Supplementary Information

Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors

Hung N. Do ${ }^{1}$, Jinan Wang ${ }^{1}$, and Yinglong Miao ${ }^{1, *}$
${ }^{1}$ Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047

*To whom correspondence should be addressed: miao@ku.edu

Supplementary Figure 1. Time courses of the RMSDs of orthosteric ligands and NAMs relative to the respective starting structures calculated from GaMD simulations of class A GPCRs in the (A) $\mathrm{M}_{1} \mathrm{R}$ without and with MT7, (B) β_{2} AR without and with Cmpd-15, (C) β_{2} AR without and with AS408, (D) C5AR1 without and with NDT9513727, (E) C5AR1 without and with Avacopan, (F) CB1 without and with ORG27569, and (G) CCR2 without and with GTPL9431. From left to right for each system are the RMSDs of the orthosteric ligand in the absence and presence of NAM (denoted "Antagonist" or "Agonist" and "AntagonistNAM" or "AgonistNAM", respectively) and RMSD of the NAM. The averages and standard deviations of the ligand RMSDs were included in each panel in the parentheses.

Supplementary Figure 2. Time courses of the RMSDs of orthosteric ligands and PAMs relative to the respective starting structures calculated from GaMD simulations of class A GPCRs in the (A) A_{1} AR without and with MIPS521, (B) $\mathrm{M}_{2} \mathrm{R}$ without and with LY2119620, (C) $\mathrm{M}_{4} \mathrm{R}$ without and with LY2119620, (D) β_{2} AR without and with Cmpd-6FA, (E) $\mathrm{D}_{1} \mathrm{R}$ without and with LY3154207, (F) FFAR1 without and with AgoPAM, and (G) GPBAR without and with INT777. From left to right for each system are the RMSDs of the orthosteric ligand in the absence and presence of PAM (denoted "Agonist" and "AgonistNAM", respectively) and RMSDs of the PAM. The averages and standard deviations of the ligand RMSDs were included in each panel in the parentheses.

Supplementary Figure 3. Time courses of the RMSDs of orthosteric and allosteric ligands relative to the respective starting structures calculated from GaMD simulations of class B GPCRs in the (A) GLP1R with the NNC0640 NAM, (B) GLP1R with the PF-06372222 NAM, (C) GLP1R without and with the LSN3160440 PAM, and (D) GLR with the MK-0893 NAM. From left to right for (C) and (D) are the RMSDs of orthosteric ligands in the absence and presence of allosteric ligands (denoted "Agonist" or "Antagonist" and "AgonistPAM" or "AntagonistNAM", respectively) and RMSDs of allosteric ligands. The averages and standard deviations of the ligand RMSDs were included in each panel in the parentheses.

Supplementary Figure 4. Changes in root-mean-square fluctuations (RMSFs) of receptors and orthosteric ligands of class A and B GPCRs upon binding of NAMs calculated from GaMD simulations of the MT7-bound $\mathrm{M}_{1} \mathrm{R}$ (PDB: 6WJC) (A), Cmpd-15-bound $\beta_{2} \mathrm{AR}$ (PDB: 5X7D) (B), AS408-bound β_{2} AR (PDB: 6OBA) (C), NDT9513727-bound C5AR1 (PDB: 6C1Q) (D), Avacopan-bound C5AR1 (PDB: 6C1R) (E), ORG27569-bound CB ${ }_{1}$ (PDB: 6KQI) (F), GTPL9431-bound CCR2 (PDB: 5T1A) (G), NNC0640-bound GLP1R (PDB: 5VEX) (H), PF-06372222-bound GLP1R (PDB: 6LN2) (I), and MK-0893-bound GLR (PDB: 5EE7) (J). A color scale of -1.0 (blue) to 0 (white) to 1.0 (red) is used to show the changes in RMSFs, and NAMs are colored orange.

Supplementary Figure 5. Changes in root-mean-square fluctuations (RMSFs) of receptors and orthosteric ligands of class A and B GPCRs upon binding of PAMs calculated from GaMD simulations of the MIPS521-bound $A_{1} A R$ (PDB: 7LD3) (A), LY2119620-bound $\mathrm{M}_{2} \mathrm{R}$ (PDB: 6OIK) (B), LY2119620-bound $\mathrm{M}_{4} \mathrm{R}$ (PDB: 7V68) (C), Cmpd-6FA-bound β_{2} AR (PDB: 6N48) (D), LY3154207-bound D1R (PDB: 7LJC) (E), AgoPAM-bound FFAR1 (PDB: 5TZY) (F), INT777-bound GPBAR (PDB: 7CFN) (G), and LSN3160440-bound GLP1R (H). A color scale of -1.0 (blue) to 0 (white) to 1.0 (red) is used to show the changes in RMSFs, and PAMs are colored green.

Supplementary Figure 6. Accuracy curves of the training and validation datasets for GPCR allosteric modulation of the $A_{1} A R(A)$, muscarinic receptors $M_{1} R, M_{2} R$ and $M_{4} R(B), \beta_{2} A R(C)$, C5AR1 (D), CB1 (E), CCR2 (F), D 1 R (\mathbf{G}), FFAR1 (H), GPBAR (I), GLP1R (J), and GLR (K).

Supplementary Figure 7. Confusion matrices calculated from the validation datasets for GPCR allosteric modulation of the $A_{1} A R(A)$, muscarinic receptors $M_{1} R, M_{2} R$ and $M_{4} R(B)$, $\beta_{2} A R(\mathbf{C}), \operatorname{C5AR} 1(\mathbf{D}), \mathrm{CB}_{1}(\mathbf{E}), \operatorname{CCR} 2(\mathbf{F}), \mathrm{D}_{1} R(\mathbf{G})$, FFAR1 (H), GPBAR (I), GLP1R (J), and GLR (K).

Supplementary Figure 8. Saliency (attention) maps of residue contact gradients of class \mathbf{A} and B GPCRs bound by negative allosteric modulators (NAMs), including the MT7-bound $\mathrm{M}_{1} \mathrm{R}$ (PDB: 6WJC) (A), Cmpd-15-bound $\beta_{2} \mathrm{AR}$ (PDB: 5X7D) (B), AS408-bound $\beta_{2} \mathrm{AR}$ (PDB: 6OBA) (C), NDT9513727-bound C5AR1 (PDB: 6C1Q) (D), Avacopan-bound C5AR1 (PDB: 6C1R) (E), ORG27569-bound CB 1 (PDB: 6KQI) (F), GTPL9431-bound CCR2 (PDB: 5T1A) (G), NNC0640-bound GLP1R (PDB: 5VEX) (H), PF-06372222-bound GLP1R (PDB: 6LN2) (I), and MK-0893-bound GLR (PDB: 5EE7) (J). The seven transmembrane (TM) helices are labeled IVII. Regions that contain residue contacts selected for free energy profiling are boxed in blue color. The gradients of residue contacts are shown in a 0.2 (white) to 0.25 (black) color scale.

Supplementary Figure 9. Saliency (attention) maps of residue contact gradients of class \mathbf{A} and B GPCRs bound by positive allosteric modulators (PAMs), including the MIPS521-bound A AR (PDB: 7LD3) (A), LY2119620-bound $\mathrm{M}_{2} \mathrm{R}$ (PDB: 6OIK) (B), LY2119620-bound $\mathrm{M}_{4} \mathrm{R}$ (PDB: 7V68) (C), Cmpd-6FA-bound β_{2} AR (PDB: 6N48) (D), LY3154207-bound $\mathrm{D}_{1} \mathrm{R}$ (PDB: 7LJC) (E), AgoPAM-bound FFAR1 (PDB: 5TZY) (F), INT777-bound GPBAR (PDB: 7CFN) (G), and LSN3160440-bound GLP1R (H). The seven TM helices are labeled I-VII. Regions that contain residue contacts selected for free energy profiling are boxed in blue color. The gradients of residue contacts are shown in a 0.2 (white) to 0.25 (black) color scale.

Supplementary Figure 10. Reduced binding preference of NAMs (MT7 and Cmpd-15) and PAMs (LY2119620 and LY3154207) to "non-cognate" GPCRs. (A-C) 2D free energy profiles of the heavy-atom RMSDs of the atropine antagonist and C_{α}-atom RMSDs of the MT7 NAM relative to their starting structures in the $M_{1} R$ (PDB: 6 WJC) (A), model $M_{2} R(B)$, and model $M_{4} R$ (C) bound by MT7. (D-H) 2D free energy profiles of the heavy-atom RMSDs of the carazolol antagonist and Cmpd-15 NAM relative to their starting structures in the β_{2} AR (PDB: 5X7D) (D), model $\alpha_{1 B} A R(\mathbf{E})$, model $\alpha_{2 A} A R(\mathbf{F})$, model α_{2} AR (G), and model $\beta_{1} A R(\mathbf{H})$ bound by Cmpd15. (I-K) 2D free energy profiles of the heavy-atom RMSDs of the iperoxo agonist and LY2119620 PAM relative to their starting structures in the $\mathrm{M}_{2} \mathrm{R}$ (PDB: 6OIK) (I), $\mathrm{M}_{4} \mathrm{R}$ (PDB: 7V68) (J), and model $\mathrm{M}_{1} \mathrm{R}(\mathbf{K})$ bound by LY2119620. (L-M) 2D free energy profiles of the heavyatom RMSDs of the SKF-81297 agonist and LY3154207 PAM relative to their starting structures in the $\mathrm{D}_{1} \mathrm{R}$ (PDB: 7LJC) (L) and model $\mathrm{D}_{2} \mathrm{R}(\mathbf{M})$ bound by LY3154207.

Supplementary Table 1. Summary of GaMD simulations performed on the PDB structures and computational models ("Model") of GPCRs with and without the positive/negative allosteric modulator (PAM/NAM). (a) PDB IDs or computational models ("Model") built for GaMD simulations. (b) Types of modulators bound in GPCRs. (c) Names and overall charges of orthosteric ligands bound in GPCRs. (d) Names and overall charges of allosteric ligands bound in GPCRs. (e) Averages and standard deviations of boost potentials $\Delta V(\mathrm{kcal} / \mathrm{mol})$ calculated from three independent 500 ns GaMD simulations for each GPCR system.

Receptor	PDB/Model ${ }^{\text {a }}$	PAM/NAM ${ }^{\text {b }}$	Orthosteric ligand (charge) ${ }^{\text {c }}$	Allosteric ligand (charge) ${ }^{\text {d }}$	$\begin{gathered} \hline \Delta V(\mathrm{kcal} / \mathrm{mol}) \\ (3 \times 500 \mathrm{~ns})^{\mathrm{e}} \\ \hline \end{gathered}$
$\mathrm{A}_{1} \mathrm{AR}$	7LD3	PAM	Adenosine (0)	MIPS521 (0)	20.3 ± 7.2
				-	19.0 ± 8.0
$\mathrm{M}_{1} \mathrm{R}$	6WJC	NAM	Atropine (0)	MT7 (0)	13.1 ± 4.1
				-	14.3 ± 4.3
	Model	PAM	Iperoxo (+1)	LY2119620 (0)	15.4 ± 4.5
$\mathrm{M}_{2} \mathrm{R}$	Model	NAM	Atropine (0)	MT7 (0)	14.0 ± 4.2
	6OIK	PAM	Iperoxo (+1)	LY2119620 (0)	14.0 ± 4.3
				-	15.0 ± 4.5
$\mathrm{M}_{4} \mathrm{R}$	Model	NAM	Atropine (0)	MT7 (0)	13.8 ± 4.2
	7V68	PAM	Iperoxo (+1)	LY2119620 (0)	14.6 ± 4.4
				-	15.3 ± 4.8
$\alpha_{1 B}$ AR	Model	NAM	Carazolol (+1)	Cmpd-15 (0)	13.9 ± 4.2
$\alpha_{2 A} \mathrm{AR}$	Model	NAM	Carazolol (+1)	Cmpd-15 (0)	14.0 ± 4.3
$\alpha_{2 C}$ AR	Model	NAM	Carazolol (+1)	Cmpd-15 (0)	14.4 ± 4.3
β_{1} AR	Model	NAM	Carazolol (+1)	Cmpd-15 (0)	14.4 ± 4.3
$\beta_{2} \mathrm{AR}$	5X7D	NAM	Carazolol (+1)	Cmpd-15 (0)	14.5 ± 4.3
				-	14.3 ± 4.3
	60BA	NAM	Alprenolol (+1)	AS408 (+1)	14.4 ± 4.3
				-	14.7 ± 4.4
	6N48	PAM	BI-167107 (+1)	Cmpd-6FA (-1)	14.3 ± 4.3
				-	14.5 ± 4.3
C5AR1	6C1Q	NAM	PMX53 (0)	NDT9513727 (0)	13.8 ± 4.2
				-	14.2 ± 4.3
	6C1R	NAM	PMX53 (0)	Avacopan (0)	13.2 ± 4.1
				-	14.4 ± 4.3
CB_{1}	6KQI	NAM	CP55940 (0)	ORG27569 (0)	13.0 ± 4.1
				-	13.6 ± 4.2
CCR2	5T1A	NAM	BMS-681 (0)	GTPL9431 (0)	13.9 ± 4.2
				-	13.6 ± 4.2
$\mathrm{D}_{1} \mathrm{R}$	7LJC	PAM	SKF-81297 (+1)	LY3154207 (0)	13.3 ± 4.2
				-	14.6 ± 4.4
$\mathrm{D}_{2} \mathrm{R}$	Model	PAM	SKF-81297 (+1)	LY3154207 (0)	15.2 ± 4.5
FFAR1	5TZY	PAM	MK-8666 (-1)	AgoPAM (-1)	13.8 ± 4.2
				-	14.1 ± 4.3
GPBAR	7CFN	PAM	INT777 (-1)	INT777 (-1)	14.3 ± 4.3
				-	15.3 ± 4.5
GLP1R	5VEX	NAM	-	NNC0640 (0)	14.0 ± 4.3
				-	14.4 ± 4.4
	6LN2	NAM	-	PF-06372222 (-1)	14.2 ± 4.3
				-	14.5 ± 4.3
	6VCB	PAM	GLP-1 (0)	LSN3160440 (+1)	13.4 ± 4.2
				-	15.8 ± 4.6
GLR	5EE7	NAM	PE5 (0)	MK-0893 (-1)	13.7 ± 4.3
				-	15.0 ± 4.4

Supplementary Table 2. Characteristic residue contacts with ≥ 0.7 gradients identified from GLOW analysis of GPCR allosteric modulation. Residue contacts selected for free energy profiling are in bold.

System	PDB/Model	PAM/NAM	Residue contacts
A ${ }_{1}$ AR-MIPS521	7LD3	PAM	$\begin{aligned} & \text { T23.52 } 2^{\mathrm{ECL1}}-\mathrm{P} 165^{\mathrm{ECL} 2}, \mathrm{~N} 2.65-\mathrm{C} 45.50^{\mathrm{ECL} 2}, \mathrm{C} 3.25- \\ & \mathrm{K} 168^{\mathrm{ECL} 2}, \mathrm{Q} 23.51^{\mathrm{ECL} 1}-\mathrm{C} 45.50^{\mathrm{ECL2}}, \mathrm{Y} 5.58-\mathrm{F} 6.42, \\ & \mathrm{~L} 5.53-\mathrm{S} 6.47, \text { G2.68 }-\mathrm{K168}^{\mathrm{ECL} 2}, \mathrm{E} 5.36-\mathrm{L} 6.59, \\ & \text { W6.48-L7.41, N148 } \end{aligned}$
M ${ }_{1}$ R-MT7	6WJC	NAM	V4.68 - T172 ${ }^{\text {ECL2 }}$, P5.36- T6.59, W4.64- Q177 ${ }^{\text {ECL2 }}$
M ${ }_{2}$ R-LY2119620	6OIK	PAM	
M ${ }_{4}$ R-LY2119620	7V68	PAM	$\begin{aligned} & \text { N1.60 - T8.53, S5.62 - T6.34, N1.60 - L12.50 }{ }^{\text {ICL1 }}, \\ & \text { N1. } 60-\mathrm{T} 2.37 . \mathrm{P} 5.36-\mathrm{T} 6.59 . \mathrm{I} 6.40-\mathrm{Y} 7.53 \end{aligned}$
β_{2} AR-Cmpd-15	5X7D	NAM	K34.52 ${ }^{\text {ICL2 }}-\mathrm{K} 6.29$, D3.49 - K6.29, R12.49 D8.49, E6.30 - R7.55, T6.36-I7.52, K6.29 - P8.48
β_{2} AR-AS408	60BA	NAM	
β_{2} AR-Cmpd-6FA	6N48	PAM	
C5AR1-NDT9513727	6C1Q	NAM	$\begin{aligned} & \text { N34.55 }{ }^{\text {ICL2 } 2} \text { - S5.67, F3.55 - G4.40, N3.35 - N7.45, } \\ & \text { T3.45 - A4.45, L5.51 - F6.45, S3.26 - V7.39 } \end{aligned}$
C5AR1-Avacopan	6C1R	NAM	$\begin{aligned} & \text { I2.59 - D7.35, Y4.63 - K5.32, R4.64 - R5.42, L3.43 } \\ & \text { - I7.51, L4.56 - L5.45, P4.59 - V5.38 } \\ & \hline \end{aligned}$
CB1-ORG27569	6KQI	NAM	F102 - V7.34, V110 - D266 $6^{\text {ECL2 }}$, M103 - D266 ${ }^{\text {ELL2 }}$, V110 - T7.33, L12.50 $0^{\mathrm{ICL} 1}-\mathrm{L} 8.50$, R34.55 ${ }^{\mathrm{ICL} 2}-$ T4.38, I6.40 - I7.52, T7.47 - L7.55
CCR2-GTPL9431	5T1A	NAM	V6.43 - N7.49, I5.61 - K6.28, V6.36 - V7.56, W5.34 - F6.64, P5.50 - W6.48, I3.54 - R5.63, W5.34 $\mathrm{N} 276^{\mathrm{ECL} 3}, \mathrm{~L} 34.54^{\mathrm{ICL} 2}-\mathrm{R} 34.57^{\mathrm{ICL} 2}, \mathrm{R} 34.57^{\mathrm{ICL} 2}-\mathrm{S} 5.62$
D ${ }_{1}$ R-LY3154207	7LJC	PAM	
FFAR1-AgoPAM	5TZY	PAM	$\mathbf{P 5 . 3 2}-\mathbf{N 2 5 2}{ }^{\mathrm{ECL} 3}, \mathbf{P 3 4 . 5 0}{ }^{\mathrm{ICL} 2}-\mathbf{F 3 4 . 5 6}{ }^{\mathrm{ICL} 2}, \mathrm{~S} 6.54-$ $\mathrm{W} 7.34, \mathrm{G} 6.39-\mathrm{V} 7.52, \mathrm{~S} 154^{\mathrm{ECL} 2}-\mathrm{T} 162^{\mathrm{ECLL}}, \mathrm{R} 3.50-$ $\mathrm{T} 7.53, \mathrm{~L} 3.43-\mathrm{S} 7.45, \mathrm{G} 70^{\mathrm{ECL} 1}-\mathrm{L} 45.51^{\mathrm{ECL} 2}$
GPBAR-INT777	7CFN	PAM	
GLP1R-NNC0640	5VEX	NAM	$\mathrm{I} 1.60-\mathrm{C} 7.58, \mathbf{L 1 2 . 4 9} 9^{\text {ICL1 }}-\mathrm{V} 8.50$, E4.38 - W4.40, $\mathrm{N} 5.32-\mathrm{N} 5.34, \mathrm{~N} 300^{\mathrm{ECL} 2}-\mathrm{W} 5.36, \mathrm{Q} 210^{\mathrm{ECL} 1}-$ $\mathrm{W} 45.51^{\mathrm{ECL} 2}, \mathrm{~L} 6.48-\mathrm{T} 7.46, \mathrm{~L} 6.38-\mathrm{L} 7.56$
GLP1R-PF-06372222	6LN2	NAM	S219 ${ }^{\mathrm{ECL} 1}-\mathrm{L} 3.31, \mathrm{Y} 220^{\mathrm{ECL1}}-\mathrm{C} 45.50^{\mathrm{ECL} 2}, \mathrm{Y} 1.40-$ $\mathrm{D} 2.68, \mathrm{~T} 2.45-\mathrm{Q} 4.39$, Q210 $^{\mathrm{ECL1}}-\mathbf{H 2 1 2}{ }^{\mathrm{ECL}}, \mathbf{L 6 . 4 9}$ - Q7.49
GLP1R-LSN3160440	6VCB	PAM	F5.54 - I6.46, A208 ${ }^{\text {ECL1 }}-\mathbf{L 2 1 7}^{\text {ECL1 }}, \mathbf{Q 2 2 1}^{\text {ECL1 }}-$ E294 Y7.57
GLR-MK-0893	5EE7	NAM	$\begin{aligned} & \text { K4.64 - N291 }{ }^{\text {ECL2 }}, \text { N298 }{ }^{\text {ECL2 }}-\text { K7.38, G3.39 - K7.38, } \\ & \text { V3.34 - W5.36, F5.51 - } \mathbf{I 6 . 4 6}, \text { D6.61 - R7.35 } \end{aligned}$

Supplementary Table 3. Summary of the 2D free energy profiles of characteristic residues in the allosteric modulation of class A and B GPCRs bound by NAMs in Figure 4. Locations of the energy minima are included in the third and last columns, with coordinates of the first and second reaction coordinates listed.

System	Reaction coordinates	Without NAM	With NAM
M ${ }_{1}$ R-MT7	V4.68-T172 Distance, P5 36-T6.59 Distance	$\begin{gathered} \text { S1 }(\sim 9.0 \AA, \sim 4.5 \AA) \\ \text { S2(}(\sim 11.9 \AA, \sim 4.6 \AA) \\ \hline \end{gathered}$	S1($\sim 9.5 \AA, \sim 5 \AA)$
β_{2} AR-Cmpd-15	T6.36-I7.52 Distance, K6.29-P8.48 Distance	$\begin{aligned} & \text { S1(} \sim 6.7 \AA, \sim 6.5 \AA) \\ & \text { S2 }(\sim 6.7 \AA, \sim 10.0 \AA) \\ & \text { S3 }(\sim 7.5 \AA, \sim 11.0 \AA) \end{aligned}$	S3($7.0 \AA, \sim 10.0 \AA$)
β_{2} AR-AS408	T4.56-V5.45 Distance, L34.56 ${ }^{\text {ICL2 }}$-I4.45 Distance	$\begin{gathered} \text { S1(} \sim 8.0 \AA, \sim 12.5 \AA) \\ \mathbf{S 2}(\sim 7.2 \AA, \sim 8.0 \AA) \end{gathered}$	$\mathbf{S 1}(\sim 8.0 \AA, \sim 12.5 \AA)$
C5AR1-NDT9513727	T3.45-A4.45 Distance, L5.51-F6.45 Distance	$\begin{gathered} \text { S1 }(\sim 7.0 \AA, \sim 7.0 \AA) \\ \text { S2 }(\sim 7.0 \AA, \sim 10.5 \AA) \\ \hline \end{gathered}$	$\mathbf{S 1}(\sim 7.5 \AA, \sim 7.5 \AA)$
C5AR1-Avacopan	$\begin{aligned} & \hline \text { L4.56-L5.45 Distance, } \\ & \text { P4.59-V5.38 Distance } \end{aligned}$	$\begin{gathered} \text { S1(} \sim 9.0 \AA, \sim 7.0 \AA) \\ \mathbf{S 2}(\sim 11.8 \AA, \sim 11.0 \AA) \end{gathered}$	$\mathbf{S 1}(\sim 8.5 \AA, \sim 6.5 \AA)$
CB1-ORG27569	R34.55 ${ }^{\text {ICL2 }}-\mathrm{T} 4.38$ Distance, T7.47-L7.55 RMSD	$\mathbf{S 1}(\sim 6.0 \AA, \sim 0.5 \AA)$	$\mathbf{S 1}(\sim 6.0 \AA, \sim 0.5 \AA)$
CCR2-GTPL9431	I5.61-K6.28 Distance, V6.36-V7.56 Distance	$\mathbf{S 1}(\sim 7.5 \AA, \sim 6.5 \AA)$	$\mathbf{S 1}(\sim 5.0 \AA, \sim 6.3 \AA)$
GLP1R-NNC0640	L12.49 ${ }^{\text {ICLI }}-\mathrm{V} 8.50$ Distance, E4.38-W4.40 RMSD	S1(7.5§, ~2.0 ${ }^{\text {a }}$	$\mathbf{S 1}(\sim 7.5 \AA, \sim 1.5 \AA)$
GLP1R-PF-06372222	$\begin{gathered} \mathrm{Q} 210^{\mathrm{ECL} 1}-\mathrm{H} 212^{\mathrm{ECL1}} \mathrm{RMSD}, \\ \mathrm{~L} 6.49-\mathrm{Q} 7.49 \text { Distance } \end{gathered}$	$\mathbf{S 1}(\sim 5.0 \AA, \sim 6.5 \AA)$	$\mathbf{S 1}(\sim 2.5 \AA, \sim 7.5 \AA)$
GLR-MK-0893	F5.51-16.46 Distance, D6.61-R7.35 Distance	$\begin{gathered} \text { S1(} \sim 7.0 \AA, \sim 9.0 \AA) \\ \text { S2(} \sim 7.5 \AA, \sim 12.0 \AA) \\ \text { S3(} \sim 11.9 \AA, \sim 8.5 \AA) \\ \hline \end{gathered}$	$\mathbf{S 1}(\sim 7.5 \AA, \sim 9.5 \AA)$

Supplementary Table 4. Summary of the 2D free energy profiles of characteristic residues in the allosteric modulation of class A and B GPCRs bound by PAMs in Figure 5. Locations of the energy minima are included in the third and last columns, with coordinates of the first and second reaction coordinates listed.

System	Reaction coordinates	Without PAM	With PAM
AıAR-MIPS521	G2.68-K168 ${ }^{\text {ECL2 }}$ Distance, W6.48-L7.41 Distance	$\begin{gathered} \text { S1(} \sim 8.0 .0 \AA, \sim 7.5 \AA) \\ \mathbf{S 2}(\sim 5.5 \AA, \sim 10.0 \AA) \\ \mathbf{S 3}(\sim 11.5 \AA, \sim 10.0 \AA) \\ \hline \end{gathered}$	$\mathbf{S 1}(\sim 5.5 \AA, \sim 7.0 \AA)$
M 2 R-LY2119620	M6.54-G7.38 Distance, C7.56-T8.49 Distance	$\mathbf{S 1}(\sim 8.0 \AA, \sim 9.0 \AA)$	$\mathbf{S 1}(\sim 8.0 \AA, \sim 9.0 \AA)$
M4R-LY2119620	N1.60-T8.53 Distance, S5.62-T6.34 Distance	$\begin{gathered} \hline \mathbf{S 1}(\sim 10.0 \AA, \sim 5.5 \AA) \\ \mathbf{S 2}(\sim 6.0 \AA, \sim 5.5 \AA) \\ \mathbf{S 3}(\sim 11.0 \AA, \sim 8.0 \AA) \end{gathered}$	$\mathbf{S 1}(\sim 7.0 \AA, \sim 5.5 \AA)$
β_{2} AR-Cmpd-6FA	T2.39-K4.39 Distance, K6.28-E7.33 Distance	$\begin{gathered} \text { S1(~9.0 } \AA, \sim 12.0 \AA) \\ \text { S2(} \sim 15.5 \AA, \sim 11.5 \AA) \\ \text { S3(} \sim 12.5 \AA, \sim 7.5 \AA) \end{gathered}$	S1($\sim 9.5 \AA, \sim 12.0 \AA$)
D1R-LY3154207	$\begin{gathered} \hline \text { V1.31-I1.43 RMSD, } \\ \text { P34.50 } 0^{\mathrm{CL} 2}-\mathrm{K} 34.56^{\mathrm{CLL} 2} \mathrm{RMSD} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{S 1}(\sim 2.0 \AA, \sim 2.5 \AA) \\ & \text { S2 }(\sim 5.0 \AA, \sim 2.0 \AA) \\ & \hline \end{aligned}$	$\mathbf{S 1}(\sim 2.0 \AA, \sim 1.0 \AA)$
FFAR1-AgoPAM	$\begin{gathered} \text { P5.32-N252 Distance, } \\ \text { P34.50 }{ }^{\text {ICL2 } 2}-\mathrm{F} 34.56^{\mathrm{ICL} 2} \text { Distance } \end{gathered}$	$\begin{gathered} \text { S1 }(\sim 7.0 \AA, \sim 9.5 \AA) \\ \text { S2(} \sim 14.0 \AA, \sim 13.0 \AA) \\ \text { S3(} \sim 13.0 \AA, \sim 8.5 \AA) \end{gathered}$	$\mathbf{S 1}(\sim 7.0 \AA, \sim 9.5 \AA)$
GPBAR-INT777	$\begin{gathered} \text { L4.59-G4.63 RMSD, } \\ \text { W149 }{ }^{\mathrm{ECL} 2} \text {-N154 }{ }^{\mathrm{ECL} 2} \text { Distance } \end{gathered}$	$\begin{gathered} \text { S1(} \sim 2.0 \AA, \sim 3.0 \AA) \\ \mathbf{S 2}(\sim 3.0 \AA, \sim 10.0 \AA) \\ \mathbf{S 3}(\sim 7.0 \AA, \sim 5.0 \AA) \end{gathered}$	$\begin{aligned} & \text { S1(~2.0£, } \sim 3.5 \AA) \\ & \text { S2 }(\sim 3.0 \AA, \sim 8.0 \AA) \end{aligned}$
GLP1R-LSN3160440	$\begin{aligned} & \hline \mathrm{A} 208^{\mathrm{ECL1}}-\mathrm{L} 217^{\mathrm{ECL1}} \text { Distance, } \\ & \mathrm{Q} 221^{\mathrm{ECL}}-\mathrm{E} 294^{\mathrm{ECL} 2} \text { Distance } \end{aligned}$	$\begin{aligned} & \text { S1(~5.5A, } 7.5 \AA) \\ & \mathbf{S 2}(\sim 7.5 \AA, \sim 8.0 \AA) \\ & \hline \end{aligned}$	$\mathbf{S 1}(\sim 5.5 \AA, \sim 7.5 \AA)$

Supplementary Table 5. Summary of the 2D free energy profiles of orthosteric and allosteric ligand binding in the $M_{1} R, M_{2} R$, and $M_{4} R$ bound by the MT7 NAM, $\beta_{2} A R, \alpha_{1 B} A R, \alpha_{2 A} A R$, $\alpha_{2} \mathrm{CAR}$, and $\beta_{1} A R$ bound by the Cmpd-15 NAM, $M_{2} R, M_{4} R$, and $M_{1} R$ bound by the LY2119620 PAM, and $D_{1} R$ and $D_{2} R$ bound by the LY3154207 PAM in Figure S10. Locations of the energy minima are included in the third and last columns, with coordinates of the first and second reaction coordinates listed.

System	Reaction coordinates	Low-energy states
M ${ }_{1}$ R-MT7	Atropine RMSD, MT7 RMSD	$\begin{aligned} & \text { S1 }(\sim 1.0 \AA, \sim 2.5 \AA) \\ & \text { S2 }(\sim 2.5 \AA, \sim 2.5 \AA) \end{aligned}$
M 2 R-MT7		$\mathbf{S 2}(\sim 2.3 \AA, \sim 3.5 \AA)$
M4R-MT7		$\begin{aligned} & \text { S1(} \sim 1.3 \AA, \sim 3.0 \AA) \\ & \text { S2 }(\sim 2.3 \AA, \sim 3.0 \AA) \\ & \mathbf{S 4}(\sim 1.3 \AA, \sim 6.0 \AA) \\ & \mathbf{S 5}(\sim 3.5 \AA, \sim 8.0 \AA) \\ & \hline \end{aligned}$
β_{2} AR-Cmpd-15	Carazolol RMSD, Cmpd-15 RMSD	S1($\sim 1.0 \AA, \sim 2.0 \AA$)
α_{18} AR-Cmpd-15		$\begin{aligned} & \text { S2(~1.0 } \AA, \sim 4.0 \AA) \\ & \mathbf{S 3}(\sim 3.0 \AA, \sim 6.5 \AA) \\ & \mathbf{S} 4(\sim 4.5 \AA, \sim 5.0 \AA) \\ & \hline \end{aligned}$
$\alpha_{2 A}$ AR-Cmpd-15		S3($\sim 2.3 \AA, \sim 6.0 \AA$)
α_{22} AR-Cmpd-15		$\begin{aligned} & \hline \mathbf{S 2}(\sim 1.7 \AA, \sim 2.5 \AA) \\ & \text { S3 }(\sim 2.3 \AA, \sim 5.7 \AA) \\ & \text { S4(} \sim 5.1 \AA, \sim 4.0 \AA) \\ & \hline \end{aligned}$
β_{1} AR-Cmpd-15		S1(0.8 $\AA, \sim 2.0 \AA)$
M2R-LY2119620	Iperoxo RMSD, LY2119620 RMSD	$\begin{aligned} & \hline \mathbf{S 1}(\sim 2.0 \AA, \sim 2.0 \AA) \\ & \mathbf{S 2}(\sim 2.0 \AA, \sim 5.5 \AA) \\ & \hline \end{aligned}$
M4R-LY2119620		$\begin{aligned} & \text { S3 }(\sim 0.8 \AA, \sim 4.0 \AA) \\ & \text { S4 }(\sim 0.8 \AA, \sim 7.5 \AA) \\ & \hline \end{aligned}$
M ${ }_{1}$ R-LY2119620		S2($1.5 \AA, \sim 6.0 \AA)$
D1R-LY3154207	SKF-81297 RMSD, LY3154207 RMSD	S1($1.5 \AA, \sim 1.5 \AA$)
D2R-LY3154207		$\begin{aligned} & \hline \mathbf{S 2}(\sim 3.0 \AA, \sim 15.5 \AA) \\ & \mathbf{S 3}(\sim 3.0 \AA, \sim 11.5 \AA) \end{aligned}$

