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Abstract 

Perception is shaped by past experience, both cumulative and contextual. Serial 

dependence reflects a contextual attractive bias to perceive or report the world as more stable 

than it truly is. As serial dependence has often been examined in continuous report or change 

detection tasks, it unclear whether attraction is towards the identity of the previous stimulus 

feature, or rather to the response made to indicate the perceived stimulus value on the previous 

trial. The physical and reported identities can be highly correlated depending on properties of 

the stimulus and task design. However, they are distinct values and dissociating them is 

important because it can reveal information about the role of sensory and non-sensory 

contributions to attractive biases. These alternative possibilities can be challenging to 

disentangle because 1) stimulus values and responses are typically strongly correlated and 2) 

measuring response biases using standard techniques can be confounded by context-

independent biases such as cardinal bias for orientation (i.e., higher precision, but repelled, 

responses from vertical and horizontal orientations). Here we explore the issues and confounds 

related to measuring response biases using simulations. Under a range of conditions, we find 

that response-induced biases can be reliably distinguished from stimulus-induced biases and 

from confounds introduced by context-independent biases. We then applied these approaches 

to a delayed report dataset (N=18) and found evidence for response over a stimulus driven 

history bias. This work demonstrates that stimulus and response driven history biases can be 

reliably dissociated and provides code to implement these analysis procedures.  
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Introduction 

 Perceptual reports can be shaped by past stimuli and actions - the visual system exploits 

this information to support efficient information processing. To this end, the visual system 

expends less energy processing expected stimuli and can rely on priors to facilitate processing 

of new sensory information (Mumford 1994; Oliver 1952; Olshausen and Field 1996). However, 

even though these adaptive mechanisms support more efficient processing on average, they 

also lead to a collection of perceptual biases.  

For example, over developmental or evolutionary time scales perceptual processing has 

adapted to represent frequently encountered stimulus features such as vertical and horizontal 

orientations with greater precision than off-cardinal oblique orientations (the oblique effect).  

While this resource allocation supports more efficient processing in early visual cortex, it also 

gives rise to a phenomenon of cardinal bias where perceptual reports are repelled from vertical 

and horizontal orientations (Girshick, Landy, and Simoncelli 2011; Wei and Stocker 2015). 

Importantly, cardinal bias, as well as the oblique effect, are thought to be based on long-term 

exposure to natural image statistics and are highly stable across time (Henderson and Serences 

2021). Hence, we use the term context-independent biases to refer to this and related 

phenomena. 

In addition to these context-independent biases, dynamic perceptual biases can also 

emerge based on exposure to recent stimulus features. For instance, viewing a stable image 

feature for an extended period can lead to a suppressed neural response to that feature 

(Dragoi, Sharma, and Sur 2000; Kohn and Movshon 2004; Patterson, Wissig, and Kohn 2013). 

Given that stimuli are generally stable across time, these adaptation effects are also thought to 

contribute to efficient coding as fewer neural resources (i.e., spikes) are dedicated to processing 

expected stimulus features (Barlow 1961; Benucci, Saleem, and Carandini 2013; Felsen, 

Touryan, and Dan 2005). However, attenuated responses in neurons tuned to the viewed 

stimulus can bias neural population response profiles away from the adapting stimulus. This 

neural repulsion is the likely source of perceptual repulsion effects seen in well-known 

phenomena such as the waterfall illusion or the tilt after-effect (Anstis, Verstraten, and Mather 

1998; He and MacLeod 2001). 

Interestingly, and in contrast to typical adaptation-induced repulsive biases, the 

repetition of similar stimuli can sometimes lead to an attractive or assimilative bias known as 

hysteresis or serial dependence (Chopin and Mamassian 2012; Cicchini, Anobile, and Burr 

2014; Corbett, Fischer, and Whitney 2011; Fischer and Whitney 2014). Typically, attractive 

serial dependence emerges with briefly presented or near-threshold stimuli that are hard to 

perceive, as opposed to longer exposure to high contrast stimuli that usually leads to adaptation 

and perceptual repulsion (Chopin and Mamassian 2012; Cicchini, Mikellidou, and Burr 2017; 

Fritsche, Mostert, and de Lange 2017; Maus et al. 2013). These attractive biases can be 

explained by invoking a Bayesian prior for stimulus stability over short time scales (van Bergen 

and Jehee 2019; Cicchini and Burr 2018; Fritsche, Spaak, and de Lange 2020; Pascucci et al. 

2019). Given this prior for environmental stability, the precision of near-threshold stimuli can be 

improved by biasing reports towards recently viewed features (Cicchini and Burr 2018; Fritsche 

et al. 2020; Sheehan and Serences 2022). However, even though attractive biases are 

observed across a host of stimulus/task domains, their ultimate source is still debated. 
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Here we address a set of key unanswered questions related to efficient information 

processing in the human visual system. First, do attractive serial dependence effects depend on 

the physical identity of recently seen features, or on the responses made to report the identity of 

recently seen stimuli? Second, how do attractive serial dependence effects interact with 

adaptation and context-independent factors like cardinal bias? Parceling out sensory and motor 

contributions from these other perceptual biases is critical to better understanding the source of 

the effect because these factors all jointly contribute to measured perceptual reports. 

Disentangling sensory from motor/decisional contributions to attractive serial biases is 

particularly challenging because most studies of serial dependence have employed delayed 

recall paradigms where responses are highly correlated with the presented stimulus feature. For 

example, in a typical task a participant is instructed to report the orientation of a remembered 

orientation using a mouse pointer. Their response will ultimately be driven by the integration of 

sensory evidence on that trial, adaptation induced by previous stimuli, context-independent 

biases (e.g., cardinal bias), and random errors accumulating from other unmeasured sources. 

These will cause the response to deviate from the stimulus orientation but only by a few 

degrees such that even for a low performing participant, stimulus identity and the associated 

responses will still be highly correlated (rcirc=0.63, σ=21.4° for an example continuous report 

dataset which we analyze in more detail below). 

 Most studies of serial dependance have focused only on the influence of the previous 

stimulus and claim that it is the processing or perception of the physical stimulus that induces 

attractive biases (Cicchini and Burr 2018; Cicchini et al. 2017; Fischer and Whitney 2014; 

Manassi et al. 2018). However, the emerging consensus is not so straightforward. One recent 

study found evidence that responses are simultaneously repelled (due to adaptation) and 

attracted (due to the application of Bayesian priors) to past stimuli but at different timescales, 

leading to both attractive and repulsive effects (Fritsche et al. 2020). In contrast, other work 

suggests that it is the previous decision, not the stimulus per se, that leads to attractive serial 

biases (Pascucci et al. 2019).This finding is consistent with subsequent studies that have 

simultaneously modeled the influence of both the previous response and the previous stimulus 

and found that reports are simultaneously attracted to previous responses and repelled from 

previous stimuli, providing an extra layer of distinction between the attractive and repulsive 

effects described by Fritsche and colleges (2020) (Moon and Kwon 2022; Sadil, Cowell, and 

Huber 2021). 

Trying to ascribe biases to past responses is further complicated by context-independent 

biases (e.g., cardinal bias) (Fritsche 2016). When sorting trials as a function of the previous 

response (respN-1), the sorting variable (∆R = respN-1 - stimN) is dependent on the physical 

stimulus feature (stimN) in the presence of cardinal bias. This is in contrast to analyzing stimulus 

biases where (for an independent stimulus sequence) the sorting variable is independent of the 

physical stimulus identity ∆s=(stimN-1 - stimN)⊥stimN. As a result, any context-independent bias, 

such as repulsion from the cardinal axes, can lead to a dependence of respN on ∆R. This 

dependance may be why past studies have shown a spurious attraction to future or shuffled trial 

sequences – an observation that lacks a reasonable causal explanation (Pascucci et al. 2019). 

Thus, observing a spurious response bias to future or shuffled sequences raises the concern 

that any measured response bias (e.g., even towards the previous trial, ∆RN-1) could also be 

influenced by the same artifact. In Pascucci et al. (2019) and other studies that followed, this 
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issue was addressed by subtracting the average context-independent bias from either 

participant responses or response errors. This method of correction is reasonable, but may 

actually be insufficient given other context-independent anisotropies (e.g., the oblique effect) as 

noted by others (Fritsche 2016). Thus, to reconcile these seemingly paradoxical findings, an 

analytic framework is needed to successfully disentangle the relative contribution of perceptual, 

motor, adaptation, and context-independent factors. 

 To address these concerns, we created a model observer exhibiting either stimulus or 

response driven biases from the previous trial. For parsimony, we will only explore orientation 

stimuli that feature cardinal biases along with the oblique effect in this study, but our approach 

should generalize to other stimulus types (e.g., spatial location, numerosity, pitch). We found 

that some techniques can reliably distinguish between stimulus and response biases across a 

range of conditions, but that care needs to be taken to correct for context-independent biases. 

We additionally apply these techniques to an orientation working memory dataset and 

demonstrate that the history biases observed are primarily attributable to past responses, not to 

the physical stimulus features. All data and code to implement and expand on these 

simulations, including power analyses and our analyses of an empirical dataset are available at: 

https://github.com/TimCSheehan/historyResponseModeling. 

Methods 

Generative Model 

 To better understand how different sources of bias will ultimately shape behavioral 

responses, we built a model designed to mimic response properties of human observers. First, 

we generated an independent and identically distributed (IID) stimulus sequence that uniformly 

sampled a circular 0-180° feature space (e.g. orientation space). When the sequence is 

encoded, Von Mises distributed perceptual variability is introduced such that the probability of 

perceiving a stimulus is governed by the following distribution: 
 

 
𝑝𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑚|𝜇, 𝑘)  =

𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(𝑚 − 𝜇))

2𝜋𝐼0(𝑘)
  [1] 

 

where k and μ are the precision and center of the von Mises distribution respectively, and m is 

the encoded orientation. I0(k) is the Bessel function of the first kind of order 0. We utilize two 

types of encoding processes. The “biased encoder” features both the oblique effect, such that 

precision is higher around vertical and horizontal stimuli 

 

 𝜅𝑜𝑏𝑙𝑖𝑞𝑢𝑒  = 𝜅𝑏𝑎𝑠𝑒(1 +𝑐𝑜𝑠2(2𝜃)) [2] 

 

where θ is the stimulus orientation spanning [0, π] and cardinal bias such that responses are 

biased away from the cardinal orientations 

 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙  = 𝜃 + 𝐴 ⋅ 𝑠𝑖𝑛(4𝜃) 
 

[3] 
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where A=10 is the amplitude of the bias (see Figure 1, Cardinal Bias for a depiction of both 

functions). Note that both 𝜅𝑜𝑏𝑙𝑖𝑞𝑢𝑒 and 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙 have two peaks/cycle as the cosine function is 

squared for the oblique effect.  The second encoding model, termed the “uniform encoder”, has 

constant precision across feature space (κuniform=1.5⋅κbase, equalizing average precision) and is 

centered on the true stimulus value (𝜇 = θ). 

On each trial, a random draw from the probability distribution pencoding is used to generate 

a point stimulus estimate mn which is then used as μ in either the biased or the uniform 

encoding model. This μ parameter, along with the concentration parameter k of the von Mises 

distribution, generates a probability distribution function (PDF) that defines the stimulus 

likelihood function1. This likelihood is then multiplied by a Bayesian prior centered on either the 

previous stimulus (“stimulus bias”) or the previous response (“response bias”, Figure 1, 

Bayesian Inference). This prior is based on measurements of natural videos and is a mixture of 

a von Mises and a uniform distribution to account for both stable random changes across time 

(van Bergen and Jehee 2019; Felsen et al. 2005). The relative influence of stable and random 

changes is controlled by the parameter pstable such that 

 

 
𝑝𝑝𝑟𝑖𝑜𝑟(𝑚|𝜇, 𝑘, 𝑝𝑠𝑡𝑎𝑏𝑙𝑒)  = 𝑝𝑠𝑡𝑎𝑏𝑙𝑒

𝑒𝑥𝑝(𝑘 𝑐𝑜𝑠(𝑚 − 𝜇))

2𝜋𝐼0(𝑘)
 +  (1 − 𝑝𝑠𝑡𝑎𝑏𝑙𝑒)

1

2𝜋
 [4] 

 

where 𝜇 is the stimulus or response on the previous trial and κ is constant (building on previous 

findings suggesting uncertainty on the previous trial does not appear to shape serial 

dependence in a Bayesian manner (Ceylan, Herzog, and Pascucci 2021; Fritsche 2016; 

Gallagher and Benton 2022). The maximum value of the resulting posterior 

 

 𝑟𝑒𝑠𝑝𝑛 =   𝑎𝑟𝑔𝑚𝑎𝑥𝑚 (𝑝𝑝𝑟𝑖𝑜𝑟 ∙ 𝑝𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔) 

 
[5] 

is taken as the Bayes optimal single trial estimate of the stimulus (Figure 1, Bayesian Inference, 

sold line). We equate the output of the model with the “perceived” stimulus value that the 

participant would indicate with a behavioral response.  

Behavioral Analysis 

 Independent Bias Parameterization 

 To analyze the results from these different encoding and decoding processes, we sorted 

response errors as a function of the previous stimulus (∆S = stimN-1 - stimN) or as a function of 

the previous response (∆R = respN-1 - stimN). We visualized the resulting bias for each 

participant by taking a sliding circular mean of the errors as a function of ∆S or ∆R. To simulate 

typical trial counts of a psychophysics experiment, we ran experiments of 30 participants 

completing 360 trials each. The magnitudes of history biases were estimated by fitting a 

derivative of von Mises (DoVM) function:  

 

 
1Note that here for simplicity we are equating the shape of the likelihood function, p(θ|m), with the 
posterior p(m|θ). 
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 𝑑𝑜𝑉𝑀(𝑥;  𝑎, 𝑤) = 𝑎 𝑤𝑠𝑖𝑛(𝑥) 𝑒𝑥𝑝(𝑤 𝑐𝑜𝑠(𝑥)) / (𝑧𝐼0(𝑤)) [6] 
 

with amplitude, a, and width, w  (Sadil et al. 2021). These parameters were fit to minimize the 

RSS errors when x corresponds to either ∆S or ∆R. z is a normalizing constant such that the 

amplitude, a, corresponds to the height of the resulting function. We additionally performed all 

analyses using the more commonly utilized derivative of Gaussian function and found similar 

results, but prefer the DoVM function as it is continuous at ±π. 

 Long-term Bias Correction  

Previous studies have attempted to account for any confounds introduced by context-

independent biases by subtracting out the average bias from either the responses (respN) or the 

errors (respN - stimN) (Fritsche 2016; Moon and Kwon 2022; Pascucci et al. 2019; Sadil et al. 

2021). We perform this correction by first fitting an n=6 parameter Fourier-like decomposition 

 

 
𝑓(𝜃; 𝑎1, . . . , 𝑎𝑁)  = ∑ 𝑔(𝜃; 𝑛, 𝑎𝑛)

𝑁

𝑛=1
 [7] 

   
 

𝑔(𝜃; 𝑛, 𝑎𝑛) =  {
𝑠𝑖𝑛(𝜃𝑛);                𝑛 ≡ 𝑒𝑣𝑒𝑛

𝑐𝑜𝑠(𝜃(𝑛 + 1));  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [8] 

 

to subjects errors as a function of stimN and subtracting this function from either the responses 

(response correction: respresidual  = wrap(respN -f(stimN) )) or from the resulting errors (error 

correction: Eresidual = wrap(respN -f(stimN) -stimN)). Note that correcting responses additionally 

influences the errors as they are calculated using the modified responses. When analyzing 

response biases, both corrections impact errors (y-axis) (as correcting responses also corrects 

errors) while response correction additionally impacts sorting of trials (x-axis). While these two 

forms of correction ultimately yield similar results, it is important to consider how response 

correction procedures change the interpretation of any resulting bias (see Discussion).  

One concern that arises with analyzing response biases, and a primary motivation for 

this study, is the presence of ‘spurious serial dependence’ whereby sorting responses as a 

function of ∆R can give the appearance of attractive biases to the N+1 stimulus or after shuffling 

the stimulus sequence (Pascucci et al. 2019). As we do not expect the response on a future or 

random trial to influence our error on the current trial, the presence of such a bias is concerning 

and may suggest a bias measured relative to past/future stimuli is an artifact of the analysis 

procedure. To better understand this phenomenon, we additionally consider our errors relative 

to both the N+1 stimulus and relative to the N-1 stimulus of a shuffled trial sequence.  

Joint Bias Parameterization  

 Recent studies have simultaneously modeled the impact of the previous stimulus and 

previous response (Moon and Kwon 2022; Sadil et al. 2021). We implemented this by 

parameterizing two DoVM functions modulated by ∆S and ∆R and optimized to minimize the 

residual SSEs. Specifically, we have two vectors ∆S and ∆R which are inputs to two DoVM 

functions. The resulting minimization function is  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.11.523637doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523637
http://creativecommons.org/licenses/by-nd/4.0/


 

 

7 

 𝑚𝑖𝑛 ∑ (𝐸𝑖  −  𝐷𝑜𝑉𝑀(∆𝑆; 𝑎𝑠, 𝑤𝑠)  − 𝐷𝑜𝑉𝑀(∆𝑅; 𝑎𝑅 , 𝑤𝑅))2

∀𝑖
 [9] 

where Ei corresponds to the actual error, wrap(respi - stimi), on the ith trial.  

Statistical Analyses 

When bias curves are visualized, we include the results of one-sample and paired two-

tailed t-tests without correction of the amplitudes of fit DoVM functions. 

 Power Analysis 

 We performed power analyses to estimate the probability of detecting a significant effect 

(α<.001) for an experiment conducted with n=30 participants and defined effect sizes and trial 

counts. For a given experiment, we present the probability of rejecting the null hypothesis that 

stimulus or response biases are significantly greater and in addition that the magnitudes of the 

two effects are different from one another.  

 

  
Figure 1: Response Generation, on each trial a stimulus is encoded by a biased or unbiased 

encoder. The encoded representation is interpreted at the inference stage by introducing either a 

stimulus, response, or no prior for stability. The output from this stage is the response we analyze 

and used to bias future reports. Response Analysis, responses are first corrected (or not) for 
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context-independent biases by fitting a Fourier-like function. We then analyze errors as a function 

of either the previous stimulus, response, or both. We perform additional control analyses by 

shuffling trial order or examining the influence of future responses. 

Additional controls 

Most experimentalists interested in studying serial dependence intentionally utilize 

stimulus sequences with a roughly uniform distribution of trial-by-trial stimulus transitions (e.g., 

P(∆S) is uniform). For a variety of factors including inadequate randomization due to low trial 

counts or the introduction of intentional structure into the distribution, this assumption is often 

violated to varying degrees (Chopin and Mamassian 2012; He et al. 2010; Maus et al. 2013). To 

determine how non-uniform stimulus sequences affect measurements of serial dependence, we 

additionally simulated an analysis pipeline using sequences that feature positive (+) and 

negative (-) autocorrelations. 

The fundamental concern that motivates including simulations with autocorrelated 

stimulus sequences is that studies attempting to reveal attractive biases to past stimuli or 

responses may instead only reveal artifacts of their analysis techniques where no biases are 

present. To assess these concerns, we additionally generate responses where neither stimulus 

or response serial dependence were implemented to provide a ground-truth case where no 

biases should be observed (see Figure 1, decoding).  

 To account for the possibility of a repulsive bias from the stimulus itself, for some 

experiments we inserted an additive DoVM repulsive bias centered on the previous stimulus 

with width 1 and variable amplitude.  

Psychophysical Study 

 18 participants completed between 192 and 488 (380 ± 15.2, mean ± SEM) trials of a 

delayed orientation report task. All participants provided informed consent, had normal or 

corrected to normal vision, and were compensated either in course credit or at a rate of 

$10/hour. Participants were instructed to fixate on a black fixation cue that was present at the 

center of the screen 0.5° (degrees of visual angle) and was visible throughout the entire 

experiment. The trial began with a 1500 ms ITI featuring only the fixation point. Then, two 

foveally presented oriented gratings subtending 1.5 to 23° degrees of visual angle were 

presented in succession separated by a 1000 ms inter-stimulus-interval (ISI). Each stimulus had 

a randomly oriented grating (2 cycles/°, 0.8 Michelson contrast) that was smoothed by a 2D 

Gaussian kernel with σ=0.5°. Each stimulus was presented for 1s and reversed phase every 

125 ms. Each stimulus was followed by a 250 ms filtered noise mask [flow=0.25, fhigh=1.0 

cycles/°] that changed once after 125 ms. After the second item, a retro cue (the numbers ‘1’ or 

‘2’) indicated the target most likely to be probed (80% validity). On 1/6th of trials a neutral (‘X’) 

was presented in lieu of a retro cue (both items equally likely to be probed). The retro cue was 

followed by a blank delay period 2500 ms. Participants then controlled a black response dial 

(using the “ASDF” buttons on a standard QWERTY keyboard) and they were given between 

500 and 5000 ms to match the orientation of the probed stimulus. After pressing the space bar 

to confirm their response or timing out, the dial disappeared, and feedback was provided for 
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2000 ms by displaying the unsigned error in degrees and turning the response dial green if 

participants were closer than 10° and red otherwise.  

Results 

 Serial Dependence Without Cardinal Bias 

 We first analyzed responses in a model without context-independent biases featuring 

either stimulus serial dependence, response serial dependence, or no serial dependence 

(columns Left, Center, Right respectively, Figure 2). For this simulation, and unless otherwise 

noted, we use κbase = 8 and therefore κuniform = 12. The first row shows biases relative to the 

previous stimulus and reveals that trials with true stimulus bias (Figure 2A) show a larger 

stimulus (∆S, black curve) relative to response (∆R, teal curve) bias. We additionally observed a 

larger response bias when the underlying source of the bias is towards the previous response 

(Figure 2B). Together, this suggests that, in the absence of context-independent biases, the 

relative magnitudes of stimulus/response serial dependence is a good proxy for the dominant 

source of the bias.  

Critically, the only artifactual bias occurs when examining ∆RN+1 when there was a 

genuine bias response bias (Figure 2E). This demonstrates that cardinal or other history 

independent biases are not necessary to observe artifacts in analyzing response biases in the 

presence of true response dependence and suggests that such an artifact is an indicator of a 

bona fide bias in the data. We explore why this N+1 artifact arises in the next section.  

The N+1 response bias artifact  

Ensuring that there is no bias toward future responses (i.e. the  N+1 trial) has been 

suggested as a valuable control when evaluating response biases (Pascucci et al. 2019). 

However, as noted above, we find an attractive bias when sorting trials by ∆RN+1 when there is a 

true response-based serial dependence effect. To understand why this bias occurs, we first 

identified an important distinction between sorting trials based on the past versus future 

response. Importantly, respN-1 is independent of stimN and accordingly P(∆RN-1) is uniform 

(Figure 3A). However, respN+1 is not independent of stimN because it is influenced by a prior 

centered on either stimN or respN (depending on the source of the bias) resulting in a highly non-

uniform distribution (Figure 3A, P(∆RN+1)). To explore why the ∆RN+1 spurious bias occurs, we 

considered two possible outcomes on the current trial, an error CW or CCW relative to the true 

stimulus. For the purposes of this visualization, we used the average absolute error of our 

unbiased observer, |𝐸|̅̅ ̅̅ = 7.8°. For observers exhibiting response-based history biases, these 

CW/CCW errors generate distinct priors (Figure 3B) that differentially shape future responses. 

These priors shift P(∆RN+1) towards the current response (Figure 3C). The difference in relative 

probabilities of the previous response error multiplied by the average response error (|𝐸|̅̅ ̅̅ ) 

perfectly captures the measured “spurious” response bias (Figure 3D, 2E). Thus, spurious 

biases measured by examining the influence of the N+1 response are expected if the underlying 

source of the bias is a prior centered on the preceding response. Because of this, examining the 
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N+1 influence is not a pragmatic control analysis and researchers should instead opt for a 

shuffled trial sequence which does not exhibit spurious biases when response biases are 

present in a dataset. 

 
Figure 2: Stimulus (black) and response (teal) bias curves for all response simulations. (Left, 

A,D,C) column corresponds to responses generated with an attraction towards past stimuli, 

(center, B,E,H) column features responses attracted towards past responses, and (right, C,F,I) 

column has no history biases. (Top, A-C) row computes ∆θ relative to previous trial, (middle, D-

F) row computes ∆θ relative to future trial, and (bottom, G-I) row computes ∆θ relative to the 

previous trial after shuffling the stimulus order. Both A and B show significant attractive biases 

towards past stimuli and responses with larger attractive biases towards the underlying source of 

the bias. We additionally observe an attractive bias towards the future response E that is an 

artifact of our sorting procedure. *, p<.05; **; p<.01; ***, p<.01, Bonferroni corrected for 9 stimulus 
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conditions; R, response bias significantly greater than stimulus bias, S, stimulus bias significantly 

greater than response bias. 

 
Figure 3: A. P(RN-1), gray, is uniform but P(∆RN+1), magenta, shows an overrepresentation for 

small changes. Additionally shown is P(∆RN+1) for stimulus serial dependance (black trace). B. 

hypothetical priors following a misperception of the average magnitude for our model (7.8°) in the 

CW or CCW direction. C. P(∆RN+1) on trials with CW or CCW misperceptions are shifted relative 

to each other. This shifting does not occur when the bias source is the stimulus instead of 

response (black traces) D. The average (unsigned) error multiplied by the difference in the 

P(∆RN+1) for CW and CCW responses captures the measured spurious bias.  
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Serial Dependence with Context Independent Biases 

 We next analyzed serial dependence after additionally including cardinal bias and the 

oblique effect at encoding. Both the precision κ and expected value μ were modulated by the 

stimulus identity resulting in an encoding process that showed characteristic bias and variance 

patterns of cardinal bias and the oblique effect (Figure 1). The result of this biased encoding 

process was then modulated by the same Bayesian prior as used in the previous section. When 

analyzed, the resulting responses show an increased response bias and a substantial ‘spurious’ 

response bias in the absence of any history biases (Figure 4A-C) demonstrating that context-

independent cardinal biases can introduce an artifact as suggested previously (Fritsche 2016; 

Pascucci et al. 2019). 

This confound is more concerning than the ∆RN+1 bias we found in the previous section 

because an attractive response bias is found even when no underlying serial dependence is 

present in the generated data (Figure 4C) or when trial order is shuffled (Figure S1A). Previous 

studies have tried to address this bias by regressing out the stimulus specific bias from either 

the errors or the responses. This has generally been achieved by fitting either a higher order 

polynomial or sinusoidal function to the raw data. For the purposes of this study, we utilized a 6-

parameter Fourier like composition of sine/cosine functions of varying frequencies which is more 

flexible (see eq. 7). Our use of circular functions avoids edge effects found with polynomial fits. 

We fit this function to errors and subtracted the best-fit function to correct for these biases 

(Figure 4D, red dotted-line). This correction substantially reduces any trace of systematic biases 

(Figure 4D, green). We opt to correct errors, but not responses, as this allows ∆RN-1 to reflect 

the relative location of the previous response. 

 
Figure 4: A-C. Response/stimulus biases computed using the raw errors results in a spurious 

response bias (see Fig S1 for all bias curves) D. Context-independent biases can be corrected 
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for by fitting a model to responses such that the resulting residuals are not biased as a function 

of stimulus identity. The light green trace (rSD+) is the residuals when history dependent bias 

(serial dependance) is present when fitting the history independent bias model. E-G 

Response/stimulus biases computed using the residualized errors.  

 

 Correcting for context-independent biases in response errors appears to completely 

remove the presence of spurious biases and returns the relative magnitudes of biases to what is 

expected given their respective sources (Figure 4E-G, See Figure S1 for bias curves 

corresponding to shuffled and N+1 trials). This is critical as this regression-based approach is 

an effective way to correct for context-independent biases and ensure the presence of 

measured response history biases is not just an artifact. This correction process does nothing to 

account for differences in variability as a function of the stimulus (the oblique effect) but still 

removes any trace of artifactual responses in the shuffled condition. We separately analyzed the 

influence of autocorrelations in the sequence of stimuli presented and found no evidence that 

they introduce new artifacts (Figure S2). 

Cardinal biases cause spurious response biases 

It is not surprising that introducing biased stimulus representations could introduce 

cofounds. In a general sense, this is because ErrorN is dependent on stimN and furthermore ∆R 

is no longer independent of the absolute stimulus value. Why this leads to spurious history 

biases is not particularly intuitive, so we provide a brief demonstration here. First we visualize 

the joint distribution P(StimN, ∆R) which shows the two variables are clearly not independent 

(Figure 5A).  Note that we are not specifying which trial is the inducer (eg. N-1/ N+1) as this 

spurious bias is unchanged even after shuffling trial order. The conditional distributions P(StimN | 

∆R) for two subsets of ∆R reveal how dramatically P(StimN) is interdependent on ∆R (Figure 

5B). We can then approximate the predicted spurious bias as the dot product of the normalized 

rows of P(StimN, ∆R) with μcardinal (StimN) (Figure 5C, 4A) to get the expected bias  

𝑆𝑝𝑢𝑟𝑖𝑜𝑢𝑠 𝐵𝑖𝑎𝑠 (∆𝑅)  ≈ ∑ 𝑃(𝑆𝑡𝑖𝑚𝑁|∆𝑅) 𝜇𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙(𝑆𝑡𝑖𝑚𝑁)
𝑆𝑡𝑖𝑚𝑁

  

(Figure 5D, black). This process captures the “spurious” response bias from the shuffled 

response distribution (Figure 5D, teal). Note that when sorting trials based on the previous 

stimulus instead of responses, P(StimN|∆S), is independent and does not give rise to spurious 

history bias.   
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Figure 5: A. The distribution of ∆R is not independent of StimN. B. We illustrate the distribution of 

StimN for the subsets of trials highlighted in (A). C. Expected error as a function of StimN. D. 

Response bias (teal± SEM) is captured by the product of P(StimN|∆R) and μ(Stim) (black).  

Simultaneous modeling of stimulus and response 

 Two recent studies have tried to disentangle the relative contributions of stimulus and 

response history biases (Moon and Kwon 2022; Sadil et al. 2021). Using this approach, the two 

functions are fit simultaneously instead of fitting a single two parameter function separately to 

∆S and to ∆R. Theoretically, this should better disentangle the sources of the bias and the 

approach has revealed the surprising possibility that stimuli could simultaneously be repelled 

from the previous stimulus but have an even larger attraction to the previous response (Moon 

and Kwon 2022; Sadil et al. 2021). This approach is interesting but may be problematic as the 

two regressors are highly collinear, which poses a challenge for interpreting the fit parameters. 

We applied this approach to two simulated datasets, our full model featuring cardinal bias and 

correction for that bias, and a new model which introduces repulsion from the previous stimulus 

(see Methods, Joint Bias Parameterization). First, we visualized the average individual fits to our 

corrected errors (as presented in Figure 4C) and note that while our modeling approach 

correctly captures the predominant bias source, the non-causal source is still of a similar 
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magnitude (Figure 6A, left). When we apply our joint fitting procedure to the same data, we are 

better able to capture the true underlying source of the bias (Figure 6A, right). To compare the 

effectiveness of these alternative approaches, we conducted a power analysis for detecting 

significant biases while varying trial counts and precision (see Methods). First, we note that our 

power to distinguish between stimulus and response biases was higher for low precision 

participants across model types (Figure 6B). Critically, however, we note that the independent 

model consistently detects a significant effect of the non-inducing feature (Figure 6B, top) while 

the joint model is much less likely to detect a significant non-causal effect (e.g., Figure 6B, 

bottom, ∆S is close to 0% power for the joint model given true response serial dependance). 

This suggests the joint model is better powered to avoid Type II errors. See Figure S4 for a 

power analysis further broken down by trial count.  

 

 
Figure 6: A. Fit magnitudes for independent and joint model fits. B. Power analysis across a range 

of k values for independent and joint models. Power is the % chance at finding a significant effect 

with n=30 participants at α=.001.  ∆∆ refers to direct comparison of magnitude of ∆S and ∆R 

(paired t-test). C. Bias curves for an observer featuring stimulus repulsion, additional curves 

Figure S3. D. Joint fit is able to capture magnitudes and signs of true biases while independent 

model fails to separate the two. E. Power analysis reveals challenges in calculating bias 

magnitudes when the two competing forces are of approximately equal (0 power for ∆R at k=8 for 

independent model. Expanded power analysis presented in Figure S4. 

 

 We next applied the same approach to an observer featuring repulsion from the previous 

stimulus implemented at encoding to determine how well the joint/independent models captured 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.11.523637doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523637
http://creativecommons.org/licenses/by-nd/4.0/


 

 

16 

these opposing effects. This is challenging because stimulus repulsion acts to counteract the 

influence of response attraction (Figure 6C, Figure S3). We found the joint model was better 

able to capture the underlying bias source (Figure 6D) and generally had much better power at 

distinguishing between their influences across a range of conditions (Figure 6E, bottom, Figure 

S4). This power analysis revealed an interesting phenomenon that may be common in the serial 

dependance field. For the independent model, particular values of k led to stimulus and 

response biases that largely counteracted one another leading to 0% power (Figure 6E, top). 

Importantly, the joint model was able to reliably detect response biases over this same range 

(Figure 6E, bottom). This idea of opposing attractive and repulsive biases could suggest why 

null or weak results are common in studies of serial dependance and may provide a new 

avenue to analyze existing datasets. 

Application to Empirical Data 

We conclude by applying the techniques and principles developed above to an existing 

unpublished dataset. Participants (N=18, 6840 trials total) viewed a sequence of two oriented 

gratings presented foveally in succession and reported one of the stimuli by rotating a response 

dial with the keyboard after a 3.5s delay period. This experiment included partially valid retro-

cues, the full details of which are described in the Methods and schematized (Figure 7A, Figure 

S5A). We first noted that responses showed strong context-independent biases that were non-

sinusoidal (Figure 7B, gray). We first attempted to fit context-independent biases using a 6 

parameter Fourier-like function as with our simulation, but found it was a poor match with large 

residuals (Figure 7B, light green). To fully capture the structure, we instead opted for a 12-

parameter version which achieved a much tighter fit and smaller residuals (Figure 7B, dark 

green). We then examined history biases non-parametrically for the N-1 trial with and without 

shuffling trial order. For the shuffled responses, the correction procedure removes a spurious 

response bias seen in the raw responses (Figure 7C, bottom). The In Order trials show strong 

stimulus- and response-based biases (Figure 7C, top). We next examined stimulus and 

response biases both separately and using a joint model. To improve our power, we 

bootstrapped responses by randomly resampling 360 trials with replacement for 1024 surrogate 

participants. Participants showed strong attractive biases when sorting by ∆SN-1 & ∆RN-1 (Figure 

7D, left). Critically our correction procedure removed the context-independent bias artifact 

(Figure 7C, bottom-right). Consistent with our previous simulations, we found that response 

biases were inflated for all analyses and are significantly greater than 0 after shuffling when we 

didn’t correct for context-independent biases (Figure S5C). When quantifying history biases 

independently, both stimulus and response biases were highly significant, but response biases 

were significantly stronger (Figure 7D, left, In Order). Importantly, we did not observe any 

stimulus or response biases for the shuffled trial sequence (Figure 7D, left, Shuffle). When we 

applied the joint fitting procedure, we found that only response bias was significantly greater 

than 0 suggesting that response biases are the dominant source of attractive biases in this data 

set. We thus demonstrate that our analysis procedure can be applied to empirical datasets and 

that simultaneously modeling biases can lead to insights otherwise hidden by traditional 

approaches. 
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Figure 7: A: simplified task schematic. Participants reported 1 of 2 foveally presented stimuli 

after a delay. B: Responses showed strong context-independent biases (gray). These were 

corrected by fitting a 12-parameter Fourier based parameterization to the pooled errors (red) 

resulting in unbiased residuals (green). C: Top, N-1, both raw and corrected responses show 

larger biases when sorting by past responses than stimuli; bottom, shuffle, uncorrected 

responses show a spurious response bias after shuffling trial order (left) that is eliminated after 

context-independent correction (right). D: While the independent model suggests both stimulus 

and response biases, joint model reveals bias is driven by responses.  

Discussion 

The goal of this modeling work was to provide a comprehensive exploration of methods 

to dissociate stimulus and response biases in the presence of potentially confounding context-

independent biases such as cardinal bias. This work was motivated by an acute interest in 

analyzing response biases combined with a concern that any bias measured could be an artifact 

of the analysis procedure. We first recap the lessons from our simulations and then discuss 

considerations that need to be made when analyzing such biases in empirical studies. Last, we 

briefly consider the psychological implications of our own empirical findings and recent related 

work.  
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We first identified a spurious future bias that is found specifically when sorting by ∆RN+1 

(Figures 2-3). This bias is only observed in the presence of true response biases and is found in 

the absence of (or after correcting for) context-independent biases. This phenomenon is a 

signature of response biases and may be interpreted as evidence for previous responses rather 

than previous stimuli inducing a history bias (and notably this bias does not emerge under 

stimulus induced biases, Figure 2D). Importantly, there is no analogous spurious future bias 

after shuffling the trial order before assessing serial dependence (Figure 2H). Thus, the analysis 

of ∆RN+1 biases should primarily be used as a confirmatory step for the presence of response 

biases rather than a control for the influence of context-independent biases.  

More problematic are artifacts introduced by context-independent biases (e.g., cardinal 

bias). These can lead to a spurious attraction between shuffled responses (Figure 4C). In our 

simulations, the spurious response biases were eliminated after regressing out this bias (Figure 

4D, G). These biases emerge due to the influence of context-independent biases on all 

responses which is why shuffling does not remove them (Figure 5). When applying this 

correction procedure to our empirical dataset, the cardinal biases we observed were much 

steeper than the sine wave used in our simulation and necessitated additional higher frequency 

components to achieve truly unbiased residuals (Figure 7B). We increased the expressivity of 

our correction procedure until the errors sorted by StimN and ∆RShuffle were flat and unbiased 

(ultimately using a model with 12 free parameters). We were then confident that any response 

biases were genuine and not an artifact. Here, we observed a response bias ∆RN-1 that was 

significantly larger than our stimulus bias ∆SN-1 (Figure 7D, Independent Fit).  

Lastly, we found promising results utilizing a joint modeling approach that was 

introduced in a pair of recent studies (Moon and Kwon 2022; Sadil et al. 2021). Our analysis of 

simulated data showed that despite stimuli and responses being highly correlated, the joint 

approach was generally able to capture the true source of the bias (Figure 6 A, D). The 

reliability of this approach was greatly improved when participants were less precise and when 

there were greater trial counts per participant (Figure 6B, E, S4). Applying this approach to our 

empirical dataset revealed strong evidence for a history bias that originated from responses, not 

stimuli (Figure 7D, Joint Fit). Surprisingly, this response bias continued back many trials offering 

a new potential interpretation of past studies that have similarly long-acting biases (Figure S5) 

(Fritsche et al. 2020; Gekas, McDermott, and Mamassian 2019). Our interpretation of this being 

a response driven bias is strengthened by the fact that other metrics, including the independent 

fits and the ∆RN+1 bias, all aligned closely with metrics observed for our response-driven 

simulated observer. Thus, simulated observers offer a valuable tool to infer the origin of biases 

given the outputs of the various metrics we have tested. 

 Throughout this manuscript, we present stimulus and response driven biases as if they 

are mutually exclusive. In reality, it is equally, if not more likely, that the inducing feature from 

the past is the perceived stimulus (rather than the response per se). This is supported by past 

work that has attempted to directly disambiguate perceived from reported orientations (Cicchini 

et al. 2017) or work that has utilized change detection rather than continuous report paradigms 

(Fischer and Whitney 2014; Fritsche et al. 2017; Sheehan and Serences 2022). That said, 

others have shown that attraction is not generated unless a stimulus is reported and that 

attraction may instead be towards the reported rather than perceived location (Pascucci et al. 

2019; Sheehan, Carfano, and Serences 2022). In any case, with continuous report paradigms 
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we often don’t have any means of directly accessing the identity of the perceived stimulus and 

so we opt here to use the more general term of “response” throughout this paper as the 

behavioral response is typically the best/only proxy for the internal perceptual representation. 

Further disambiguating the physical act of responding (and the associated motor/decisional 

circuits) from the perception of the stimulus will require careful experimental designs or neural 

measures that can assess internal representations at different stages of information processing. 

Thus, finding a bias driven by past responses (rather than physical stimulus identity) as we did 

primarily suggests that attraction is toward a post-retinal representation or transformation of the 

stimulus. In retrospect this claim may seem obvious, as the brain has no access to the stimulus 

per se and will always be relying on internal representations that deviate from the original 

stimulus feature (Eggermont 2007; György Buzsáki 2019; Lettvin et al. 1959).  

Now that there are several studies showing strong evidence for response over stimulus 

driven effects (Moon and Kwon 2022; Sadil et al. 2021), the goalposts have shifted to further 

disambiguate exactly which response related components are driving these effects. Change 

detection paradigms or generally un-correlating responses from perception offer promising 

avenues to explore this possibility further (Braun, Urai, and Donner 2018; Sheehan et al. 2022; 

Zhang and Luo 2022). That said, we argue here that examining biases just as a function of the 

physical identity of the previous stimulus is ignoring the important role of other biases in shaping 

the perception of current and past stimuli and may lead to an under and mismatched 

measurement of the true underlying bias (Pascucci et al. 2019; Sadil et al. 2021). 

 In the behavioral experiment we report here, there was no direct correlation between the 

final response and motor action as the probe was initialized in a random location and was 

controlled by button presses. Thus, we can likely rule out a purely motor origin for the attractive 

biases that we observed. The nidus of the attractive effect could instead be residual traces tied 

to memory maintenance, a distinct circuit directly tied to representing sensory history, or 

plausibly a sensory effect tied to the response or feedback signal presented at the end of the 

trial (Akrami et al. 2018; Barbosa et al. 2020). Only through additional experiments and 

analyses that control for these additional possible sources of perceptual biases can we further 

refine our understanding of these processes.  

 By demonstrating that the influence of context-independent biases can be reliably 

corrected for – while simultaneously highlighting the concerns raised if they are not – we hope 

to guide future endeavors to identify the true source of history biases. In our own experiment, 

we found strong evidence for an attractive bias centered on the previous response rather than 

the physical identity of the stimulus. We further found evidence for this attraction extending back 

6 trials and separate evidence for a repulsion from the physical identity of the stimulus for trials 

2, 3, 5 and 6 trials back. This pattern matches prior observations and supports the idea that the 

stimulus presentation leads to a repulsive bias at encoding while more high-level decisional 

representations impose a prior of stability (Braun et al. 2018; Moon and Kwon 2022; 

Papadimitriou, White, and Snyder 2016; Pascucci et al. 2019; Pegors et al. 2015; Sadil et al. 

2021; Sheehan and Serences 2022; Zhang and Alais 2020; Zhang and Luo 2022). Such a 

framework additionally fits with general frameworks like efficient encoding and Bayesian 

inference seen in perception (Wei and Stocker 2015) and pattern separation and completion 

seen in various networks across the brain (Cayco-Gajic and Silver 2019).  
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Supplemental Materials 

 

Figure S1: Bias curves for N+1 and shuffled distribution for corrected (A) and uncorrected (B) 

errors from Figure 4. 
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Figure S2: Non-independent Stimulus Sequences. We simulated the analysis of observers 

where stimulus sequences were non-independent and exhibited strong positive (top left) or 

negative (bottom left) autocorrelations. Despite the presence of these strong stimulus 

autocorrelations, their presence alone does not introduce any additional artifacts into our 

analysis procedure. 
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Figure S3: All bias curves for observer with stimulus specific repulsion. Note that the left column 

is an observer that is both repelled at encoding and attracted at a later Bayesian integration stage 

(aligning with previously proposed models, Fritsche et al., 2020).  
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Figure S4: Expanded power analysis for observers without (top) and with (bottom) stimulus repulsion 

at encoding. Here we split out observers based on the number of trials completed per observer. Power 

values correspond to α=.001 for an experiment run with 30 participants.  
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Figure S5: A. Full task schematic from delayed report paradigm. A Probabilistic retro-cue (80%) valid 

was presented immediately after the second item followed by a 100% valid probe and an untimed 

continuous report task controlled via the keyboard. Probe location initialized to a random location on 
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each trial. B. Expanded stimulus and response bias curves for corrected and uncorrected errors for 

different number of trials back and using shuffled distribution. C. Quantified bias fits for both 

independent (no outline) and joint (magenta outline) models. Correcting errors removes spurious 

biases in the shuffled distribution (right, shuffle). Joint model reveals attraction to reported stimulus 

going back several trials.  
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