optimal mapping of states of system s_1 onto the states of the system s_2. This optimization problem, and thus also the alignment of MSM ensembles, was solved using the Hungarian algorithm42.\

Gradient-based characterization of learned Markov states

The differentiability of the VAMPnet model enables interpretation of the Markov states by investigating the feature importance, which is hard to do using classical Markov state models. The goal of this analysis was to understand how important the different parts of the protein structure (here represented by the peptide inter-residue distances) are for the definition of different Markov states. While there exist different methods to investigate the importance of features in neural networks43,44, they are usually applied to single models for simple tasks, such as the classification of individual images. The challenge of adopting those methods for the current study was in calculating the feature importance for an ensemble of MSMS. We proposed a method to identify which features were important for the classification of the simulation frames into the learned Markov states, building on the gradient-based method proposed for image classification44. In our approach, we computed the gradients for each of the models in the MSM ensemble separately and aggregated their results over the ensemble. To this end, the MSMS produced by the models needed to be aligned, which we did by
using our state alignment method discussed earlier (see Aligning Markov states within a single system above). The gradients for individual Markov states were computed as follows:

$$g_m(\xi) = \frac{1}{N} \sum_{n=1}^{N} \nabla_\xi \chi_{nm}(\xi)$$

where g_m is a 780-dimensional vector containing the ensemble-averaged gradient of the output probability of Markov state m computed with respect to the input features ξ; N is the number of models in the ensemble; ∇_ξ is the operator of gradient with respect to the coordinates of the network input features ξ; and χ_{nm} represents the output node corresponding to Markov state m of n^{th} VAMPnet model in the ensemble. Here, the 780-dimensional network input vector was obtained by vectorizing the upper triangular inter-residue distance matrix and removing the diagonal and two subdiagonals. The intuition is that the i^{th} entry of vector g_m expresses the change in the probability of the assignment of the given frame of the simulation to state m induced by an increase in the distance of the i^{th} pair of residues at the input of the VAMPnet network. The above definition computes the gradient value for an individual frame of the system. To aggregate the gradient value over a representative set of frames from the investigated system, we evaluated the gradient vector \hat{g}_m as the average of g_m over 10 000 randomly selected simulation frames ξ. For visualization purposes, we took the 780-dimensional vector of evaluated gradients $\{\hat{g}_m\}_{m=1}^{M}$ and arranged it back into a 42×42 matrix corresponding to the shape of the inter-residue distance matrix. These gradients evaluated and averaged over randomly selected frames should express the importance of particular residues on average for the classification into a specific Markov state without any particular assumptions about the input frame.

Estimation of the free energy landscape

We estimated the free energy landscape of Aβ42 for each of the studied systems, projected on the first 2 time-lagged independent component analysis (tICA) dimensions, by performing Gaussian kernel density estimation on 10% of the simulated frames23.

Experimental validation

Aβ42 in its monomeric form (N-methionine-Aβ42, or N-Met-Aβ42) was produced and purified following an adapted version of the protocol by Cohen et al.45. Spectroscopic properties of N-Met-Aβ42 alone or in the presence of TMP, SPA, and the membrane mimicking hexafluoropropionic acid (HFIP) were measured using circular dichroism (CD), Fourier-transformed infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR). Aggregation kinetics were recorded using thioflavin T (ThT) assays46.
RESULTS

Selection of the computational protocol for the simulation of Aβ42

Here, we aim to query molecular dynamics (MD) simulations about the conformational diversity and dynamics of Aβ42 (the most aggregation-prone and the second-most abundant isoform of Aβ4,5) and the effect of small molecules on such dynamics. Some of the key parameters to consider in any MD simulation are: (i) the starting conformation, (ii) the MD technique and its length, and (iii) the force field. For the starting conformation, we chose a structure of the full-length peptide obtained from liquid state NMR (PDB IDs 1Z0Q47; see Supplementary Note 1, Supplementary Fig. S1). Because of its enhanced ability to sample events occurring in longer time-scales48-50, we applied adaptive sampling. Inspired by previous works23, we used the adaptive metric self-distance and the secondary-structure to better explore the diversity of conformations over time. We also explored different lengths of the individual simulations (50 and 200 ns). Finally, based on literature survey, we explored AMBER ff14SB30 (hereafter termed A14SB), and the CHARMM36m31 (C36m) as the force fields most likely to provide reasonable ensembles to study Aβ4251. We explored different combinations of these parameters in three different adaptive sampling protocols (Supplementary Note 1), and compared the obtained results to the initial structure and experimental data47,52. The best settings for the exploration of Aβ42 conformational dynamics were defined by long MDs, the secondary-structure adaptive metric, and C36m force field (see Supplementary Note 1, Supplementary Table S1, and Supplementary Figs. S2-S5).

Secondary structure content in simulations of free Aβ42 and Aβ42 with ligands

To compare the simulations of Aβ42 alone or in the presence of an excess of TMP and SPA (Fig. 1A, see Supplementary Note 2), we first analyzed the global secondary structures content of the peptide in the three systems (Fig. 1B). In the adaptive simulations of free Aβ42 (protocol C), the peptide showed a larger ratio of coils (77.5%), followed by the α-helices (16.8%) and finally the β-strands (5.7%). In the presence of TMP, the α-helix content of Aβ42 peptide increased by 11.1% to 27.9%, whilst the ratio of β-strands remained unchanged (5.8% vs 5.7%). In the presence of SPA, the differences in the secondary structure were more striking. In this case, the content of α-helices was nearly the same as in the original NMR structure (41.6% vs 42.1%), the ratio of coils was slightly lower (56.1% vs 57.9%), and the β-strands were half of those in free Aβ42 (2.3% vs 5.7%). This unexpected result suggests a strong effect of SPA in preserving the α-helical structures of Aβ42.
We analyzed the secondary structures in more detail, dissecting the different propensities by the sequence residues (Fig. 1C). The results showed that Aβ42 adopted a coiled structure over its entire sequence, with the highest fractions in the N-terminal residues 1-8. Helical structures were most significant for residues 10-20, with α-helical structures near and above 40% and decreasing in further residues. The β-strands were the least frequent element, present at the C-terminal tail of the peptide (residues 30-41) and, to a lesser degree, also around residues 2-8 and 17-20. TMP had little effect on the secondary structure distribution, slightly increasing the frequency of helical structures in the regions that already had propensity for it. However, the inclusion of SPA resulted in a reduction of the β-strand content in residues 2-20 and 25-41 and a significant increase of helical propensity in residues 9-29 and 30-37. Thus, we observed that both studied Aβ modulators (TMP and SPA) could protect the α-helix content of the Aβ42 peptide. The effect was notably stronger with SPA, which also prevented or slowed down the transitions from helices into coils and β-strands.

We further analyzed the different MD ensembles and calculated the radius of gyration (R_g) to assess the compactness of the Aβ42 peptide in the three systems. We found that the free Aβ42 alone had a significantly (with p value < 10^{-4} from the t-test) broader and more skewed distribution of R_g (average $R_g = 14.2 \pm 4.3$ Å) than in the presence of TMP or SPA ($R_g = 13.3 \pm 3.1$ and 11.8 ± 2.1 Å, respectively; Fig. 1D). This indicates that the free Aβ42 had a population of extended conformations that was not found in the presence of TMP or SPA. SPA showed a particularly strong effect on shifting Aβ42 towards more compact conformations, compared to the other two systems. Interestingly, Löhr and co-workers recently reported a different aggregation inhibitor that presented the opposite effect and stabilized the extended, higher-entropy conformations of Aβ42\(^{53}\).

Effects of ligands on the evolution of secondary structure elements over time

To study the evolution of secondary structure elements in the adaptive sampling simulations, we first performed the time-based alignment and concatenation of the MDs (Supplementary Note 3, Supplementary Fig. S6). We computed the evolution of the mean secondary structure content along continuous simulation time on the aligned and concatenated simulations (Fig. 1E). We observed that the different secondary structure ratios evolved quickly in the free Aβ42, decreasing for α-helices and increasing for coils and β-strands. In the presence of TMP, those values changed in the same manner but more slowly, while SPA induced the slowest changes. Classical MDs showed similar trends towards the apparition of coil and strands over time; however, the capacity of the small molecules to preserve helical elements was not as pronounced as in adaptive-sampling MDs (Supplementary Note 4, Supplementary Figs. S7-S9, Supplementary Table S2). We can speculate that performing longer simulation times might result in further decrease in the levels of α-helices and increase of β-strands.
Fig. 1. Structures of Aβ42 peptide and the studied small molecules, and properties of the ensembles from the adaptive simulations for the free Aβ42, Aβ42 + TMP and Aβ42 + SPA. A) Sequence of the Aβ42 peptide and chemical structures of tramiprosate (TMP) and 3-sulfopropanoic acid (SPA) in the dominant protonation states at the physiological pH 7.4. The sequence residues are color-coded as follows: *red* for negatively charged; *blue* for positively charged; *green* for hydrophobic; and *black* for polar neutral residues. B) Total secondary structural propensity (% SS) of Aβ42 during the adaptive MDs, in the original NMR ensemble (PDB 1Z0Q with 30 structures), and from the experimental measurements of free Aβ42 in aqueous solution. C) Secondary structure propensity of Aβ42 by residue, obtained for the global ensembles from the adaptive simulations. The certainty of the secondary structure assignment was obtained by the statistical variance among ten randomized bins of frames, and is represented by the transparency layer. D) Distribution of the radius of gyration (R_g) of the ensembles from the same adaptive simulations. E) Time evolution of the secondary structure of Aβ42 during the time-based aligned adaptive sampling MD simulations. The secondary elements are aggregated across all 42 residues, averaged at each time over all trajectories parallel in time according to the time-based alignment. Only the timespan covering at least 20 parallel trajectories is plotted.

Conformational analysis of ligand effects using Markov state models

To analyze the adaptive sampling simulations and characterize the conformational states of Aβ42, we initially constructed conventional MSMs. We tried different metrics, namely the RMSD of the Cα atoms, the secondary-structure, the self-distance of all Cα atoms, and combinations of those metrics. However,
none of these analyses produced reliable models (see example in Supplementary Figs. S10-S11). Therefore, we decided to use the recently published method for MSM construction using artificial neural networks.

Construction of variational Markov state models

We approached the construction of Markov state models with VAMPnet by testing several lag times (25, 50, 75, and 100 ns) and different numbers of Markov states (2, 3, 4, and 5). According to the implied timescales plots (Supplementary Fig. S12) and the Chapman-Kolmogorov tests (Supplementary Fig. S13), we selected $\tau = 25$ ns as the final lag time. By evaluating the impact of the additional states on the change in the frame classification (Supplementary Fig. S14), together with considering the transition rates for each state, we decided to use the 3-state MSM for all the studied systems. Using the selected parameters, we re-estimated the MSMs for MD simulations generated by protocol C. We first constructed 16 subsets of data by gradual addition of epochs to the training and validation data. From the models, we calculated the exact transition probabilities, mean first-passage times, and transition rates (Supplementary Fig. S15), as well as the respective structural propensities (Fig. 2A and Supplementary Fig. S16). Finally, we verified that additional data did not significantly affect the estimated implied timescales and that the size of our datasets was thus sufficient for VAMPnet training (Supplementary Fig. S17).

Alignment of learned Markov states across systems with and without ligands

To automatically detect similar Markov states in different systems and compare the estimated MSMs across different systems, we developed and applied a novel alignment method. This method aligns Markov states, minimizing the global cost of alignment of MSM ensembles and produces alignment scores for each pair of matched states T_e (see Methods – Alignment of learned Markov states). To distinguish truly aligned states from those without a counterpart in the other system, we considered two states as aligned only if their alignment cost was lower than the threshold $T_e = 6$ (see Supplementary Note 5); the threshold was selected empirically by comparing the visualized structures (Fig. 2A), the secondary structure content, and contact maps (Supplementary Fig. S16) of the states proposed for mutual alignment. This approach allowed us to find two similar states between free Aβ42 and Aβ42 + TMP (states 1 and 2), and one similar state between free Aβ42 and Aβ42 + SPA (state 1; see Supplementary Fig. S18).

Comparison of Markov states across systems with and without ligands

The evolution and kinetics of the constructed MSMs for the studied systems are shown in Fig. 2. The free Aβ42 system (Fig. 2, left) was characterized by a sparsely populated source state (state 1, pink,
10% equilibrium probability), a dominant sink state (state 2, orange, 86% equilibrium probability), and a meta-stable transition state between them that was the least populated of all (state 3, green, 4% equilibrium probability). The kinetic roles (source and sink) were derived from the transition kinetic rates and the mean first-passage times, and from the secondary structure contents of each state. Hence, the source state (1, pink), with the structural content most resembling the starting NMR structure (ca. 58% coil, 40% α-helices and 2% β-strands), converted fast into the sink state (2, orange; $T_M = 2.6 \mu s$), and could be reasonably formed from the transition state (3, green; $T_M = 14.6 \mu s$). The sink state was characterized by disorder, with the highest contents of coils and β-strands and the lowest contents of α-helices. The transition state represented a middle point in terms of secondary structure content, and it converted faster into the source or sink states than it was formed. This kinetic ensemble is in good agreement with the results previously described by Löhr et al. for the monomeric Aβ42, namely in terms of microsecond transitions times between the states, the presence of one dominant state that was mainly disordered, and the inexistence of long-lived folded states.

According to our alignment method, the Aβ42 + TMP system (Fig. 2, center) had counterparts in the free Aβ42, namely the disordered sink state (orange) and the helical-rich source state (pink). The equilibrium population of the sink was slightly reduced (state 2, orange; 75%) and the more helical source was slightly increased (state 1, pink, 12%). A new transition state appeared in this system (lime, 14% equilibrium population), with intermediate secondary structure propensities and a higher α-helical content compared to the transition state in the free Aβ42. Perhaps for this reason, the cost of their alignment was above the selected threshold (Supplementary Fig. S18), and the state was thus considered a newly formed state. This was supported by the visualized structures (Fig. 2A) and the detailed secondary structure and contact maps for the respective states (Supplementary Fig. S16).

Overall, the MSM ensemble for the Aβ42 + TMP system showed higher variability of the equilibrium distribution. Interestingly, the kinetics of this system was rather similar to that of the free Aβ42 but significantly slower, generally with higher transition mean-times. As in the case of the free Aβ42, the formation rates of the disordered sink state 1 were higher than its conversion into the other states.

The simulations of Aβ42 + SPA produced a clearly distinct MSM (Fig. 2, right), with the equilibrium distribution more uniform than in the other two systems. Furthermore, the confidence intervals of the equilibrium probabilities were even wider, and the free energy landscape appeared more homogeneous, implying that the Markov states in Aβ42 + SPA were less clearly defined compared to the other systems. According to our alignment procedure, only the source state of Aβ42 + SPA (state 1, pink, 46% equilibrium probability) found its counterpart in the free Aβ42 system. The secondary structure content of this state was similar to the corresponding one in the free Aβ42 and the starting NMR structure (61% coil, 36% α-helices, and 3% β-strands). It is noteworthy how the addition of SPA
disrupted the kinetic ensemble: the remaining two states differed significantly from those of the free Aβ42, as demonstrated by the high alignment costs (Supplementary Fig. S18) and the secondary structure contents. Strikingly, in contrast with the previous two systems, the unstructured sink state disappeared as the two new unmatched states with high α-helix contents occurred. This was especially the case of state 2 (blue, 23% equilibrium probability), which contained more α-helices (48.7%) and less coils (50.6%) than the initial NMR structure (42.1% and 57.9%, respectively). This state 2 evolved over time into state 3 (purple, 31% equilibrium probability; Fig. 2B), which had the fastest conversion to the source state, and thus could hardly be considered a “sink” state. All three states interconverted between each other rather quickly, with T_M values in the low microsecond range, suggesting a dynamical meta-stable equilibrium around the source state. All these observations are supported by the study of the time-evolution of the states in the different simulations (Supplementary Note 6, Supplementary Fig. S19).

We also calculated the radius of gyration (R_g) of the different Markov states (Supplementary Fig. S20). The free Aβ42 system presented larger dispersion of R_g and peaks at higher values, while for Aβ42 + SPA all the states showed peaks at low R_g values (between 10.6-11.0 Å) with low dispersion. This observation is in agreement with the calculation of R_g in conventional Markov states, suggesting that the systems differed in their degrees of structural order and compactness.
Fig. 2. Analysis of conformational states learned using the variational approach to Markov processes on the adaptive simulations and their evolution in time. A) Properties of the Markov states. For each system we report: (i) the free energy surface (FES) projected on the first two tICA dimensions (gray maps), where darker shades correspond to more negative energy regions; (ii) flux diagrams overlapping the FES and projected on the same tICA space, where each Markov state is represented by a colored circle with the area proportional to the population, and the arrows indicate the mean first-passage times T_M between the states, with the thickness proportional to the transition probability; (iii) equilibrium distribution of the states (bottom-left corner of FES; the bars represent the 95th percentile of values centered around the median from the ensemble of 20 learned models); (iv) superimposition of twenty representative structures from each state, selected based on the highest assignment probability (below FES, enclosed in colored circles); (v) global mean secondary structure content of each state (below the respective structures). B) Distribution of the learned Markov states in time (top) and the number of frames available at each time point (bottom). The adaptive sampling trajectories were aligned in time and concatenated. The state probability at a given time point was computed as the average soft assignment of all available frames at this time point. From left to right, the state assignments evolve from the beginning to the end of the simulation time. All plots are shown
Characterization of learned Markov states via network gradients

To better understand the differences between the Markov states in each MSM, we attempted to interpret the molecular features that were determinant to the assignment of each state. For that, we visualized the ensemble-averaged gradients of the state assignment probabilities obtained from the learned neural network models. Fig. 3 shows that the elements near the diagonal were the most important for the classification into the Markov states. As our representation does not consider the distances of the residues to their first and second neighbors in the primary sequence, the colored pixels along the empty diagonal in each heatmap correspond to the distances of the residues to their third neighbors in the sequence. Since this roughly corresponds to the length of one turn in an \(\alpha\)-helix (ca. 4 residues), the consistently red or blue color of the two subdiagonals closest to the white diagonal to the presence or absence of helices, respectively. This interpretation is also supported by the average secondary structure content per residue and the average contact maps (Supplementary Fig. S16).

For the free A\(\beta42\) system, the peptide residues around positions 10-25 seem to be crucial for the Markov state classification. The results in the free A\(\beta42\) state 1 heatmap imply that if the red colored residues in this region got closer to their 3\(^{rd}\) and 4\(^{th}\) sequence neighbors in a particular snapshot, the probability of classifying that snapshot into state 1 (source state) would increase. This means that state 1 prefers a helical conformation in this region. On the contrary, the “state 2” heatmap shows that the probability of classification into state 2 would increase if the blue-colored residues in this region got farther from their 3\(^{rd}\) and 4\(^{th}\) sequence neighbors, i.e., state 2 (sink state) prefers disorder in this region. The classification into state 3 relies on the same region (residues 10-25) but split into two parts: residues 13-19 (red) and the rest (gray). This implies that state 3 (transition state) prefers a short helix only in residues 13-19.

For the A\(\beta42\) + TMP system, the corresponding heatmaps show that the presence (red) or lack (blue) of a helix at positions 29-36 are important for distinguishing between states 1 and 3, respectively, while state 2 can be discriminated based on the lack of a helix at positions 10-25. For A\(\beta42\) + SPA, the lack (blue) or presence (red) of a helix at positions 3-12 is relevant for discriminating states 1 and 3, respectively. State 2 differs by the presence of two helices at positions 20-27 and 30-35 (red) as well as by long distances between residues in positions 10-17 (blue pattern). The Markov states can be compared in more detail by evaluating the gradients on sets of state-specific frames (Supplementary Fig. S21).
Fig. 3. Gradients of the state assignment probabilities of the learned variational Markov state models. Each 42×42 heatmap shows the ensemble-averaged gradients of the model probabilities for the corresponding system and state with respect to the input inter-residue Cα distances. The color indicates how the probability of the particular state would change for an input frame if the distance between the particular pair of residues increased: blue indicates that the probability of the state assignment would increase if the distance between the Cα atoms increased whereas red indicates that the probability would increase if that distance decreased. The presented visualizations correspond to ensemble-averaged gradients evaluated and aggregated over 10,000 randomly selected simulation frames. Columns: MSMs for the free Aβ42 (left), Aβ42 + TMP (middle), and Aβ42 + SPA (right) systems. Rows: Markov states 1 (top), 2 (middle), and 3 (bottom) of each model.

Molecular interactions

Ligand-peptide interactions

The interactions of TMP and SPA with Aβ42 were assessed by the linear interaction energy (LIE)34, and computed for all the 100 ligand molecules with each peptide residue during the adaptive sampling simulations. The electrostatic component (Δ\textsubscript{bind}\text{elec}) dominated the interactions formed by Aβ42 with both TMP and SPA, overshadowing the van der Waals component (Supplementary Fig. S22). Those interactions were, on average, much stronger with the charged residues (Fig. 4 and Supplementary Fig. S23). This was expected, considering that both TMP and SPA bear two charges at physiological pH, separated by only a short alkyl chain (a positive and a negative charge in TMP, and two negative charges in SPA). While SPA showed both attractive and repulsive interactions (positive and negative Δ\textsubscript{bind}\text{elec}, respectively; Fig. 4), TMP showed mostly favorable interactions (negative Δ\textsubscript{bind}\text{elec}, Supplementary Fig. S23). The absolute mean interaction energies were also higher with SPA (from -

34The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
114 to 71 kcal/mol) than with TMP (from -50 to 0 kcal/mol). Moreover, the interactions were highly variable due to the rapid exchange of the TMP and SPA molecules, which formed unspecific short-lived interactions with Aβ42. This explains the large populations of snapshots with lower range of interaction energies and smaller populations of snapshots with strong interactions with the charged residues.

Fig. 4. Interactions of SPA with Aβ42 studied by molecular dynamics. A) Violin plot of the binding energy of SPA with each residue of Aβ42. The electrostatic component (ΔG_{bind elec}) was calculated for all the 100 molecules in every snapshot of the adaptive simulations of Aβ42 + SPA. The plot shows the distribution of the energy values; the black dots show the mean values; the y-axis uses a quasi-logarithmic scale based on the inverse hyperbolic sine to highlight the higher absolute values. The residue labels are colored by charge: black for neutral, blue for positive, and red for negative. The chemical structure of SPA is shown in the upper-right corner. B) Structure of Aβ42 with the main interacting residues. Aβ42 is shown in putty cartoon and the main interacting residues are represented by sticks. The colors reflect the mean ΔG_{bind elec} (in kcal/mol) and range from the most positive (blue) to the most negative (red) values obtained for SPA.

Intramolecular interactions of Aβ42

The interactions within the Aβ42 peptide were calculated using the molecular mechanics/generalized Born solvent accessible surface area (MM/GBSA) method. Interestingly, the electrostatic energy...
prevailed over the van der Waals, but the polar solvation energy outweighed all the other contributions to the internal free energy of Aβ42 (Supplementary Table S3 and Supplementary Note 7). The peptide was more stable (lower mean total free energy) in the presence of TMP or SPA than alone in solution. This stabilization was mainly due to the solvation energy, which indicates a higher exposure of polar residues to the solvent than in free Aβ42. This effect is concomitant with an increase of the internal hydrophobic contacts in the presence of TMP or SPA, which is consistent with an increase of the compactness of the peptide, according to the R_g values reported above (Fig. 1D). Intramolecular salt bridges E22-K28 and D23-K28 were reported to be important for the conformational transition, oligomerization, and toxicity of Aβ42. Analysis of the three ensembles showed that these salt bridges occurred considerably less often in the presence of TMP than in the free Aβ42, and even less with SPA (Supplementary Fig. S24). This suggests a lower propensity of Aβ42 to form oligomers in the presence of those small molecules.

Experimental validation

To validate our computational findings described above, we experimentally characterized the conformations of N-methionine-Aβ42 (N-Met-Aβ42) alone and in the presence of TMP and SPA. The presence of N-terminal methionine was necessary for the Aβ42 recombinant expression and does not influence its aggregation behavior. This is demonstrated by the routine use of N-Met-Aβ42 in aggregation studies. Circular dichroism (CD) of N-Met-Aβ42 in aqueous buffer revealed that the peptide was mainly disordered (68% of coils, 29% of β-strands and 3% of α-helices; Fig. 5A and Supplementary Fig. S25A). To replicate the NMR structure obtained in 20% (v/v) of hexafluoropropanol (HFIP), used herein as the starting conformation for the computational analysis, we titrated the N-Met-Aβ42 with increasing concentrations of HFIP. At 20% HFIP, the secondary structure content of N-Met-Aβ42 was heavily changed in favor of the α-helices, in agreement with the literature (Supplementary Fig. S26). We repeated the titrations in the presence of a 1000-fold excess of TMP or SPA. In all cases, no major changes in the CD spectra were induced by the small molecules during the titrations (Supplementary Figs. S25A and S26). N-Met-Aβ42 remained mostly disordered at 0% HFIP and had almost similar helical and strand content at 20% HFIP, independently of the presence of TMP or SPA. This is not in agreement with the computational results, which predicted a significant increase of the helical content of Aβ42 with the small molecules, especially with SPA.
Fig. 5. Experimental validation of computational data. A) Circular dichroism spectra of Aβ42. 37 μM N-Met-Aβ42. N-Met-Aβ42 (37 μM) was studied in the absence (black) or presence of a 1000-fold excess of TMP (green), SPA (blue) or 20% HFIP (dashed curves). The curves for SPA were trimmed below 205 nm to remove the signal from SPA. B) FTIR spectra of Aβ42. N-Met-Aβ42 (86 μM) in the absence (black) or presence of a 1000-fold excess of TMP (green) or SPA (blue). The bars represent the standard deviations from successive acquisitions. The second derivatives are drawn as dashed curves. Offset was shifted to improve readability. C) NMR analysis of Aβ42. 1H-15N HMQC NMR spectra of 15N-labeled N-Met-Aβ42 were determined alone (69 μM, black) and in the presence of a 1000-fold excess of TMP (green, 58 μM) or SPA (blue, 55 μM). Assignment is given for free N-Met-Aβ42 (black); the assignment of His6 was ambiguous, thus no CSP was calculated for this residue. D) NMR chemical shift perturbation (CSP) of Aβ42. N-Met-Aβ42 in the presence of a 1000-fold excess of TMP (green) or SPA (blue) with respect to the free N-Met-Aβ42. The red dashed line represents the threshold for significance, taken as the standard deviation of all CSPs. E) Summary of the effects of small molecules on Aβ42 conformations studied by three different biophysical techniques.

To determine whether the molecules induced subtle changes in secondary structure that are below the resolution limit of CD spectroscopy, we analyzed the N-Met-Aβ42 in buffer and in the presence of
the molecules using Fourier-transformed infrared spectroscopy (FTIR). Based on the secondary structure deconvolution of the amide I bands\(^{58}\), the FTIR spectra of free N-Met-\(\alpha\beta42\) and N-Met-\(\alpha\beta42 + \text{SPA}\) showed fingerprints from both helical (peak at around 1660 cm\(^{-1}\)) and strand contributions (peak below 1650 cm\(^{-1}\)) (Fig. 5B and Supplementary Fig. S25B and S27). At 1000-fold excess of TMP, a shift of the peak wavenumbers was observed (Fig. 5B). The spectrum for N-Met-\(\alpha\beta42 + \text{TMP}\) had one peak centered around 1650 cm\(^{-1}\) instead of 1660 cm\(^{-1}\), which might suggest more random conformation (coils) of N-Met-\(\alpha\beta42\) in the presence of TMP compared to the free peptide. Nonetheless, the large overlap of the two peaks casts doubts on such interpretations. Further remarks on differences in secondary structure propensities are discussed in Supplementary Note 8.

To gain deeper insights into conformational changes of N-Met-\(\alpha\beta42\) the upon addition of the small molecules, we employed nuclear magnetic resonance (NMR). The \(^1\text{H}-^{15}\text{N}\) HMQC spectral fingerprint of N-Met-\(\alpha\beta42\) revealed a narrow distribution in \(\delta(\text{H})\) of the backbone amides (from 7.5 ppm to 8.5 ppm), a characteristic of intrinsically disordered peptides (Fig. 5C and Supplementary Fig. S28). Using \(^1\text{H}-^{1}\text{H}\) NOESY and \(^1\text{H}-^{1}\text{H}-^{15}\text{N}\) NOESY-HMQC spectra, we assigned the spectral fingerprint and computed the secondary structure propensities using chemical shift indexing\(^{59,60}\). This method is based on the published NMR statistics, where each residue is expected to have a chemical shift within a certain region of the spectrum that is a function of its local secondary structure. The resulting global secondary structure propensity was much higher in \(\alpha\)-helices than what was previously obtained by CD (29.6% vs 3%, respectively; Supplementary Figs. S25A and S25C). The secondary structure probabilities of the different residues showed the highest \(\beta\)-strand propensity for the C-terminal tail, and the highest helical propensity of residues 15-25 (Supplementary Fig. S25D). This is in agreement with the results from our simulations for the free \(\alpha\beta42\) (Fig. 1C). We titrated N-Met-\(\alpha\beta42\) with increasing concentrations of TMP or SPA, up to a 1000-fold excess (Fig. 5C and Supplementary Fig. S28) and measured the chemical shift perturbation (CSP) in the \(^1\text{H}-^{15}\text{N}\) HMQC spectral fingerprint (Fig. 5D). The threshold for the CSP significance was taken as the standard deviation of all chemical shifts\(^{61}\). Only small CSPs were observed when adding SPA, which were not sufficient to indicate a shift in the global secondary structure (Supplementary Fig. S25C). This is not unprecedented, as others have also reported minimal changes in the NMR spectrum of \(\alpha\beta42\) upon the binding of small molecules\(^{62}\). CSP was observed across most of the peptide sequence in the presence of SPA, namely in the regions 2-7, 11-17, 22-27 and 32-37. Strikingly, these regions correspond to peptide ranges that emerged in the gradient-based analysis of learned Markov states (Fig. 3). In the presence of SPA, close distances (structural order) between residues 2-7 are characteristic of the transition between states 1 (pink in Fig. 2A) to 3 (purple in Fig. 2A). Similarly, close distances in the residues 22-27 and 32-37 are characteristic hallmarks of state 2 (blue), which is also determined by long distances (disorder) in the
range 11-17. It is noteworthy that states 2 and 3 in this system are distinctively different from the other two systems. Thus, gradient-based analysis of learned Markov states was able to pinpoint similar conformational events as the ones captured by NMR. Moreover, region 22-27 is neighboring the salt bridges between 22-28 and 23-28, which are relevant to the conformational transition, oligomerization, and toxicity of Aβ4254,55, as pinpointed in the *Intramolecular interactions of Aβ42* section.

Finally, we assessed the fibril formation of N-Met-Aβ42 using the well-known thioflavin T (ThT) fluorometric assay with and without the small molecules. Unfortunately, neither TMP nor SPA seemed to significantly reduce the N-Met-Aβ42 fibril formation rates as observed by other groups63. This is in contrast with HFIP, which is a known solubilizing agent of Aβ42 and a crude membrane mimetic47 ([Supplementary Fig. S29]). In fact, a change in CD spectrum was observed in the presence of HFIP and either TMP or SPA ([Figs. 5A,E, Supplementary Fig. S26]).

DISCUSSION

Alzheimer’s disease drug candidate TMP and its metabolite SPA are thought to modify the conformational dynamics of the Aβ42 peptide and decrease its propensity to form toxic oligomers16,17. The conformational diversity of Aβ42 has been previously explored by exploiting the variational approach to Markov processes in VAMPnets22 to construct Markov state models to better capture the slowest processes in MD simulations23,53. However, the exact mechanism of action of TMP and SPA on the Aβ42 was still unclear. To fill this gap, we first applied the variational approach to Markov processes on adaptive sampling MD simulations using VAMPnets23, and then ran our newly developed Comparative Markov State Analysis (CoVAMPnet) pipeline to align the learned conformational states across ensembles of different MSMs and, based on the learned VAMPnet gradients, to characterize these states by the inter-residue distances. The CoVAMPnet alignment method proved a powerful approach to: (i) quantitatively compare the different conformational states of Aβ42, (ii) identify which states were preserved across different systems, and (iii) which states were unique. The CoVAMPnet gradient-based characterization of the learned ensembles of Markov states utilizes the end-to-end differentiability of the neural network-based MSMs, i.e., a property that the conventional methods for MSM estimation lack. The analysis of gradients allowed us to reason, at the molecular level, which residues are responsible for the assignment to a specific Markov state obtained from the variational Markov state analysis. We expect these newly developed methods, i.e., (i) the alignment of ensembles of variational Markov states across different systems, and (ii) the gradient-based characterization of learned Markov states, to become valuable for studying the effects of small molecules on the conformational dynamics of intrinsically disordered proteins and peptides64,65.

...
The newly developed analyses were applied to MD simulations. It has previously been reported that the sampling protocol (namely the force field, the length of the simulations, the adaptive metrics, and the simulation method) can highly influence the global results. This is largely due to the intrinsically disordered nature of the Aβ42 peptide, which has a rather shallow energy landscape with many energy minima separated by small energy barriers. For this reason, the conformational sampling of Aβ42 remains a challenge. Starting from a helix-rich Aβ42 structure, biased towards the conformation in the membrane environment (PDB ID 1Z0Q), we identified the most suitable adaptive settings to simulate Aβ42 and achieve secondary structure contents expected in aqueous phase. After approximately 64 µs of adaptive MDs, the free Aβ42 diverged substantially from the initial structure, increasing the total amount of random coils and β-strands while decreasing the ratio of α-helices, becoming closer to experimental values and previous reports. We identified two regions of Aβ42 that were more prone to form β-strands (mainly residues 2-8 and 30-41). The MSMs learned from the variational Markov state analysis revealed that the most populated state of Aβ42 is highly disordered and contains some β-strands. This state is in equilibrium with two other states with higher contents of α-helices, but still bearing mainly coils. These results are in good agreement with recent reports by Löhr et al., obtained from much longer simulation times (315 µs).

The presence of TMP and SPA shifted Aβ42 towards more structured conformations (less coils and higher content of α-helices) and reduced the propensity of regions 2-8 and 30-41 to form β-strands. This behavior is similar to what has previously been reported for some aggregation inhibitors and is in contrast with some others. The variational Markov state analysis showed that TMP and SPA induced a change in the equilibrium population and interconversion rates of the Aβ42 conformational states. SPA exerted a much stronger effect, stabilizing new conformational states that were richer in α-helices than in the other systems. Since β-strand structures lead to the formation of β-sheets, the precursors that prompt the oligomerization and fibrillation of Aβ, these results suggest the potential of TMP and SPA to inhibit or delay both processes. Due to their charged terminal moieties, both TMP and SPA formed mainly electrostatic interactions with charged residues of Aβ42. These interactions were non-specific and short-lived. TMP and SPA also induced Aβ42 to be more compact. Moreover, some of the intramolecular salt bridges considered to promote aggregation and neurotoxicity of Aβ42 were disrupted by the presence of those small molecules.

The CoVAMPnet algorithm developed for identification of structural features in the learned variational Markov state models based on network gradients proved useful. We were able to identify the peptide regions with preferential order or disorder in the different states and pinpoint major differences across the different systems. Remarkably, this analysis showed good agreement with the CSPs in the NMR spectra, correctly predicting the peptide regions most affected by the presence of SPA.
computational findings were in agreement with previous studies involving Aβ, TMP, and SPA, namely: (i) the unstructured nature of the peptide, (ii) shift of the Aβ42 conformations by those ligands towards more compact structures, (iii) reduction of the β-strand propensity, and (iv) non-specific interactions with charged residues. Reports have shown that both small molecules can interact with the soluble Aβ40 or Aβ42, change their dominant conformation, inhibit the formation of oligomers and fibrils, decrease the Aβ-induced neuronal cell death, and have protective effects in vivo.

We applied several experimental biophysical techniques to validate the computational results described above. Although the experimental outcomes showed only mild influence of both TMP and SPA on N-Met-Aβ42, several relevant effects were observed. FTIR revealed slight changes in secondary structure upon addition of TMP, suggesting higher coil conformation propensity for the peptide. On the other hand, NMR showed a stronger impact of SPA on the 1H-15N NMR spectral fingerprint of N-Met-Aβ42, indicating either direct ligand-peptide interactions, subtle changes in secondary structure, or both. Strikingly, these perturbations were observed in the same peptide regions highlighted by our network gradient analysis. TMP did not produce significant CSPs. Altogether, these results suggest a stronger effect of SPA on Aβ42 than TMP. Yet, the fibril formation kinetics of N-Met-Aβ42 seemed unaffected by TMP or SPA. In presence of HFIP, acting both as anti-aggregation compound and membrane mimetic, TMP and SPA also promoted significant changes in CD spectra, hinting at a possible effect on the structure of N-Met-Aβ42 in a membrane environment.

The experimental results corroborated several computational findings: (i) the intrinsically disordered Aβ42 interacts with TMP or SPA molecules through many weak interactions, (ii) these interactions induce conformational changes on the peptide, (iii) SPA has stronger effects on Aβ42 than TMP, and (iv) the regions affected could be predicted by the gradient analysis of the learned Markov state probabilities. On the other hand, not all the predictions from the computer modeling were confirmed experimentally: (i) Aβ42 showed higher β-strand content compared to computational results, and (ii) TMP and SPA did not change the global secondary structure propensities of Aβ42 and did not prevent fibril formation. The differences in the time scales between the simulations and experiments and the peptide concentrations may have contributed to this discrepancy. Moreover, the presence of membrane mimetic HFIP modulated the impact of TMP and SPA on N-Met-Aβ42, which may deserve further investigations. An extended discussion of this phenomenon is provided in Supplementary Note 9. The effects of TMP and SPA on other proteins participating in the amyloid cascade, such as apolipoprotein E, should be considered and evaluated in future studies.
In summary, in this work we introduced the CoVAMPnet approach for comparison and interpretation of learned MSMs across different systems: (i) a new method for alignment of Markov state ensembles, and (ii) a new method for characterization of learned Markov states based on network gradients. The CoVAMPnet approach can be applied to study and compare any related molecular systems and extract valuable information. It can be especially useful to study the effects of small molecules on intrinsically disordered peptides and proteins, whose quantitative analysis can be extremely difficult. Our computational results suggested that TMP and particularly SPA can stabilize structured helical conformations of Aβ42, preventing its oligomerization. In vitro validation confirmed the stronger impact of SPA on Aβ42 and the peptide regions affected by this molecule. However, the global secondary structure was not significantly modified, neither was the Aβ42 aggregation propensity under used experimental conditions. This suggests the existence of alternative mechanisms contributing to the in vivo mode of action of TMP and SPA in AD, rather than just the conformational shift of Aβ42.

ACKNOWLEDGEMENTS

This work was supported by the Czech Ministry of Education (grants ESFRI RECETOX RI LM2018121, ESFRI ELIXIR CZ LM2018131, TEAMING CZ CZ.02.1.01/0.0/0.0/17_043/0009632, NPO Neuro LX22NPOS107), the European Regional Development Fund under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15 003/0000468), and the European Union (SinFonia 814418 and TEAMING 857560). The computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program Projects of Large Research, Development and Innovations Infrastructures. Petr Kouba is a holder of the Brno Ph.D. Talent scholarship funded by the Brno City Municipality and the JCMM.

REFERENCES

68. Haass, C., Kaether, C., Thinakaran, G. & Sisodia, S. Trafficking and Proteolytic Processing of APP.

69. Zhou, M., Wen, H., Lei, H. & Zhang, T. Molecular dynamics study of conformation transition from

70. Shuaib, S. & Goyal, B. Scrutiny of the mechanism of small molecule inhibitor preventing
 conformational transition of amyloid-β42 monomer: insights from molecular dynamics

71. Liu, F., Ma, Z., Sang, J. & Lu, F. Edaravone inhibits the conformational transition of amyloid-β42:
 insights from molecular dynamics simulations. *Journal of Biomolecular Structure and Dynamics*
 38, 2377–2388 (2020).

72. Narang, S. S., Goyal, D. & Goyal, B. Inhibition of Alzheimer’s amyloid-β42 peptide aggregation by
 a bi-functional bis-tryptoline triazole: key insights from molecular dynamics simulations. *Journal

73. Hey, J. A. *et al.* Discovery and Identification of an Endogenous Metabolite of Tramiprosate and Its
 Prodrug ALZ-801 that Inhibits Beta Amyloid Oligomer Formation in the Human Brain. *CNS Drugs*

74. Martens, Y. A. *et al.* ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and

75. Chai, A. B., Lam, H. H. J., Kockx, M. & Gelissen, I. C. Apolipoprotein E isoform-dependent effects
 on the processing of Alzheimer’s amyloid-β. *Biochimica et Biophysica Acta (BBA) - Molecular and

76. Nemergut, M. *et al.* Domino-like Effect of C112R Mutation on APOE4 Aggregation and Its
 Suppression by Alzheimer’s Disease Drug Candidate. 2022.10.09.511473 Preprint at