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SUPPLEMENTARY METHODS 
 
Overview of the study populations 

The Turkana are part of the Eastern Nilotic lineage; the ancestors of the present day Turkana 
likely entered Kenya in the early 18th century, and expanded to their current range (now known as 
Turkana county) by ~1900 (1). Today, the Turkana represent the second largest pastoralist group in 
Kenya after the Maasai. Turkana county is a semi-arid desert characterized by low annual rainfall, 
frequent droughts, and high year round temperatures (Figure 1D) (2).  

The Turkana are traditionally nomadic pastoralists; they herd five species of livestock 
(dromedary camels, zebu cattle, fat tailed sheep, goats, and donkeys) and rely on these animals for 
subsistence (3). As a result of their pastoralist lifestyle, the Turkana have a remarkably protein-rich diet: 
62% of calories are derived from milk or milk products, and 70-80% of calories are derived from animal 
products of some sort (3). Daily protein intake exceeds the FAO/WHO requirements by >300%, despite 
total caloric intake being limited (1,300–1,600 kcal/day) (4). Dietary items not derived from livestock 
are obtained through foraging or trade. For detailed descriptions of the diet, climate, and lifestyle 
experienced by traditional, pastoralist Turkana, see work from the South Turkana Ecosystem Project 
(summarized in (5)). 

While this study focused on the evolution and present-day phenotypic variation of the Turkana 
people, we also worked with, and generated genomic data from, select groups that live in or near the 
Turkana region and/or are thought to have a shared history with the Turkana (Figure S1). This additional 
data generation was done to situate the Turkana within the broader context of the region and to 
understand population genetic parameters that could impact our selection analyses. Specifically, we 
generated genomic data from: El Molo, Ik, Karamojong, Masaai, Ngitepes, Pokot, Rendille, and 
Samburu. El Molo and Rendille are part of the Cushtic lineage and speak Afroasiatic languages, while 
the remaining groups are part of the Nilotic lineage and speak Nilo-Saharan languages. In recent history 
at least, the main subsistence strategy of the El Molo is fishing, while the Ik are agriculturalists. Like the 
Turkana, the Masaai, Pokot, Samburu, Rendille, Ngitepes, and Karamojong practice pastoralism. 
Previous work has shown some genetic substructuring by language family as well as geography for 
groups inhabiting northwest Kenya and northeastern Uganda (including but not limited to the groups 
named here) (6, 7). However, none of this previous work has included whole genome sequence data 
and/or this entire collection of groups with geographic, cultural, or potential evolutionary relationships 
to the Turkana.  

 
Overview of community engagement and study teams 

Data and samples reported in this study were collected by two groups: 1) the Turkana Health and 
Genomics Project (co-directed by JFA, AJL, DM, JK, and including KMG, JE, PK, FL, AL, SL, CM, 
BM; turkanahgp.com) and 2) a research team based out of Arizona State University that includes 
AMTO, RS, CH, ACS, SM, and MAW. The Turkana Health and Genomics Project (THGP) is an 
ongoing, long-term study focused on the interacting roles of genotype and rapid lifestyle change in the 
development of non-communicable disease in the Turkana people. It is an international, 
multidisciplinary collaboration involving principal investigators from the US (JFA, AJL) and Kenya 
(DM, JK), a field team made up of Kenyan (including Turkana) scientists and technicians, and Turkana 
communities spanning northwest and central Kenya. Consistent with previous recommendations and 
ethical best practices (8–10), before initiating the THGP as well as this project specifically, we engaged 
in several years of community consultations with local stakeholders. These consultations involved 
working with local Turkana chiefs and elders, health workers, local scientists, and potential Turkana 
participants to develop our recruitment and sampling protocols.  

As part of the THGP, interviews, biological samples, and phenotypic measures for this study 
were collected in Turkana, Laikipia, and Trans-Nzoia counties between April 2018 and February 2020. 
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During this time, members of the THGP visited locations where Turkana and other groups of interest 
were known to reside. At each sampling location, local chiefs and elders were first consulted about the 
project. If they believed the study to be of interest to their community, a larger meeting was held to 
explain the project to all interested individuals. After this period of discussion, adults (>18 years old) of 
self-reported Turkana identity (or other identities where appropriate) were invited to participate in the 
study. The study involved a structured interview, blood and urine sample collection, and anthropometric 
measurements as described in detail in previous work (11, 12).  

Saliva and cheek swab samples were collected by the ASU team from adults (>18 years old) of 
self-reported Turkana identity between October 2016 and 2017 in Turkana county, as described in (13). 
Both SM and CH have worked in this region for over a decade and have established and maintained a 
strong relationship with local communities. Community engagement by the ASU team proceeded in a 
very similar way as for the THGP, with conversations starting at the community level and funneling 
down to the individual level (13).  

More specifically, for ASU-led as well as THGP-led data and sample collection, we worked with 
team members that were fluent in local languages (e.g., Turkana, Kiswahili) to assist with initial 
community-level explanations of the project as well as informed consent. In all cases, team members 
discussed the study with each potential participant and provided ample time for questions and concerns 
to be voiced. Formal consent was then obtained, and all individuals who agreed to take part in the study 
were provided with the contact information for both local and foreign research team members in the 
event that s/he should choose to be removed from the study. Throughout data and sample collection, we 
worked to ensure ethical informed consent and multiple levels of communication about the study. All 
data and sample collection was conducted in collaboration with individuals from the participant 
communities, many of whom have worked with our various scientific teams for many years. We have 
also made an effort to share our results with study communities, including the results of this study (see 
turkanahgp.com for information on results sharing by the THGP). The ASU team designed culturally 
appropriate images in consultation with local field assistants and returned results back to communities in 
2018 (AMTO) and 2022 (RS, SM), with further dissemination efforts planned for 2023.  
 
Relevant scripts: 

● F_map_samples.R 
 
Interview data collection 

Structured interviews were conducted with all THGP participants as described previously (11, 
12). All interviews were conducted in a language familiar to the participant (English, Turkana, or 
Kiswahili). The following self-reported variables from the interviews were used in this study: 1) age and 
gender; 2) main subsistence activity, chosen from the following categories: self-employment, formal 
employment, petty trade, farming, pastoralism, hunting and gathering, other; 3) how much of the day 
was spent finding and retrieving water, chosen from the following categories: less than 1 hour, 1 hour, a 
few hours, half the day, most of the day; and 4) whether s/he would drink more water if they had it. 

We also used a food frequency questionnaire to collect information about the consumption of 
blood, meat, milk, bread, sugar, salt, and cooking oil. We focused on these items because they reflect 
foods that are essential (blood, meat, milk) or uncommon (bread, sugar, salt, cooking oil) in the diet of 
traditional pastoralists. Participants were asked how often a specific item was used or consumed and 
were given the following answer choices: never, rarely, 1–2 times per week, >2 times per week or every 
day. These interviews were conducted year round and results therefore summarize over known seasonal 
variation in dietary patterns among Turkana pastoralists. 
 
Genomic data generation 
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From THGP-collected biospecimens, we generated 1) high coverage (>200 million paired end 
reads) whole genome sequencing (WGS) data for Turkana individuals only; 2) medium coverage WGS 
data for all 9 groups (Turkana, El Molo, Ik, Karamojong, Masaai, Tepes, Pokot, Rendille, and 
Samburu); 3) array genotype data for all 9 groups; and 4) transcriptomic data for Turkana individuals 
only (described in the next section) (Table S2, Table S4, and Table S16). From ASU-collected 
biospecimens, we generated high coverage whole genome sequencing (WGS) data for Turkana 
individuals only (Table S3). The specific biospecimens and laboratory procedures used to generate these 
data are described below. 

Genomic data for THGP samples was generated from venous blood, while genomic data for 
ASU samples were generated from saliva . Participants were asked to rinse their mouth with water if 
they recently had been chewing tobacco or other organic products; study team members then watched 
and guided participants to collect saliva using appropriate technique. Saliva samples were collected 
using the Oragene OG-500 DNA collection kit. All samples were stored short term in a cooler bag with 
frozen ice packs before they could be stored long-term at -4C. DNA was extracted and prepared for 
WGS using the Promega ReliaPrep kit and sequencing was performed on the Illumina NovaSeq S4 
platform using paired-end, 2x150 reads; DNA extraction and sequencing were performed at the Yale 
Center for Genomic Analysis. Information on the tissue source, sequencing batch, read depth, and other 
metadata for each ASU WGS sample can be found in Table S3.    

For THGP samples, approximately 6mL of intravenous blood was collected into an EDTA 
vacutainer tube. Whole blood was then mixed with DNAGard (Sigma) following the manufacturers’ 
instructions and stored in a cooler box with frozen ice packs until the sample could be stored long-term 
at -20C. Samples were later thawed and 200ul of each sample was used to extract genomic DNA using 
the Zymo Quick-DNA Minprep kit following the manufacturers’ instructions. All DNA samples for high 
coverage WGS were prepared using either the NEBNext Ultra DNA Library Prep Kit for Illumina (New 
England BioLabs) or the Nextera DNA Flex Library Prep Kit (Illumina). In both cases, we followed the 
manufacturers’ instructions, but when using the Nextera kit, we scaled reactions to ¼ volumes.  

A subset of libraries for low coverage WGS were prepared as outlined in (14), using the oligo 
sequences and homemade Tn5 recipe therein. Specifically, 10µl (100µM) forward oligo adapter A and 
10µl (100µM) reverse oligo (Tn5MErev) were mixed with 80µl reassociation buffer (10mM Tris pH 
8.0, 50mM NaCl, 1mM EDTA), and annealed in a thermocycler following the program: 95°C 10min, 
90°C 1min, reduce temperature by 1°C/cycle for 60 cycles, hold at 4°C. The same procedure was also 
performed using forward oligo adapter B. To load the pre-annealed adapters onto the Tn5, 45µl of Tn5 
was combined with 9µl of pre-annealed adapter A and 9µl of pre-annealed adapter B (both at 10µM) 
and incubated in a thermal cycler for 30min at 37°C. The pre-charged Tn5 was then diluted with 
reassociation buffer:glycerol (1:1), in a ratio of 1 part reassociation buffer:glycerol to 1 part pre-charged 
Tn5. 2µl of each DNA sample was then mixed with 1µl of precharged Tn5, 2µl of 5X TAPS buffer pH 
8.5 (50mM TAPS, 25mM MgCl2, 50% v/v DMF), and 5µl of water. The solution was incubated for 
7min at 55°C, after which 2.5µl of 0.2% SDS (Promega, #V6551) was added and incubated in a thermal 
cycler for 7min at 55°C to dissociate the Tn5 from the DNA. Final library amplification was then 
performed by combining 2µl of the tagmentation reaction with 7µl of OneTaq HS Quick-Load 2x (NEB, 
#M0486L), 1µl of the i5 primer (5uM), 1µl of the i7 primer (5µM), and 4µl of water. This mixture was 
amplified on a thermal cycler with the following program: 68°C 3min, 95°C 30sec, [95°C 10sec, 55°C 
30sec, 68°C 30sec] for 12 cycles, 68°C 5min. All THGP WGS libraries were sequenced on the Illumina 
NovaSeq S4 platform using paired-end, 2x150 reads at the Genomic Core Facility at Princeton’s Lewis 
Sigler Institute for Integrative Genomics. Information on the sequencing batch, read depth, and other 
metadata for each THGP WGS library can be found in Table S2.  

In addition to WGS data generation, a set of 994 THGP DNA samples were also sent for SNP 
genotyping on the Infinum Global Screening Array at the Children’s Hospital of Philadelphia (CHOP).  
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Low level processing of array genotype data 
We genotyped a total of 994 samples across 9 batches. Genotype clustering was performed by 

CHOP using Illumina’s GenomeStudio. Genotypes were obtained from CHOP and converted to Plink 
map format (forward strand) using Illumina’s GenomeStudio and the Plink plugin. We merged the 
genotypes from each batch together using Plink and then filtered for autosomal SNPs with MAF>1%, 
SNPs in Hardy Weinberg equilibrium (p>10-6), SNPs called in >95% of samples, and SNPs not in LD. 
Specifically, we used the indep-pairwise function in Plink to scan windows of 50kb with a 20kb offset, 
and to randomly prune variants within each window so that no pair exceeded an R2 threshold of 0.8 (as 
in (15)). This filtering resulted in a dataset of 329,197 SNPs, with 400 SNPs failing our Hardy Weinberg 
filter, no SNPs failing our missingness filter, 219,587 SNPs failing our MAF filter, and 23,419 SNPs in 
LD removed. We used these 329,197 remaining SNPs as the input for KING (16) to estimate IBD and to 
prune pairs of second-degree relatives (IBD>0.125) from the dataset. We also used KING to estimate 
the concordance of heterozygous genotypes for 21 samples that were genotyped twice across batches to 
assess reproducibility, which we found to be very high (mean heterozygous genotype concordance = 
1.000). After removing close relatives, duplicate samples, and 6 samples for which the Plink-infered sex 
(using the sex-check function) did not match the expected sex from our interview data, we were left with 
782 samples (Table S4).  

We used functions within Plink to perform PCA on this filtered sample set (Figure S5). We then 
used linear models to estimate the contribution of self-identified ancestry group to overall genetic 
variation, as well as the contribution of geography (longitude and latitude) to genetic variation within the 
Turkana. In particular, we used linear models to estimate the percent variance explained (R2) by group 
or longitude and latitude for each of the top 10 PCs (Figure S6).   
 
Relevant scripts 

● C1_process_QC_PCA.sh 
 
Low level processing of WGS data 

We sequenced a total of 110 high coverage samples and 350 low and medium coverage samples. 
Following sequencing, we removed adapter contamination and low-quality bases from each library 
using cutadapt (17). We mapped the trimmed reads to the GRCh38 version of the human reference 
genome using BWA (18), and used Samtools (19) to retain only uniquely mapped reads. On average, 
94.33 ± 0.63% and 88.12 ± 4.36% of our reads mapped uniquely for blood-derived and saliva-derived 
samples, respectively. We then marked duplicates and performed base quality score recalibration, 
application, and individual variant calling following the Genome Analysis Toolkit best practices 
pipeline (20). More specifically, we 1) sorted the trimmed, mapped reads using Samtools (19); 2) we 
used Picard’s MarkDuplicates function (21) to identify duplicate reads and add read groups; 3) we 
performed base quality score recalibration and application using the BaseRecalibrator and ApplyBQSR 
functions within GATK (using the 1000 Genomes phase 3 calls as the known variants file); and 4) we 
created individual GVCF files using HaplotypeCaller function within GATK (v4.1.4). In cases where a 
given sample was sequenced across multiple lanes and therefore had multiple FASTQ files, we 
processed these files independently for trimming, mapping, and filtering, and then combined all of the 
bam files for a given individual at the MarkDuplicates step. 

 
Relevant scripts: 

● G1_trim_map.sh 
● G2_bam_processing.sh 
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Joint genotyping and phasing of WGS data 
We performed two rounds of joint genotyping using 1) only the 110 high coverage samples and 

2) only the 350 low and medium coverage samples. In both cases, we followed the GATK best practices 
guidelines, such that samples were first combined using the CombineGVCFs function and then jointly 
called using the GenotypeGVCFs function. Using the jointly called high coverage genotypes only, we 
followed GATK’s guidelines for filtering and final variant discovery. We later selected these sites from 
the jointly called low coverage genotype call set and then imputed any missing data using the high 
coverage call set as a reference. Our specific procedures and pipelines are detailed below. In this section, 
we focus on the filtering, variant discovery, and phasing of the high coverage call set; in the next 
section, we discuss how these filtered variants were identified and imputed in the low and medium 
coverage samples. 

Following joint genotyping of the high coverage samples, we filtered to remove the following 
loci that were not appropriate for our analyses: 

● Indels and deletions 
● Non autosomal SNPs 
● SNPs not in Hardy Weinberg equilibrium (p<10-6; threshold as in (22)) 
● SNPs with a MAF<0.01 
● Sites within segmental duplications as defined by: 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz 
● Sites within a CpG site 
● Sites within the 1000 Genomes accessibility mask as defined by: 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/working/2016
0622_genome_mask_GRCh38/PilotMask/ 

This filtering resulted in us retaining the following numbers of loci:  
● 28,143,508 out of 32,818,930 total called variants were SNPs (and not indels/deletions) 
● 19,801,886 SNPs passed our region filters (i.e., were not within segmental duplications, the 1000 

Genomes accessibility mask, or CpG sites) 
● 19,724,008 variants passed our Hardy-Weinberg filters (77,878 were removed) 
● 12,243,197 SNPs pass our MAF filters (7,480,811 were removed) 

Using this set of 12,243,197 SNPs, we recalibrated variant quality scores using GATK’s 
VariantRecalibrator function. As recommended by the GATK best practices pipeline, we used the 1000 
Genomes phase 1, HapMap, and 1000 Genomes Omni array datasets as reference databases. Following 
variant recalibration, we filtered based on the algorithm estimated sensitivity-specificity thresholds using 
a tranche of 90.0 (relatively conservative). Filtered variants were then lifted over to hg19 for phasing 
using Picard’s LiftoverVcf function (note that this liftover resulted in a loss of ~0.06% of variants) (21). 
We performed phasing on all biallelic sites with <5% missing data across all samples using SHAPEIT2 
(23) and the 1000 Genomes phase 3 genetic map. These procedures resulted in a total of 7,767,165 
phased genotypes.  
 
Relevant scripts: 

● G3_joint_call_high_cov.sh 
● G3_joint_call_low_cov.sh 
● G4_filter_high_cov.sh 
● G5_phase_high_cov.sh 
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Imputation of low and medium coverage WGS data 
Following joint genotyping of the low and medium coverage samples, we filtered for the 

7,767,165 sites passing filters in our phased, high coverage call set. We also removed samples that did 
not have genotype quality scores >10 at >5% of all loci we were interested in. This resulted in removal 
of 20 samples. For the remaining 330 samples, we masked all genotype calls with genotype quality 
scores <10 and used this call set as the input for imputation. Prior to imputation, we used Picard’s 
LiftoverVcf function to transfer our site coordinates to hg19. 

Following previous examples in the literature (22, 24, 25), we tested two imputation strategies 
using IMPUTE2 (26). Specifically, we assessed the accuracy of imputation using 1) our phased 
reference panel of 110 high coverage Turkana genomes or 2) a phased reference panel of the high 
coverage Turkana genomes as well as a second phased reference panel of 1000G phase 3 variants. In 
case of such panel combining, IMPUTE2 imputes only genotypes for variants that are present in the first 
(main) panel, but in the process also draws on haplotype information from the second panel to 
potentially improve imputation accuracy. In both pipelines, low and medium coverage genomes were 
not “pre phased”, because this increases imputation speed but potentially reduces accuracy. As 
recommended by the program’s authors, imputation was performed on 5 megabase intervals.  

The accuracy of each approach was assessed using the concordance and R2 values produced 
through IMPUTE2’s internal cross-validation procedure. More specifically, IMPUTE2 masks the 
genotypes from one variant at a time in the reference dataset and imputes the masked genotypes; the 
imputed genotypes are then compared with the original genotypes to evaluate the quality of the 
imputation procedure (26). These analyses revealed that the one panel approach produced slightly more 
accurate genotypes: we observed a median R2 of 95.7% vs 95.1% and a median concordance of 98.1% 
vs 97.8% for the one panel and two panel approaches, respectively. These distributions were 
significantly different (Wilcoxon signed rank test; p-value for comparison of R2 and concordance 
values=4.88x10-4 and 4.72x10-5). Importantly, controlling for the proportion of genotypes that were 
imputed, we didn’t find any significant differences in imputation performance with the one panel 
approach for Turkana versus non Turkana samples (linear model; beta for group comparison of R2 and 
concordance values=1.97x10-3 and 7.51x10-4, p-value=0.279 and 0.37; Figure S2). We therefore used 
the variant calls from this approach for all downstream analyses. We also confirmed that these imputed 
calls were well-correlated with genotypes from the Global Screening array, though we note that this 
comparison focuses on a biased set of loci that overlap between the two platforms (R2 between imputed 
WGS and array genotypes=0.958 ± 0.025, n=108). 
 
Relevant scripts: 

● G6_filter_low_cov.sh 
● G7_impute_low_cov.sh 
● G8_compare_impute_array.sh 
● F_assess_imputation.R 

 
Merging, filtering, and QC of all WGS genotypes 

Next, we proceeded to merge our high and low/medium coverage genotype call sets. Before 
doing so, we first filtered our imputed, low/medium coverage genotypes for well-imputed SNPs using 
the metrics provided by IMPUTE2. We defined well-imputed SNPs as those with R2>0.8 or INFO>0.4 
following (22), which left us with 6,476,837 SNPs. Before merging, we also removed 1) individuals that 
had excess levels of heterozygosity as estimated by Plink (F>0.2 or F<-0.2) (27); 2) duplicate samples 
from individuals that were genotyped via two independent libraries (retaining the library with the 
highest coverage; 3) 2 samples whose genotypes had been truncated due to a computational error; and 4) 
related individuals. For relatedness filtering, we used built-in functions in KING (16) to estimate IBD 
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from the set of filtered, well-imputed SNPs and to prune pairs of second-degree relatives (IBD>0.125) 
from the dataset. This left us with 261 low and medium coverage samples (202 of which were from 
Turkana individuals) and 106 high coverage samples, which were merged using Plink (27).  

After merging, we performed a final round of minor allele frequency filtering on the combined 
call set (retaining variants with MAF>0.01). We also used Plink to create an LD filtered version of the 
merged call set using the parameters specified in (15). Specifically, we used the indep-pairwise function 
to scan windows of 50kb with a 20kb offset, and to randomly prune variants within each window so that 
no pair exceeded an R2 threshold of 0.8. In total, this resulted in two versions of the merged call set, one 
without LD filtering containing 6,355,282 SNPs and one with LD filtering containing 2,965,175 SNPs.  

We used Plink to perform PCA on the LD filtered call set, and we used these principal 
component (PC) loadings to confirm that there were no effects of read depth or collection 
team/sequencing center on genetic variation captured by the first PCs. More specifically, we confirmed 
there were no major differences between sequencing location (Princeton vs ASU for Turkana high 
coverage samples) or between coverage groups (high vs low/medium for Turkana samples; Figure S3). 
To do so, we used Wilcoxon signed rank tests followed by multiple hypothesis testing correction and 
confirmed that the FDR corrected p-value for almost all tests was>0.1 (note, we observed one 
correlation between coverage group and PC10 at an FDR-corrected p-value of 0.068; Figure S4).   

 
Relevant scripts: 

● F_PCA_low_high_cov_data.R 
 

Population genomic analyses 
We merged our LD filtered dataset of 2,965,175 SNPs with the 1000 Genomes Phase 3 call set 

for African populations (28). We used Plink to filter for variants in LD (scanning windows of 50kb with 
a 20kb offset, and pruning so that no pairs in each window had an R2>0.8)), variants with a MAF<1%, 
and variants genotyped in <25% of samples in the merged dataset. We then used Plink to perform PCA 
(Figure 2A).  

We also used two approaches to understand fine scale population structure and admixture in our 
sample set. First, we used the program ADMIXTURE (29) to estimate the proportion of the genome 
originating from K ancestral populations for each individual, with K being specified a priori. We 
performed these analyses after merging our LD filtered dataset of 2,965,175 SNPs with the 1000 
Genomes Phase 3 call set for the Yoruba, Luhya, and CEPH populations (28). We again used Plink to 
filter for variants in LD (scanning windows of 50kb with a 20kb offset, and pruning so that no pairs in 
each window had an R2>0.8)), variants with a MAF<1%, and variants genotyped in <25% of samples in 
the merged dataset. We ran ADMIXTURE with default parameters exploring K=2-7, and each value of 
K was run five times with a different random seed. We chose the value of K that minimized the cross-
validation error (Figure S7), which was K=3, but we also plot results when K=4 for visualization of 
further substructure (Figure S8). These analyses revealed small amounts of putative European ancestry 
within the Luhya, as was shown previously by the 1000 Genomes Project (30)). They also revealed 
small amounts of putative European ancestry within the East African groups we sampled. While the 
specific East African groups we worked with are mostly uncharacterized in the literature, the Simons 
Genome Diversity Project has reported similar ancestry breakdowns for the Masaai (28) and other work 
has confirmed admixture pulses from both Eurasia and West African into East African Afroasiatic 
groups (31). Nevertheless, to confirm that the patterns we observed were not a result of technical biases 
in our WGS data, we asked whether coverage or sequencing location predicted ancestry proportions 
within our Turkana samples, and found that this was not the case (linear model, all FDR-corrected p-
values>0.05; Table S5).  

We also reran the ADMIXTURE analysis with K=3 using our array data combined with array 
data from the 1000 Genomes Project for Yoruba, Luhya, Maasai, and CEPH (30). This 1000 Genomes 
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data was generated on the Illumina Omni 2.5 array, and we therefore used Genotype Harmonizer to 
recover sites profiled in both datasets and mapped to the same genomic strand (32). We also used Plink 
to filter for variants in LD (scanning windows of 50kb with a 20kb offset, and pruning so that no pairs in 
each window had an R2>0.8)), variants with a MAF<5%, and variants genotyped in <5% of samples in 
the merged dataset. This resulted in a dataset of 198,009 variants. When we applied ADMIXTURE to 
this database, we observed very similar ancestry breakdowns for all East African groups as we had seen 
using the WGS data (Figure S8).  

Our second approach relied on local ancestry assignments from RFMix (33) for the high 
coverage samples only (because the program requires information from phased haplotypes). More 
specifically, RFMix attempts to assign each segment of a chromosome to its most likely ancestral source 
population. As potential source populations, we used CEPH individuals to represent European ancestry, 
Luhya individuals to represent East African (Bantu) ancestry, and Yoruba individuals to represent West 
African ancestry (all sourced from the 1000 Genomes phase 3 call set (30)). We note that this analysis 
does not include an East African (Afroasiatic) population as a potential source, because the sizable and 
publicly available datasets that include this ancestry are array rather than WGS-based (e.g., (31)). We 
also note that our main goal here was to confirm the results of the ADMIXTURE analysis (especially 
the European ancestry), and we therefore reasoned that it made sense to use the same populations and 
data. Using the RFMix method, we observe similar evidence for European ancestry as was estimated by 
ADMIXTURE (Figure S9). We also note that our estimates of European admixture from RFMix are 
highly correlated with our estimates from ADMIXTURE (Pearson correlation R=0.84, p<10-16; Figure 
S9).  
 
Relevant scripts: 

● F_multi_pop_PCA.R 
● A1_run_admixture.sh 
● A2_run_admixture_array.sh 
● A3_run_RFmix.sh 

 
Genome-wide scans for positive selection 

We identified genomic regions under recent positive selection in the Turkana using an outlier 
approach and three statistics: the integrated haplotype score (iHS) (34), the population branch statistic 
(PBS) (35), and the XtX statistic as computed by BayEnv2 (36). These approaches can detect selection 
on the order of thousands to tens of thousands of years ago (37). Specifically, the iHS compares patterns 
of linkage disequilibrium within a population for haplotypes carrying the derived versus ancestral SNP 
at a given locus, while the PBS and XtX approaches compare allele frequencies between the Turkana 
and two or more reference populations and look for SNPs where the genetic distance is substantially 
different from background. By using three statistics that each look for distinct signals in the data and 
rely on different aspects of the data (e.g., iHS analyzes phased haplotypes, while PBS and XtX analyze 
allele frequencies), we reasoned that we could recover robust signals of selection and avoid false 
positives induced by the processing steps or assumptions required for any individual test.  

iHS relies on linkage disequilibrium information within phased haplotypes, and we therefore 
focused only on the high coverage genotype call set when calculating this statistic. Specifically, iHS 
values were calculated for the phased, high coverage samples using the R package REHH (38). Before 
running REHH, we converted the phased haplotype output from SHAPEIT2 to VCF format using the 
convert function in SHAPEIT2, and we added information about derived/ancestral state at each locus 
from 6-way EPO alignments (39) using the fill-aa function in VCFtools (40). Using the default 
parameters in REHH, 4,648,783 SNPs were analyzable with known ancestral state calls, data for >90% 
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of samples, and MAF>5%. iHS estimates were normalized internally by the program as a function of 
their derived allele frequency.  

To calculate PBS, we started with the set of 2,965,175 imputed and LD filtered SNPs passing 
filters in our merged dataset of low, medium, and high coverage samples. We merged this dataset further 
to the Yoruba and Luhya samples from the 1000 Genomes phase 3 call set, and refiltered the merged 
dataset to SNPs with MAF>1%, data for >75% of samples, and LD structure that passed the same filters 
we used previously (as specified in (15)). Using this set of 2,144,319 SNPs, we calculated FST in Plink 
for each pairwise population comparison and we then used R to calculate PBS from the FST values using 
the equations provided in (35). 
 While BayEnv2 is most commonly used to test for associations between ecological or climatic 
variables and genetic differentiation, the program can also calculate an environment-agnostic population 
differentiation statistic called XtX. This statistic is similar to the classic FST statistic and is meant to 
identify highly differentiated SNPs that might be driven by local adaptation. An attractive feature of XtX 
is that it can identify highly differentiated SNPs across an infinite number of populations (rather than 
just 2, in the case of FST, or 3, in the case of PBS), and provide information about how differentiated the 
focal SNP is relative to the expected, genome-wide genetic covariance between populations. To 
calculate XtX, we followed the workflow outlined in (41) and here: https://eead-csic-
compbio.github.io/barley-agroclimatic-association/HOWTOXtX.html. First, we used our array data to 
compute a population-level genetic covariance matrix for the following groups: El Molo, Ik, Luhya 
(from 1000 Genomes), Pokot, Ngitepes, Karamojong, Rendille, Samburu, Turkana, and Yoruba (from 
1000 Genomes). This procedure used the SNPs obtained after merging our filtered Global Screening 
array dataset to the 1000 Genomes Omni array call sets and refiltering for SNPs with MAF>5%, data for 
>95% of samples, and LD structure that passed the same filters we used previously (as specified in 
(15)). We then ran BayEnv2 for all 2,965,175 imputed and LD filtered SNPs passing filters in our 
merged dataset of low, medium, and high coverage WGS samples. We ran the program three times with 
three different random seeds and 100,000 iterations per run; we then averaged the per-site output to 
obtain the XtX statistics used in downstream analyses.   
 
Relevant scripts: 

● S1_run_BayEnv_part1.sh 
● S1_run_BayEnv_part2.R 
● S1_run_BayEnv_part3.sh 
● S2_run_iHS_part1.sh 
● S2_run_iHS_part2.R 
● S3_run_PBS_part1.sh 
● S3_run_PBS_part2.R 

 
Identifying candidate regions and candidate genes for positive selection 

To identify candidate regions for selective sweeps, we rank ordered the |iHS|, XtX, and PBS 
distributions and defined outliers as those in the top 1% of each distribution. We then binned the genome 
into 50 kb windows with 25kb offsets, and counted the number of outlier loci for each statistic that fell 
in a given window (but excluding windows with <20 SNPs tested). Windows with outlier numbers in the 
top 1% of the genome-wide distribution for all three selection statistics were considered as candidates. 
Because each statistic has its own underlying assumptions and sensitivities, windows that are outliers for 
many different tests are expected to be enriched for true positives (42–44). We required all three 
statistics to exhibit outliers in a given region in order to identify the most robust signals; in other words, 
we aimed to minimize the false positive rate even if it came at the cost of a higher false negative rate (as 
is common in the literature (42–44)). We chose to use 50 kb windows because simulation studies have 
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shown this window size provides good power to detect sweeps with selection intensities between 
2Ns=100 and 1000 (45). This procedure resulted in 13 50 kb windows, representing 8 non-overlapping 
windows (Table S6). 
 We considered candidate genes for positive selection to be protein-coding genes within each 
non-overlapping candidate window, or within 500kb of the start or end of a given candidate window. To 
understand the biological function of these genes, we downloaded information about transcriptional cell 
type specificity from the Human Protein Atlas (https://www.proteinatlas.org/). Here, we used the RNA 
specificity category, which is based on mRNA expression levels in scRNA-seq data from normal tissues 
(Table S9). To understand which human diseases and  traits this set of candidate genes has been linked 
to, we used the Open Targets database (https://www.targetvalidation.org/). First, we looked up each 
candidate gene in the database and downloaded information on the traits that gene had been linked to via 
previous GWAS: the strength of this link is summarized via a genetic association score for each gene-
trait combination (Table S7). Next, for traits associated with 2 or more genes in our dataset, we 
downloaded the total number of genes in the human genome associated with the trait from Open 
Targets. We then used a Fisher’s exact test to ask whether the number of candidate genes associated 
with the focal trait was more than expected by chance, and we used a 10% FDR cutoff for significance 
(Table S8). We note that we excluded behavioral traits (e.g., educational attainment) from this analysis 
because of known problems and sensitivities with these phenotypes.  
 
Relevant scripts: 

● S4_summarize_outliers.R 
● S5_allele_freq.sh 
● F_candidate_genes.R 
● F_STC1.R 

 
Measuring STC1’s response to ADH 

Immortalized renal proximal tubule epithelial cells (RPTEC/TERT1) were purchased from 
ATCC (CRL-4031) and cultured according to ATCC’s recommended culturing protocols. Cells were 
propagated and passaged, and independent experiments were performed on passages 9 and 13 (we refer 
to these independent experiments below as “batches”). On the day before each of the experiments, cells 
were trypsinized following ATCC protocols for this cell type, and plated into 6- or 12-well plates at 
~70-80% confluency. 

On the day of each experiment, cells were pre-treated for 20 minutes with IBMX (Cayman 
Chemicals 10008978) before being treating with 10 or 25 nM vasopressin (Sigma Aldrich V1005) with 
IBMX. For the first experiment/batch, we used PBS + IBMX as well the control and during the second 
experiment/batch we used PBS + DMSO as the control condition. After 24 hours of vasopressin 
treatment, cells were rinsed once with PBS and then lysed in RNA lysis buffer (Zymo Research R1050). 
RNA was purified using the Zymo Quick-RNATM Microprep Kit (R1050). We synthesized cDNA 
using the Applied Biosystems High-Capacity RNA-to-cDNATM Kit (ABI 4387406) and ran the qPCR 
using the PowerUpTM SYBR Green Master Mix (ABI A25741). We then used linear models to test for 
treatment effects on delta Ct values, controlling for experimental batch (treatment effect p-value for 
10nM and 25nM: 0.033 and 0.0042). We did not find any evidence that batch influenced our results 
(batch effect p-value for 10nM and 25nM: 0.9540 and 0.12142). 
 
Measuring biomarkers of kidney function and analyzing sources of variance 

We used LC-MS to measure creatinine and urea from 446 Turkana serum samples that were also 
genotyped on the Infinium Global Screening Array and passed our quality control filters (Table S12). In 
addition to our Turkana samples, each run included spike-ins of both creatinine and urea to calculate 
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standardized, absolute concentrations (CLM-311-1 UREA (13C, 99%) and DLM-1302-0.25 
CREATINE (METHYL-D3, 98%)). Water-soluble metabolite measurements were obtained by running 
samples on the Orbitrap Exploris 480 mass spectrometer (Thermo Scientific) coupled with hydrophilic 
interaction chromatography (HILIC). We used an XBridge BEH Amide column (150mm X 2.1 mm, 2.5 
uM particle size, Waters, Milford, MA) to prepare samples. The gradient was as follows: solvent A 
(95%:5% H2O:acetonitrile with 20 mM ammonium acetate, 20 mM ammonium hydroxide, pH 9.4) and 
solvent B (100% acetonitrile) 0min,90% B; 2min,90% B; 3min,75% B;7min, 75% B; 8min,70%,9min, 
70%B; 10 min, 50% B; 12 min, 50% B; 13 min, 25% B; 14 min, 25% B; 16 min, 0.5% B, 20.5 min, 
0.5% B; 21 min, 90% B; 25 min, 90% B. The flow rate was set to 150 mL/min with an injection volume 
of 5 µL and a column temperature of 25°C. The MS scans were completed in polarity switching mode to 
enable both positive and negative ions across a mass range of 58–1000 m/z, with a resolution of 
120,000. Data were analyzed using the EI-MAVEN software (v 0.12.0, Elucidata). Glomerular filtration 
rates were estimated for each individual from absolute creatinine levels using the CKD-EPI Creatinine 
Equation recommended by the National Kidney Foundation (https://www.kidney.org/content/ckd-epi-
creatinine-equation-2021). 

After performing the genotype filtering described in Low level processing of array genotype 
data, we retained 6 SNPs in the candidate region near STC1. For each of these SNPs, we used linear 
mixed effects models to test for an association between genotype (coded as 0, 1, or 2 copies of the minor 
allele) and each kidney function biomarker (creatinine, urea, or GFR). All models controlled for age, 
lifestyle, and a genetic relatedness matrix derived from the genome-wide, filtered array genotype data. 
Lifestyle was coded as urban, non-pastoralist (rural), or pastoralist (rural). To do so, we used the 
definitions in (12), which are briefly as follows: 1) pastoralist (rural) was defined as individuals that 
reported their main subsistence activity as pastoralism, that drink milk every day (i.e., that rely on their 
livestock for subsistence), and that live in Turkana county; 2) non-pastoralist (rural) individuals were 
defined as those that live in Turkana county but did not meet the criteria for category #1; and 3) non-
pastoralist (urban) individuals were defined as those who no longer practice pastoralism and reside in 
one of three cities included in our study—Nanyuki, Lodwar and Kitale. Linear mixed effects models 
were implemented in the R package EMMREML, followed by multiple hypothesis testing correction 
using a false discovery rate approach and a 10% FDR cutoff. To understand how lifestyle influences 
each kidney biomarker, we also ran a set of linear mixed effects models identical to those described 
above but that excluded any SNP information (see Table S13). 
 
Inferring the demographic history of the Turkana 

We used the “include-non-variant-sites” flag in GATK’s GenotypeGVCFs function to emit all 
callable loci in the Turkana genome (focusing on the high coverage samples only). This resulted in 
2,863,768,058 autosomal loci (26,009,619 biallelic SNPs), which were further pruned to obtain high 
quality sites and neutral regions. To obtain high quality sites, we employed filtering based on depth (DP) 
and the number of alleles that were genotyped. Specifically, we first calculated the mean depth across all 
sites (the field DP from the VCF file). The mean DP across all sites was 259.5, and a site was considered 
high quality if its DP was greater than 130. In addition, a site was considered high quality if it was 
genotyped (the field AN from the VCF file) in at least 50% of the dataset. The filtering resulted in 
2,664,308,333 autosomal loci. 

 To obtain neutral regions, we used the neutral explorer software (46). Specifically, we ran the 
software with the following parameters: 1) regions to exclude: known genes, segmental duplications, 
gene bounds, CNVs, spliced ESTs, self chain; 2) minimum region size = 200bp; 3) distance to nearest 
gene = 0.4cM; 4) recombination rate = 0.9cM/Mb; 5) genetic map = HapMap; 6) human diversity = 
Yoruba; 7) mask = strict; 8) minimum BG selection coefficient = 0.95. After filtering for loci that passed 
our quality filters and were in neutral regions, we were left with 44,921,784 sites (356,517 biallelic 
SNPs). 
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To infer demographic history, we ran the program DaDi (47) with three models (Figure S13): 1) 
the 1-Epoch model, which is a constant growth model; 2) the 2-Epoch model, which includes a 
population contraction or a population growth event; and 3) the 3-Epoch model, which includes two 
population contraction and/or growth events. For each model, we implemented 100 replicates. To 
visualize the fit of the different models to the empirical data, we used the inferred parameters to generate 
the site-frequency-spectrum.  

We found that the constant size model (1-Epoch) resulted in the worst likelihood (Table S15) 
and the site-frequency-spectrum generated using the parameters inferred from this model did not fit well 
to the empirical site-frequency-spectrum (Figure S13). Both the 2-Epoch model and the 3-Epoch model 
resulted in a similar likelihood and fit well to the empirical site-frequency-spectrum (Figure S14, Table 
S15). However, the 2-Epoch model is a more reasonable model, as the parameters inferred from the 3-
Epoch model are inconsistent with what we know about human populations. More specifically, an 
ancestral population size of >5 million is unreasonable, and the inferred bottleneck timing would be ~9 
million years ago—well before human-chimp divergence.  

 
Relevant scripts: 

● D1_emit_all.sh 
● See also: 

https://github.com/SexChrLab/Kenya_Selection_and_Demography/tree/master/Population_Histo
ry 

 
Demographic simulations with SLiM 3   

We used a recently developed supervised machine learning method (48) to understand the 
history of selection at the STC1 locus (Figure S15). In particular, we were interested in understanding: 1) 
whether the sweep involved a single adaptive allele (hard sweep) or multiple adaptive alleles (soft 
sweep), 2) if the sweep was soft, whether the alleles originated from recurrent new mutations (RNM) or 
from standing genetic variation (SGV), 3) the strength of selection (s), and 4) the timing of the onset of 
selection. Our method relies on a training set of summary statistics calculated from genomic data 
simulated under different evolutionary scenarios in SLiM 3 (49); the same summary statistics are then 
calculated for the test (focal) dataset. In particular, inferences are based on summary statistics describing 
patterns of nucleotide diversity, haplotype structure, and linkage disequilibrium, which are estimated 
across systematically varying genomic window sizes to capture sweeps across a wide range of selection 
strengths. For this analysis we focused on the 108 phased, high-coverage Turkana genomes and a ~1Mb 
region centered on the putatively selected region near STC1 (chr8:23,350,029 - 24,424,864 in hg19 
coordinates, which contains 3,538 biallelic polymorphic SNPs).  

Using SLiM 3, we simulated genomic datasets under all three modes of selection: 1) hard 
sweeps, where an adaptive allele was introduced after the onset of selection; 2) RNM soft sweeps, where 
an adaptive allele was introduced after the onset of selection and a rate of mutation μα toward new 
adaptive alleles was set for the selected site; and 3) SGV soft sweeps, where a neutral allele was 
introduced and followed until it reached frequency f0, at which point all copies of it in a population were 
converted into adaptive alleles. All simulations were run with uniform mutation and recombination rates 
of µ = r = 1.08 × 10-9. RNM sweeps were simulated with an adaptive mutation rate of 8.3×10-8 < μα < 
4.2×10-5 and SGV sweeps were simulated with an allele frequency at the onset of selection of 0.00004 < 
f0 < 0.1. μα and f0 were chosen randomly from a log-uniform distribution across their range of values. In 
all cases, we modeled a SNP under selection at the center of the simulated 1Mb region, and we assumed 
that adaptive alleles had selection coefficients > 0. Individuals homozygous for the wildtype allele were 
simulated to have fitness=1, individuals heterozygous for the adaptive allele had fitness=1 + hs, and 
individuals homozygous for the adaptive allele had fitness=1 + s. Selective sweeps were simulated with 
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selection coefficients of 0.001< s < 1.0 under both codominant (h=0.5) and dominant (h=1.0) genetic 
architectures. In all simulations, when the sweep reached a frequency of 80%, we sampled 216 
haplotypes from the population and calculated summary statistics from these data.  

Simulations used a recapitation strategy for computational efficiency. First, forward-time 
dynamics of positive selection were simulated in SLiM 3 with an effective population size of 30,000 
starting from a blank slate, without regard to the population’s past. Afterward, the coalescence simulator 
msprime (50) was used to complete the ancestral genealogy of each simulation from the output of SLiM. 
The 2-Epoch demographic model was implemented during this coalescence step of simulation: the 
population size changed in the coalescence model from 15,000 to 30,000 at 7,000 generations prior to 
sampling. Lastly, we dropped neutral mutations on the resulting tree to generate the full dataset of 
neutral polymorphism around the sweep locus.  

 
Applying a convolutional neural network approach 

As input for the supervised machine learning model (a convolutional neural network, CNN), 
summary statistics of genetic variation were calculated for each simulation across base-pair subwindows 
for varying subwindow sizes. This analysis used 13 subwindow sizes and 13 center positions, with10 kb 
being the smallest subwindow size and the largest subwindow size covering the entire region. For each 
subwindow, seven summary statistics were calculated: the average nucleotide heterozygosity π, 
Tajima’s D (51), the number of SNPs in the window, the number of distinct haplotypes in the window, 
H1, H12, and H2/H1 (52). Statistics were normalized linearly within pre-defined bounds; values outside 
the bounds were truncated to the minimum or maximum value for each statistic as appropriate. The 
same process of calculating and normalizing summary statistics was used to transform the empirical 
genotype data of SNPs around the STC1 locus in order to provide it as input for the machine learning 
model. 

For each of the three sweep modes (hard, RNM, and SGV sweeps), we used 5000 simulations as 
input for the CNN. A random 80% of the simulations were used for training and the rest were set aside 
for validation. We applied CNNs with two hidden convolutional layers as described in (48). One 
network was trained for inference of selection strength and another was trained for inference of sweep 
mode (hard, RNM, or SGV, respectively). 10 replicates of each network were trained on the same data 
for 50 epochs, using a batch size of 64. After training, models were used to make inferences on the 
empirical dataset. This process was repeated separately for simulations of codominant and dominant 
sweeps. CNNs were implemented in PyTorch and trained using the fastai v2.0 framework (53) with a 
one-cycle learning policy (54). 

Finally, we compared our CNN results to an additional method that relies on different aspects of 
the sweep signature and assumes a different underlying evolutionary model. Specifically, we used 
CLUES, which performs a maximum likelihood estimation of the allele frequency trajectory and 
selection coefficient at a given site (55). To do so, it uses the posterior distribution of coalescence trees 
in the ancestral recombination graph (ARG) of the region. To run CLUES, we estimated the ARG with 
Relate, and we generated a sample of 3000 ARGs from their posterior distribution (56). CLUES was 
then run separately on the local coalescence tree for each of 30 candidate SNPs (focusing on the 30 loci 
closest to the center of the STC1 candidate region). For each site, selection strength and allele frequency 
trajectory were calculated for the major allele (Figure S16). CLUES was then run using 1000 of the 
samples from Relate as a burn-in followed by thinning to 1 out of 100 of the remaining samples.   

       
Identifying traits under polygenic selection 

Given the polygenic nature of complex traits (57), we also searched for evidence of polygenic 
adaptation on cardiometabolic and renal system biomarkers using the approach described in (43). To do 
so, we used sets of SNPs previously associated with 29 urine and serum biomarkers via GWAS in UK 
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Biobank (Table S15). These GWAS summary statistics were derived specifically from meta-analyses 
conducted across diverse ancestries (downloaded from https://pan.ukbb.broadinstitute.org/). 

To test for polygenic selection on a particular quantitative trait, we first obtained all 50kb 
windows associated with a given trait and summarized their genomic properties. We split the genome 
into non-overlapping 50 kb windows, and for each window calculated 1) the total number of SNPs, 2) 
the number of conserved SNP positions (i.e., those that fell within GERP conserved elements (58)), 3) 
the average recombination rate (using the 1000 Genomes Phase 3 genetic map), and 4) the median 
Fisher’s combined score (FCS). The per-SNP FCS was calculated as the sum, over our three selection 
statistics, of -log10(rank of the statistic/number of SNPs tested). Because the PBS and XtX statistics were 
generally highly correlated, we also calculated the median FCS using just the |iHS| and XtX statistics so 
as not to overweight the two tests that focus on allele frequency differences. 

We considered a 50 kb window to be associated with a given quantitative trait if the window 
contained a significant SNP (p<5x10-8 from the meta-analysis across ancestries). After obtaining all 50 
kb regions associated with a given trait, we generated a null distribution by randomly sampled x 
windows (x being the number of windows associated with the trait) among windows with a similar 
number of total SNPs, similar number of conserved SNPs, and similar recombination rate. To generate 
this null distribution, we only sampled from windows that were not associated with the focal trait, and 
we defined “similar” as within the same quartile of the total SNP, conserved SNP, or recombination rate 
distribution. We performed 1000 samples for a given trait, and then computed a p-value for each trait by 
calculating the proportion of resampled windows for which the median FCS value was higher than that 
observed for the real trait-associated windows. All p-values were adjusted for multiple testing and traits 
passing a 1% FDR were considered to be under polygenic selection (Table S15).  
 
Relevant scripts: 

● P1_UKBB_files.sh 
● P2_polygenic_selection.R 
● F_polygenic_selection.R 

 
Transcriptomic data generation 
 Approximately 6mL of whole blood was collected in an EDTA tube by the THGP, and 
peripheral blood mononuclear cells (PBMCs) were then isolated using the SepMate protocol 
(STEMCELL Technologies). Isolated PBMCs were stored in RNALater and placed in a cooler box with 
frozen ice packs for 1-7 days, until the sample could be stored long-term at -20C. Samples were later 
thawed and extracted with the Zymo Quick-RNA kit. We also used ~10ul of whole blood from each 
EDTA tube to create a blood smear following standard protocols. This smear was fixed, subject to 
Wright-Giemsa staining (Camco brand stain pack), and viewed under a microscope; 100 total cells were 
counted to estimate the proportion of eosinophils, basophils, neutrophils, lymphocytes, and monocytes.  

mRNA-seq libraries enriched for the 3’ end of the mRNA molecules were prepared using 
TM3’seq (59). In brief, 10ul of input mRNA was used for first strand cDNA synthesis. This step was 
primed with the Tn5Me-B-30T oligo that binds to the polyA tail of mRNA molecules and has adapter-B 
sequence; together, these characteristics allow for 3’ enriched libraries. Three rounds of PCR were used 
for cDNA amplification, followed by cDNA tagmentation using homemade Tn5 transposase pre-
charged with adapter-A. Final library amplification was done for 12 PCR cycles using Illumina’s i5 and 
i7 primer sequences that are complementary to the adapter-A and adapter-B sequences. As a result, only 
3’ cDNA fragments are amplified. The step by step TM3’seq protocol can be found in Suppl. File 1 of 
Pallares et. al. (59). Following the final library amplification step, 2µl of the final PCR amplification 
reactions were pooled by plate and size selected using a double-sided Agencourt AMPure XP bead 
(Beckman Coulter) cleanup approach. Pooled and cleaned libraries were visualized on an Agilent 
TapeStation, and sequenced using 100 bp SE reads on the Illumina NovaSeq S2 platform at the 
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Genomics Core Facility of the Lewis-Sigler Institute for Integrative Genomics at Princeton University. 
Protocols and subroutines for mRNA extraction, cDNA synthesis, and library preparation were 
implemented in the CyBio® FeliX liquid handling robot and are available upon request. 
 
Transcriptomic analyses 

Each mRNA-seq sample was trimmed for low quality bases and adapter contamination using 
cutadapt (17). Trimmed reads were then mapped to the human reference genome (hg38) using STAR 
(60) and filtered for unique mapping. Using our set of uniquely mapped reads, we counted the number 
of reads that overlapped each gene using HTSeq (61) and the GENCODE v25 GTF 
(https://www.gencodegenes.org/human/release_25.html). If a sample had fewer than 250,000 reads 
mapped to protein coding genes, we excluded it from further analyses.  

We translated our raw count data into transcripts per million (TPM), and filtered the dataset to 
exclude non-protein coding genes as well as genes that were lowly expressed (median TPM<1). This 
filtering left us with 8438 genes. Next, we used the voom function in the R package limma (62) to 
normalize the count data. To remove variance attributed to technical batch effects, we used ComBat (63) 
to regress out sequencing lane. We then fit linear mixed effects models in the R package EMMREML to 
ask whether the expression of each gene was associated with lifestyle (urban or rural as defined in (12), 
and grouping pastoralists and non pastoralists together because of sample sizes and previous work (12)). 
All models included a pairwise genetic relatedness matrix derived from the array data and also 
controlled for fixed effects of age, the first PC of the genotype matrix, and cell type heterogeneity. More 
specifically, we created blood smears for all individuals included in the transcriptomic dataset and used 
a Wright-Giemsa stain approach to estimate the proportion of neutrophils, basophils, eosinophils, 
lymphocytes, and monocytes for each individual. We performed PCA on these 5-part differentials and 
included the first PC as a covariate in our differential expression analyses, because this PC explained 
89.2% of the variance in cell type heterogeneity.  
 We extracted the p-value and effect size estimates for the lifestyle effect from each model and 
corrected for multiple hypothesis testing using a false discovery rate approach (64) and a 10% FDR 
cutoff (which left us with 490 differentially expressed (DE) genes). We then used gene set enrichment 
analyses (GSEA) (65) to ask whether certain biological pathways were overrepresented among the set of 
genes with the strongest evidence for differential expression. Specifically, we sorted our gene list by 
effect size (output from EMMREML) and used the “gseGO” function in the R package clusterProfiler 
(66) to perform GSEA.  

Finally, we intersected our list of DE genes (n=490, FDR<10%) and a list of non-DE genes 
(n=7608, FDR>20%) with the set of SNPs tested for signatures of selection. We considered a SNP to be 
associated with a given gene if it fell within the gene body as well as within 100 kb of the transcription 
start or end site. We then ran linear models asking whether SNPs near DE versus non-DE genes differed 
in their iHS, PBS, or XtX statistics. All models controlled for gene expression level in the form of gene 
expression deciles (Table S19). 
 
Relevant scripts: 

● E1_process_RNAseq.R 
● E2_DE_selection_overlap.R 

 
Ethics approval 

This study was approved by Princeton University’s Institutional Review Board for Human 
Subjects Research (IRB #10237), Maseno University’s Ethics Review Committee 
(MSU/DRPI/MUERC/00519/18), and Arizona State University’s Institutional Review Board for Human 
Subjects Research (IRB ID: STUDY00004874). We also received county-level approval for research 
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activities, and research permits from Kenya’s National Commission for Science, Technology and 
Innovation (NACOSTI/P/18/46195/24671).  
 
Data and code availability 

Genomic data collected from indigenous groups is subject to their sovereignty. This includes 
their determination of uses that benefit the communities and/or align with their priorities, that protect 
against the risk of identification of subjects or groups, and that minimize uses with potentially 
stigmatizing interpretations. Therefore, we worked with study communities to establish a formal process 
for data sharing and secondary research proposals. Specifically, the data reported here are available to 
qualified researchers who sign a data use agreement approved by all stakeholders. This process involves: 
1) submission of a proposal for secondary research that aligns with human subjects approvals and the 
general evolutionary and health-related scientific interests of the study communities, and that addresses 
data management and confidentiality as well as explicit benefits sharing (i.e., how access to genomic 
data and/or the proposed research will benefit study communities); 2) review of the proposal by a board 
comprised of representatives from Turkana communities, Kenyan scientists, and members of the THGP 
and ASU teams; and 3) individual and institutional approval of a data use agreement. The data are 
hosted on dbGap at accession numbers phs002219.v1.p1 and [TBD], and specific procedures for 
applying for data access can be found there. 

The genomic data collected from the ASU team are hosted on dbGap under the accession 
number phs002219.v1.p1. This data is under general research use and requires a letter of collaboration. 

Analysis code is available at https://github.com/AmandaJLea/Turkana_selection; 
https://github.com/SexChrLab/Kenya_Selection_and_Demography/tree/master/Population_History; and 
https://github.com/ayroles-lab/turkana-stc1. 
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SUPPLEMENTARY FIGURES 
 
Figure S1. Map of current homelands/major areas for populations included in this study. We note 
this map was created by the authors based on their personal knowledge as well as the literature, it is only 
meant to provide a general idea of group locations (rather than highly accurate and specific boundaries).  
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Figure S2. Imputation accuracy in low/medium coverage whole genome sequencing (WGS) data is 
higher with a one panel approach. (A-B) Scatterplots show the proportion of sites to impute for 
low/medium coverage samples versus the proportion of correctly imputed (concordant) genotypes 
estimated by cross-validation within IMPUTE2. The concordance estimates are derived from an 
imputation pipeline that uses (A) two reference panels (1000 Genomes and Turkana high coverage WGS 
data) or (B) one panel (Turkana high coverage WGS data). Blue dots represent samples from individuals 
of self-reported Turkana ancestry and yellow dots represent samples from individuals belonging to other 
groups. (C) Concordance estimates from the one panel versus two panel approach (dashed line 
represents x=y).  
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Figure S3. Principal components analysis of whole genome sequencing data (focusing on samples 
included in this study). (A) Loadings for the top two principal components (PCs), colored by self-
reported ancestry group. Data are also divided by coverage group (high versus low/medium) and by 
sequencing location (Princeton versus ASU). Inset shows the percent variance explained (PVE) for each 
of the top 10 PCs. (B) Boxplots of principal components loadings broken down by self-reported ancestry 
group and by sequencing location. We do no observe any systematic biases in genetic variation as a 
result of sequencing location.   
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Figure S4. Genetic variation does not systematically differ by sequencing location or coverage. Y-
axis shows the FDR-corrected p-value from a Wilcoxon signed-rank test. Each test asked whether there 
were differences between the principal component loadings from a PCA on the imputed, filtered 
genotype call set, focusing on contrasts between: 1) high coverage samples sequenced at Princeton 
versus ASU (blue dots) or 2) high versus low/medium coverage Turkana samples (yellow dots). Dashed 
line represents an FDR cutoff of 10%. 
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Figure S5. Principal components analysis of array genotype data. (A) Loadings for the top two 
principal components (PCs), colored by self-reported ancestry group (n=782). Inset shows the percent 
variance explained (PVE) for each of the top 10 PCs. (B-C) Boxplots of principal components loadings 
broken down by self-reported ancestry group.  

 
  

-0.2

-0.1

0.0

0.1

-0.2 -0.1 0.0
PC 1

P
C

 2

Group
El Molo
Ik
Karamojong
Masaai
Ngitepes
Pokot
Rendille
Samburu
Turkana

2 4 6 8 10

1.
5

2.
5

3.
5

PC

P
V
E

PC

PV
E

-0.20

-0.15

-0.10

-0.05

0.00

0.05

E
l M

ol
o Ik

K
ar
am
oj
on
g

M
as
aa
i

N
gi
te
pe
s

P
ok
ot

R
en
di
lle

S
am
bu
ru

Group
P

C
 1

Group
El Molo
Ik
Karamojong
Masaai
Ngitepes
Pokot
Rendille
Samburu-0.2

-0.1

0.0

E
l M

ol
o Ik

K
ar
am
oj
on
g

M
as
aa
i

N
gi
te
pe
s

P
ok
ot

R
en
di
lle

S
am
bu
ru

Group

P
C

 2

Group
El Molo
Ik
Karamojong
Masaai
Ngitepes
Pokot
Rendille
Samburu

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Lo
ng
itu
de

La
tit
ud
e

P
C
1

P
C
2

P
C
3

P
C
4

P
C
5

Longitude

Latitude

PC1

PC2

PC3

PC4

PC5 -0.15

-0.10

-0.05

0.00

0.05

35 36 37
Longitude

P
C

 1

-0.10

-0.05

0.00

0.05

0.10

0 1 2 3 4 5
Latitude

P
C

 2

A B C

A B C



 24 

Figure S6. Ancestry group and geography predict genetic variation. Percent variance explained 
(PVE) by (A) self-reported ancestry group and (B) location for the top 10 principal components (PCs) of 
the array genotype data (n=782). PVE is equivalent to the R2 from a linear model asking whether each 
PC was predicted by group or by longitude and latitude of the sampling location. Location analyses were 
conducted using only Turkana samples. 
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Figure S7. Cross-validation error (CV) obtained from the program ADMIXTURE run with 
different values of K. ADMIXTURE was run five times for each value of K with a different random 
seed. 
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Figure S8. Global ancestry analysis with ADMIXTURE. Ancestry proportions inferred from the program ADMIXTURE run with different 
values of K. Specifically, panel A shows results from K=3 and panel B shows results from K=4 applied to the whole genome sequencing 
dataset. Panel C shows results for K=3 applied to the array dataset. Each bar represents an individual, and the height of the colored bar on the 
y-axis denotes the proportion of the genome assigned to a given ancestry component. Populations larger than n=10 were randomly 
downsampled for plotting. The number of colors correspond to the number of a prori defined ancestry components (K); colors are recycled 
across panels for visualization. Acronyms correspond to 1000 Genomes population codes as follows: CEU=Utah residents of Northern 
European ancestry, YRI=Yoruba; LWK=Luhya; MKK=Masaai. 
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Figure S9. Low levels of European ancestry in the Turkana. A) Scatterplot shows the European 
ancestry proportions estimated from RFMix versus ADMIXTURE. This comparison focuses only on 
high coverage Turkana WGS samples, because RFMix requires phased genotype data. B) Distribution of 
European ancestry proportions estimated from ADMIXTURE (dashed line) versus RFMix (sold line). 
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Figure S10. Principal components analysis of whole genome sequencing data (combined with data 
from the 1000 Genomes Project). (A) Loadings for the third and fourth principal components (PCs), 
colored by population. The loadings for the first two principal components are shown in the main text. 
(B-C) Boxplots of PC loadings broken down by population. 
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Figure S11. HiC data from tissues that robustly express STC1. Contact maps were obtained from 
Wang et al. 2018 (PMID: 30286773) and represent tissues that express STC1 in the GTEx dataset. 
Coordinates are given in hg19 and the STC1 gene body as well as the candidate region of interest are 
highlighted.  
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Figure S12. Minimal genetic variation in the STC1 candidate region in Europeans. A) Minor allele 
frequencies for SNPs within the STC1 candidate region for 1000 Genomes African (AFR) and European 
(EUR) populations. Coordinates are in hg19. Only 5 SNPs in the candidate region have an average 
MAF>5% in Europeans. Acronyms correspond to 1000 Genomes population codes as follows: 
ACB=African Caribbean; ASW=African American; CEU=Utah residents of Northern European 
ancestry; ESN=Esan; FIN=Finnish; GBR=British; IBS=Iberian; LWK=Luhya; MSL=Mende; 
TSI=Toscani; YRI=Yoruba. B) Allele frequencies for the same SNPs in the populations sampled as part 
of this study. The “minor” allele is matched to panel A, and therefore some SNPs have minor alleles 
>50% because they are the major allele in the focal East African populations.  
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Figure S13. Overview of demographic scenarios explored for the Turkana population. 
Demographic inference was performed with DaDi and focused on SNPs within neutral regions that were 
genotyped in the high coverage Turkana sample set (n=108). 
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Figure S14. Site frequency spectra calculated from the empirical data (black) versus under different 
demographic scenarios (colors). The two and three epoch models provide a good visual fit to the 
empirical site frequency spectrum. 
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Figure S15. Using a convolutional neural network (CNN) to infer the mode, strength, and timing 
of selection. A) Diagram of machine learning-based method used to infer properties of the selective 
sweep at STC1. B) Results of applying 10 replicate CNNs trained to infer the selection coefficient (s) on 
the STC1 locus, under the assumption that the selective sweep is either dominant or codominant.  
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Figure S16. Results of applying CLUES to SNPs within the STC1 candidate region. Brighter 
squares represent higher probability. The selection coefficient (s) estimated by CLUES is given in the 
plot.  
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Figure S17. Biological processes enriched within the set of genes differentially expressed by 
lifestyle (urban versus rural Turkana; n=230). Gene set enrichment analysis was used to identify 
significant categories, and the default settings in the function “emapplot” from the R package enrichplot 
were used for plotting.  
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Figure S18. Biological processes enriched within the set of genes differentially expressed by 
lifestyle (urban versus rural Turkana; n=230). Gene set enrichment analysis was used to identify 
significant categories, and the default settings in the function “emapplot” from the R package enrichplot 
were used for plotting.  
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