Dissecting unsupervised learning through hidden Markov modelling in electrophysiological data

Laura Masaracchiaa, Felipe Fredesb, Mark W. Woolrichc and Diego Vidaurrea,\,c

a Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
b Center for Proteins in Memory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
c Oxford Centre for Human Brain Analysis, Psychiatry Department, Oxford University, Oxford, UK

*Corresponding author: laurama@cfin.au.dk

\section*{ABSTRACT}

Unsupervised, data-driven methods are commonly used in neuroscience to automatically decompose data into interpretable patterns. These patterns differ from one another depending on the assumptions of the models. How these assumptions affect specific data decompositions in practice, however, is often unclear, which hinders model applicability and interpretability. For instance, the hidden Markov model (HMM) automatically detects characteristic, recurring activity patterns (so-called states) from time series data. States are defined by a certain probability distribution, whose state-specific parameters are estimated from the data. But what specific features, from all of those that the data contain, do the states capture? That depends on the choice of probability distribution and on other model hyperparameters. Using both synthetic and real data, we aim at better characterising the behaviour of two HMM types that can be applied to electrophysiological data. Specifically, we study which differences in data features (such as frequency, amplitude or signal-to-noise ratio) are more salient to the models and therefore more likely to drive the state decomposition. Overall, we aim at providing guidance for an appropriate use of this type of analysis on one or two-channel neural electrophysiological data, and an informed interpretation of its results given the characteristics of the data and the purpose of the analysis.

\section*{1. INTRODUCTION}

In empirical neuroscience, we often use supervised methods of analysis to investigate the mechanistic underpinnings of cognitive processing. These are supervised in the sense that they assume a certain preconception of the patterns of interest, and search for their expressions in the data accordingly. Some examples are decoding analysis (King and Dehaene, 2014; Quiroga and Panzeri, 2009; Haynes and Rees, 2006), analyses of evoked response potentials (ERP; Picton et al., 2000; Herrmann and Knight, 2001; Kotchoubey, 2005) and methods to characterise oscillations (Buzsáki and Draguhn, 2004; Donoghue et al., 2020; Donodhue et al., 2022). Overall, supervised approaches rely on prior knowledge and definitions of the features of interest, which could potentially be incomplete or imprecise.

An alternative approach is the use of data-driven, unsupervised models to automatically extract patterns from brain data without a prior definition of such patterns. For example, a clustering algorithm run on the time series data would automatically find a collection of patterns that was not defined beforehand, and it is then the researcher’s task to determine what these patterns might mean neurobiologically. While unsupervised methods are potentially less biased and therefore
can have a better chance of finding new information, they may also be more difficult to interpret. For this reason, it is important to, at least, have a clear understanding of what elements in the data are more salient for the chosen unsupervised algorithm, in order to elucidate what a given decomposition is really capturing.

We focus on the Hidden Markov Model (HMM; Rabiner, 1989), that have been used to investigate various domains, such as resting state dynamics in wakefulness (Vidaurre et al., 2017; Vidaurre et al., 2018; Karapanagiotidis et al., 2020; Baker et al., 2014; Shappel et al., 2019) and sleep (Stevner et al., 2019), perceptual processing (Vidaurre et al., 2019), memory replay (Higgins et al., 2021) and higher-order cognition (Baldassano et al., 2018). These studies are examples of how the HMM can automatically identify patterns of activity (so-called states) without the need of providing beforehand a stringent, explicit definition of what would constitute a meaningful pattern. But what aspects of the data are more salient to the model, i.e., what is really driving the state inference? That depends on the choice of the observation model, which is the probability distribution used to represent the states. Two different observation models might have different views of saliency (meaning that different modulations in the data are considered more important for different models), and therefore behave differently. Often, the choice of one model over another is left to trial and error. While empirical comparisons have been made in the past between different observation models for specific purposes (Quinn et al., 2019), no study has rigorously investigated what specific features within the data are the different state definitions most sensitive to. We reason that a better understanding of the various alternatives is important to fully leverage the benefits of this type of unsupervised analysis and interpret their outputs.

Specifically, focusing on raw, low-dimensional (one or two channels) electrophysiological data, we explore two types of HMM: the HMM-MAR, where the states are multivariate autoregressive models (Vidaurre et al., 2016); and the HMM-TDE (time-delay embedded), where the states correspond to autocovariance patterns in the signal (Vidaurre et al., 2018). High-dimensional data, where the focus is on finding complex network-level modulations (and where the HMM-TDE is preferred due to the difficulties of the HMM-MAR to scale up —see Vidaurre et al., 2018) are not considered here.

We first use synthetic data to investigate how sensitive the two observation models are to variations in frequency, amplitude, signal-to-noise ratio, and amount of data. Then, we analyse how these characteristics affect the estimation of the states in the HMMs. Finally, we examine the behaviour of the models on two different real data modalities, LFP from mice in resting state and MEG from humans performing a simple motor task. In summary, our results show what to expect from the HMM states according to data conditions and analysis settings. On these grounds, we provide some recommendations on which model to use depending on the data and the purpose of the analysis.

2. METHODS AND MATERIALS

Using both real and simulated electrophysiological data, this study investigated the behaviour of two varieties of the HMM: the HMM-MAR (Vidaurre et al., 2016) and the HMM-TDE (Vidaurre et al., 2018). First, a sensitivity analysis on the observation models (MAR and TDE) was conducted, with respect to different data features and model hyperparameters. Secondly, the full HMMs’ behaviour was assessed, using both synthetic and real electrophysiological data: LFP data from
a mouse hippocampus (during wakeful resting) and MEG data of human subjects performing a simple button press task. A schematic of the study is shown in Figure 1.

2.1 DATA

2.1.1 Synthetic data

Synthetic, stationary, one-channel signals

We tested the stand-alone observation model sensitivity to different data features using single-sinusoidal (stationary) signals, defined by frequency f, sampling frequency F, signal length T,

Figure 1: Scheme of the workflow, including data, analysis type and goals of each block.
amplitude a, plus some random Gaussian noise, parametrised by its variance v. While F was kept constant, a range of values was established for the other features, and stationary sinusoids were sampled with all the combinations of the different features’ values. Specifically, f ranged from 0.5 to 45 Hz in steps of 0.02 Hz, a ranged between 0.5 and 10.5 (arbitrary units) in steps of 0.5 for the MAR model, and between 0.5 and 25 in multiplicative steps (proportions of 5.0) for the TDE model, v was either 0.5 or 1.0, and T was 2, 5, 10 or 15 seconds. F was 250 Hz in all cases (see Figure 2a for some examples).

Synthetic, non-stationary, one-channel signals

We used synthetic, non-stationary, one-channel signals to explore how the HMM-MAR and HMM-TDE segmented the time series into states visits (i.e., how they defined states and assigned a state probability per data point). The non-stationary oscillatory signals were created in such a way that signals had time varying frequency (ranging between 0.1 and 45.0 Hz) and amplitude (ranging between 0.1 and 10.0). Note that this generative model is more general (i.e., with more degrees of freedom) than the HMM, which assumes signals with quasi-stationary periods of sustained oscillations. Specifically, the instantaneous frequency $f(t)$ and instantaneous amplitude $a(t)$ were generated as two independent random walks, bounded within the chosen frequency and amplitude ranges, and where the step size at each time point was drawn from a normal distribution. The non-stationary, oscillatory signals were synthesized as a unique session of $T=50000$ data points, with sampling frequency $F = 250$ Hz, and noise variance $v = 1.0$ (see Figure 3a for an example), and then fed to the HMMs. The simulated session was then divided into $N=100$ trials of $t_N=500$ timepoints each, to ease a cross-validation scheme for our prediction analysis (see Section 2.3.2 for details).

Synthetic, non-stationary, two-channel signals

The HMMs were then tested on two-channel data showing time-varying between-channel coherence (to simulate simplified functional connectivity in the data). In particular, the two periodically coherent channels, x_1 and x_2, were generated combining three independent, non-stationary, one-channel signals (sampled as detailed above) a, b and c, as follows:

$$x_1(t) = [1 - \rho(t)]a(t) + \rho(t)c(t), \quad x_2(t) = [1 - \rho(t)]b(t) + \rho(t)c(t)$$

where $\rho(t)$ modulates the channels similarity at each time point, and was generated as a smooth square wave (between 0 and 1) with a 4 seconds (1000 points) period. This way, when $\rho(t) = 1$ the two channels were equal to $c(t)$ and therefore maximally coherent; however, when $\rho(t) = 0$, the two channels corresponded, respectively, to $a(t)$ and $b(t)$, which were independently generated —but, crucially, not forced to be strictly uncorrelated, and hence they could still exhibit some residual correlation due to sampling variability. In this sense, $\rho(t)$ was not a real measure for coherence, and we adopted instead the two channels’ instantaneous empirical correlation $r(t)$, computed within a sliding window, as a surrogate measure of the ground-truth channels’ coherence. The sliding window’s size was chosen such that $r(t)$ matched best $\rho(t) = 1$, i.e., when the two channels were actually the same signal, and their ground-truth coherence was known. Again, the data were generated as a continuous session of $T=50000$ points (see example in Figure 4a), fed to the HMMs and then reshaped into $N=100$ trials of $t_N = 500$ points for the prediction analysis (see below).

2.1.2 Real data
LFP data

Wakeful resting state data were collected for 30 mins from a mouse’s hippocampus, using intracranial (Neuropixel) recordings. We used two channels from the array of 385 neuropixel electrodes for our tests. These data are part of a yet unpublished dataset, but are available upon request.

In detail, C57BL6/J male mice were first anesthetized with isoflurane (1% in oxygen) and placed in a stereotaxic apparatus (Kopf, California). A craniotomy was performed, centered in AP: -3.2, ML: 3 coordinates from bregma. Then, a head fixation crown (Neurotar, Helsinski) was implanted and secured with UV curating cement. Finally, a ground wire was implanted in the superficial layers of the cerebellum. The exposed craniotomy was covered with silicone (Kwik-cast, WPI) for protection. Meloxicam (5 mg/kg) were injected subcutaneously for three days after the surgery for pain and inflammation relief. The animals were allowed to recover for five days with food and water ad libitum. Then they were handled twice a day and placed in the head fixing apparatus for increasing times (10 mins to 40 mins), for 6 days to reduce stress. In the 7th day, the animal was head-fixed, and the silicone removed from the craniotomy. Then, a Neuropixel 2b probe was inserted at 1μm/second. The probe was inserted a total of 4 mm corresponding to the first 385 recording sites of the probe. These spanned secondary visual cortex and ventral dentate gyrus. After 15 mins, LFP data was filtered (0.5-1000 Hz), amplified and digitized (2.5 kHz). Data was acquired for 30 mins, while the animal was in resting state, in darkness. For our analyses, we used 2 channels, chosen such that their activity was not very correlated, from the hippocampus of one mouse and downsampling the data to 250 Hz.

MEG data

The MEG data used in this study were collected by O’Neill et al. (2015), where eight subjects were instructed to perform a button press with the index finger of their left hand using a keypad, roughly every 30 seconds and without counting the time in between button presses. Total scanning time was 1200 seconds per subject. The data were acquired using a 275 channel CTF whole-head system (MISL, Conquitlam, Canada) at a sampling rate of 600 Hz with a 150 Hz low pass anti-aliasing filter. Synthetic third order gradiometer correction was applied to reduce external interference. The data were converted to SPM8 and downsampled to 200 Hz. We used the same preprocessing pipeline as in Vidaurre et al., (2016). After the removal of artifacts related to eye-blink and heartbeat with Independent Component Analysis (ICA; Hyvärinen and Oja, 2000), the data were band-pass filtered between 1 and 48 Hz, and source-reconstructed to the two primary motor cortices (M1).

2.2 MODELS

2.2.1 The Hidden Markov Model (HMM)

The Hidden Markov Model (HMM) is a family of probabilistic models describing time series data as a sequence of K states (Rabiner, 1989). Each state corresponds to a different probability distribution (also known as observation model), belonging to a pre-specified family of probability distributions (e.g., Gaussian). The HMM inference estimates, in a data-driven fashion, the state parameters, the probability of each state being active per time point (state time course), the transition probability matrix (i.e., the probability of changing from one state to another, and of remaining in the same state), and the initial state probabilities (i.e., the probability of each state at trial start).
Here two types of HMM were explored, the HMM-MAR (Vidaurre et al., 2016) and the HMM-TDE (Vidaurre et al., 2018), each with a different observation model (see below). Both are implemented in the HMM-MAR toolbox, publicly available on GitHub. In our analyses, we manipulated:

- The respective model hyperparameters: the order P for the HMM-MAR and the lags structure for the HMM-TDE, defined by the width L and the inter lags steps S (see below for definitions).
- The prior probability of remaining in the same state as opposed to moving to another state, parametrised by the Dirichlet distribution concentration parameter, denoted as δ.
- The number of states K.

We used non-parametric estimations of the state spectra and coherence.

2.2.2 Observation Models

Multivariate Autoregressive (MAR) observation model

Given a multichannel time series \mathbf{y}, the MAR model model the signal at each data point y_t as a linear combination of previous time points $(y_{t-1}, ..., y_{t-P})$, given the generative model:

$$ P(y_t) \sim N \left(\sum_{j=1}^{P} y_{t-j} W_j, \sigma^2 \right), \forall t $$

where W are the autoregressive coefficients, σ^2 is the noise variance, and P is the autoregressive order, which determines the spectral resolution of the model. For a given choice of P, Bayesian inference is used here to estimate W and σ^2, given the data.

In the HMM-MAR, each state's probability distribution is represented by a set of coefficients $W^{(k)}$ per state k, as per:

$$ P(y_t|x_t = k) \sim N \left(\sum_{j=1}^{P} y_{t-j} W^{(k)}_j, \sigma^2 \right), \forall t, $$

where x_t is a hidden variable indicating the state active at time point t; x_t is also estimated from the data.

When dealing with one-channel signals, we will just refer to the MAR model as autoregressive model or AR (and, correspondingly, HMM-AR).

Time-Delay Embedded (TDE) observation model

Instead of modelling the probability of observing every time point of the data, the TDE models the autocovariance of the signal around time point t. The relevant hyperparameter here is the lag structure, defined by L (the width of the signal's window to consider at each time point) and S (how many steps separate each lag), as per $[-L, -L+S, ..., 0, ..., L-S, L]$. Mathematically, given the expansion $\mathbf{Y}_t = (y_{t-L}, ..., y_t, ..., y_{t+L})$, the model is defined as Gaussian:

1. [GitHub repository](https://github.com/OHBA-analysis/HMM-MAR)
2. In the HMM-MAR toolbox, this is specified with the `DirichletDiag` option.
3. Function `hmnspectramt()` in the toolbox.
\[P(Y_t) \sim N(0, \Sigma), \forall t, \]
where \(\Sigma \) is the autocovariance of the signal encoding linear relations across regions and time points within the window around \(t \). The HMM-TDE is then defined as

\[P(Y_t | x_t = k) \sim N(0, \Sigma^{(k)}). \]

2.3 ANALYSES

Two types of analysis were performed: first, a sensitivity analysis on the observation models with respect to data features, as well as amount of training data and model hyperparameters; and second, a prediction analysis on the full HMM distributions assessing the generality of the estimation of the content of the states, as well as a permutation testing analysis to confirm the results.

2.3.1 Sensitivity analysis on the observation models

The sensitivity of the two observation models, MAR and TDE, to different data features was tested: specifically, we assessed how the manipulation of frequency, amplitude and noise variance, as well as amount of data and model hyperparameters (the order for the MAR \(P \) and the TDE lags manipulated by \(L \), while \(S \) was kept to 1) affected the estimations of \(W \) and \(\Sigma \) respectively. Two independent sets of synthetic stationary data (as described in Section 2.1.1) were generated, both containing signals with all the above-mentioned feature combinations. One set was used for training the models and one for testing them. Since this analysis involved one-channel stationary signals, we will refer to the MAR model as AR. For every signal \(y \) from the training set, the model coefficients \(W \) (for the AR) and \(\Sigma \) (for the TDE) were estimated. We will refer to these as \(W(y) \), and \(\Sigma(y) \). The trained models were then tested on one target signal \(z \) from the test set. The capacity of the models to describe this test signal was measured by means of the log-likelihood ratio (of trained vs tested signal): this gave an indication of how similar training and test signals were, according to the trained models. Being model-dependent, the log-likelihood ratio expresses the sensitivity of each model with respect to each feature.

For the AR model, the likelihood of the target test signal \(z \) to be distributed as a training signal \(y \) is:

\[L(z | W(y)) = \prod_{t} L(z_t | W(y)) = \prod_t \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left[-\frac{(z_t - \mu_t)^2}{2\sigma^2} \right], \]

where \(\mu_t = \sum_{j=1}^{\rho} z_{t-j} W(y)_j \) is the prediction from the autoregressive model, and \(\sigma \) is the noise standard deviation, also estimated from the data.

For the TDE model, given \(Z_t = (z_{t-L}, ..., z_t, ..., z_{t+L}) \), the likelihood of \(Z_t \) to be distributed according to \(N(0, \Sigma(y)) \), for a training signal \(y \), is:

\[L(Z_t | \Sigma(y)) = \frac{1}{\sqrt{2\pi |\Sigma(y)|}} \exp \left[-\frac{1}{2} Z_t^T \Sigma(y)^{-1} Z_t \right], \]

where \(|\Sigma(y)|\) indicates the determinant of \(\Sigma(y) \). Then, the likelihood across time points becomes:

\[L(z | \Sigma(y)) = \prod_t L(Z_t | \Sigma(y)). \]
Finally, considering the likelihood of target signal z to be parametrised by a model trained on z (i.e., a training signal with the same features), $L(z|W(z))$ and $L(z|\Sigma(z))$, the log-likelihood ratios are defined as:

$$\log \frac{L(z|W(y))}{L(z|W(z))} \text{ and } \log \frac{L(z|\Sigma(y))}{L(z|\Sigma(z))}.$$

The log likelihood ratio is therefore a measure of the precision of the model in describing the test signal, given the training signal. If the log likelihood ratio of the model trained on y vs z is low (i.e. a large negative number), then the parameters of the model fitted to y do not describe well the test data z, and, consequently, the two signals are regarded as different according to the assumptions of the model; on the other hand, if the log likelihood ratio is close to zero, both the models trained on y and z describe well the test data and, therefore, that the two signals cannot be distinguished given the model definition and assumptions.

2.3.2 HMM analyses on synthetic data

The previous analyses were designed to compare the observation models as stand-alone distributions. Next, these were assessed within the HMM framework. Specifically, the HMM states were assessed by regressing the state time courses on the ground-truth data features — instantaneous frequency $f(t)$, amplitude $a(t)$ and between-channel correlation $r(t)$. In order to use a cross validation scheme, the data, simulated as a unique session of $T=50000$ points, were partitioned into trials of equal length. The cross validation was hence performed at the trial level, grouping the trials into 10 folds (using 9 for training and the remaining 1 for testing, in turns). This yielded a measure of accuracy — cross-validated explained variance (CVEV) — per feature, describing how well the HMM states captured that feature. The accuracy of the models in capturing each feature was tested as a function of the observation model hyperparameters and of the prior probability of remaining in the same state, hyperparametrised by δ (see above). To confirm the reproducibility of the results, each analysis was repeated 20 times.

A permutation testing analysis was conducted (10000 permutations) to further validate the effects of the prediction analyses, where the null hypotheses are of the sort of “the HMM states do not capture amplitude”. The permutations were also performed across trials.

2.3.3 HMM analyses on real data

The two HMMs were also tested on LFP and MEG real data, comparing the frequency properties of the states. For the MEG data, the state temporal information was also contrasted to the available task data.

2.4 CODE ACCESSIBILITY

All the code used for the generation of synthetic data and for the analysis of both synthetic and real data will be available upon publication on Github⁴.

⁴ https://github.com/LauraMasaracchia/HMM_explore
3. RESULTS

3.1 Observation models sensitivity

In the first part of this study, a sensitivity analysis was conducted on the two HMM observation models (autoregressive and TDE), with respect to data characteristics and model hyperparameters. The models were trained and tested on synthetic, stationary sinusoids (described in Section 2.1.1, see examples in Figure 2a), and their sensitivity measured by the log likelihood ratio of train vs. test signal, which we can interpret as a measure of how well the models could identify signal differences (see Section 2.3.1).

![Example of stationary sinusoids](image)

![Models sensitivity to frequency](image)

![Models sensitivity to amplitude](image)

Figure 2: Analysis on the observation models. **a.** Example of signals used (stationary sinusoids), each defined by frequency, amplitude and noise variance. **b.** The plots show how the AR (left) and the TDE (right) models can tell apart two signals that differ only in frequency by an amount of Δf Hz (test frequency minus training frequency), for different values of their amplitude and of their noise content. The measure used is the logarithm of the likelihood ratio between train and test signal (given a fixed test signal and models trained on many training signals). Each solid line of the plot represents analyses for noise variance equal to 0.5, and each dotted line corresponds to noise variance equal to 1.0. By manipulating amplitude and noise variance, the plots show how the models perform for different signal to noise ratio (SNR) values. Here, AR order $P=3$, and TDE lags $L=21$, in steps of $S=1$; signal length $T=10$ seconds (25000 data points) **c.** AR and TDE sensitivity to amplitude, expressed as Δa for the AR model (training amplitude minus test amplitude) and as training amplitude in proportion to the target test amplitude (denoted as train/test) for the TDE model, for different values of frequency and of noise variance. Order, lags and signal length set as in **b.**

To test the model sensitivity to frequency, the models were trained on signals that only differed in frequency (i.e., with a fixed amplitude and noise variance). We then selected a given target test frequency and tested the models (trained for multiple frequencies) on the test signal, which had the same amplitude and noise variance as the training signals. The procedure was repeated to test different amplitude and noise values (Figure 2b). The TDE model showed lower frequency
resolution than the AR model (note the different x-axes scales in the plots). Generally, decreasing amplitude and increasing noise had a similar effect on the sensitivity of the models to frequency. For the AR model, signal-to-noise ratio (SNR), rather than amplitude or noise variance as separate factors, affected its frequency resolution: that is, the smallest detectable frequency difference depended on the signals’ SNR. This intuition can be verified analytically by proving that the coefficients of two models trained on signals with different amplitude and noise variance, but same SNR value, are the same (see Appendix).

To test the model sensitivity to amplitude, the same procedure detailed above was adopted: the models were trained and tested on signals that only differed in amplitude, for some fixed values of frequency and noise variance (Figure 2c). While the AR model clearly distinguished the full range of amplitudes tested, it was more difficult for the TDE to distinguish training and test signal, especially when the training amplitude was higher than the test one. Because of this, we tested a wider range of amplitude differences for the TDE model, where we used multipliers of the target test amplitude as training amplitudes (for the AR model, the different training amplitudes were linearly spaced). Overall, amplitude resolution was not affected by frequency, as the model relative performance was similar for all tested frequencies.

Frequency and amplitude resolution of the models were further investigated by varying the amount of training data (manipulating signal length) and the model hyperparameters —see Supplementary Figure 1. Briefly, more training data induced a higher resolution on frequency in both models, and a higher sensitivity to amplitude in the AR model. Also, a larger lag window in the TDE model increased frequency resolution. Neither a higher amount of data, nor a bigger lag window significantly changed the TDE sensitivity to amplitude. As for the AR model, since an autoregressive order of 3 can already capture one fundamental frequency, and because in this particular case the data only had one frequency, an increase in the autoregressive order did not change the model performance. That is, while a higher autoregressive order could explain more complex, multi-frequency spectral patterns, it does not improve the resolution of a single frequency.

In summary, the AR model accurately described stationary sinusoids with sufficiently high SNR and showed high frequency resolution, which was also influenced by the amount of training data. The AR model was comparably less sensitive to amplitude than to frequency, and also amplitude resolution was influenced by the amount of training data. On the other hand, the TDE model showed a lower frequency resolution than the AR. This resolution was modulated by the lag hyperparameter and by the amount of training data. Finally, the TDE model was less sensitive to differences in amplitude, and, unlike the AR, its sensitivity was not symmetric (see Figure 2c); this is because, for the TDE (i.e., for the Gaussian distribution), the log-likelihood function (unlike the probability density function) is not symmetric with respect to the scale. Manipulations in lags or amount of training data did not significantly change this behaviour.

3.2 HMM inference

Next, the HMM-MAR and HMM-TDE capacity to represent dynamic changes in the signal was investigated, using synthetic, non-stationary signals with time-varying frequency, amplitude and functional connectivity (as described in Section 2.1.1).

3.2.1 Detection of changes in frequency and amplitude
The HMM-MAR and the HMM-TDE were first tested on single-channel signals with time-varying frequency and amplitude. As mentioned in Section 2.1.1, the generative model of the signals, unlike the HMM’s, does not assume quasi-stationary periods of sustained oscillations, and is, therefore, more general. While we could have generated data that followed the assumptions of the HMM, real electrophysiological data is likely not to follow these assumptions, so we opted for a more assumption-free generative model. In detail, one-channel, non-stationary signals were fed to the HMMs and the resulting state time courses (i.e., the probability of each state being active at each time point) were subsequently analysed. In particular, standard regression was used to predict the frequency and amplitude time courses from the state time courses, in a cross validated fashion. The prediction analysis was performed varying the hyperparameter δ (related to the prior probability of remaining in the same state, which influences the state switching rate; see above), as well as the order for the HMM-MAR and the lags for the HMM-TDE. The procedure was performed 20 times per configuration (see Section 2.3.2).

When the signals varied in frequency and amplitude (example signal in Figure 3a), both HMM-MAR and HMM-TDE clearly captured frequency changes, with each of their states representing a different frequency band (Figure 3b). Our prediction analysis showed that, for fixed order and lags, the state switching rate affects model performance in capturing frequency (see Figure 3c, where order $P=3$, lags structure set to $L=15$, spaced in steps of $S=3$): clearly, the models with faster switching rates (here, the HMM-TDE runs) could explain frequency variance better (up to 90%), meaning that they better matched the dynamics of the data. For comparison, a separate permutation analysis showed that randomly assigned states could explain only 0.0132, \pm 0.0130 of frequency variance (CI = 0.95, $p < 0.0001$ for all models). The prediction analysis further showed that varying the model hyperparameters also had an influence on the performance of the models and on the state switching rate. More specifically, while δ had a great influence on the HMM-MAR performance, widely modulating the state switching rate, the HMM-TDE performance and state switching rate were more affected by the lags manipulation than by δ (see Supplementary Figure 2a for further details). None of the models could explain amplitude variance significantly better than randomly assigned states.

To further investigate the extent to which the HMM states could capture amplitude, the same analysis was performed on one-channel, non-stationary signals only varying in amplitude (a signal example is reported in Figure 3d). This time, coarse changes in amplitude could be captured using two states for each model (Figure 3e). The prediction analysis (now regressing the state time courses on the amplitude time course) for a fixed order and lag choices (as before, $P=3$, $L=15$, $S=3$), showed that both models were able to detect amplitude changes in this scenario, but the extent to which they could do so depended on how well the state switching rate matched the ground-truth dynamics of the data (Figure 3f); for example, the extreme cases when the switching rate was close to zero (leftmost in the panel) corresponded to cases when one state dominated the entire decomposition, driving the CVEV to zero. This is in contrast with the previous analyses, where we examined the states as stand-alone distributions, and where the AR model was considerably better at capturing amplitude. The difference here is however at the level of the HMM inference, with certain HMM-MAR runs not being able to switch states at sufficient speed (or even collapsing to a single state) for some choices of δ. For comparison, randomly assigned states explained 0.0228 ± 0.0227 (CI = 0.95) of the signals’ amplitude, yielding statistical significance for all decompositions that did not degenerate onto a single state. The complete analysis results can be found in Supplementary Figure 2b.
We also explored the HMM-MAR and HMM-TDE inference for a higher number of states, using signals that vary both in frequency and in amplitude (Supplementary Figure 3). When increasing the number of states, the HMM-MAR started capturing amplitude instead of only frequency (Supplementary Figure 3c). In contrast, endowing the HMM-TDE with more states resulted in a
higher frequency band resolution, but no better sensitivity to amplitude (Supplementary Figure 3f).

In conclusion, both models were more sensitive to frequency than they are to amplitude, but they could also capture changes in amplitude when frequency was relatively constant and, in case of the HMM-MAR, when endowed with a higher number of states. How well the decomposition captured differences in amplitude and frequency depended on the temporal dynamics of the state time courses (i.e., the state switching rate) and how well they matched the underlying modulations in the data. As shown, the switching rate can be manipulated by modifying the observation model hyperparameters (e.g. L and P) and the priors of the transition probability matrix (δ). In real scenarios, these hyperparameters could be tuned to access different temporal scales in the data.

As mentioned, these analyses may seem opposed to the previous section, where the MAR model showed to have a higher resolution in both frequency and amplitude. These findings can be reconciled by the fact that the MAR has a higher capacity to explain variance in the raw data, and thus, when plugged into the HMM inference, might necessitate less state switching (specially, when overparametrised). That is, while a high-order single autoregressive model could potentially explain the data very well and therefore dominate the decomposition, the corresponding state time courses would not be effective to describe the time-varying facets of the data, which is what our CVEV metric precisely captures. While the same problem could occur for the HMM-TDE as well, it is less likely to happen because the number of effective parameters of the TDE (and therefore its sensitivity to the different features, as shown in the previous section) is lower.

3.2.2 Detection of changes in functional connectivity

Next, The HMM-MAR and the HMM-TDE were tested on synthetic two-channel, non-stationary signals with time-varying correlation across the entire frequency spectrum (see Section 2.1.1), which we will refer to as broadband functional connectivity (see Figure 4a for examples of signal and between-channel correlation). Again, a regression analysis was used to predict frequency and between-channel correlation from the state time courses, varying δ and the observation model hyperparameters. The full experiment was repeated 10 times.

Here, the HMM-MAR primarily captured frequency information specific to the single channels, whereas the HMM-TDE was able to capture broadband functional connectivity, such that one state was assigned to the periods of highest correlation between the two channels and the other state to periods of lower correlation. This can be qualitatively observed in the state time courses (Figure 4b, leftmost panels) with respect to the channel correlations (Figure 4a, bottom panel), and in the estimation of the state power spectra (Figure 4b, middle panels) and the state coherence (Figure 4b, rightmost panels). The prediction analysis quantitatively corroborated this, showing that, for fixed order and lags (here, P=3 and L=15, in steps of S=3), varying δ to manipulate the state switching rate did not change the HMM-TDE ability to capture broadband functional connectivity significantly (Figure 4c, right panel). This analysis also revealed that the HMM-MAR performance in predicting channel frequency was not very stable across runs (see how scattered the performance is along the y axis in Figure 4c left, regardless of the δ parameter). For comparison, a permutation testing analysis resulted in randomly assigned states explaining 0.0126 ± 0.0125 (CI=0.95) of the signal frequency variance, and 0.0029 ±
0.0027 (CI = 0.95) of channel correlation variance; this means that the HMM-TDE did not perform significantly better than randomly assigned states in capturing frequency, and neither did the HMM-MAR in capturing broadband coherence.
We repeated the prediction analysis by varying the model hyperparameters (complete results in Supplementary Figure 4), showing again that the HMM-MAR performance and state dynamics were more affected by changes in δ than HMM-TDE, which was most affected by the lag configuration.

But how can these results be reconciled with previous work where the HMM-TDE was successfully used to find states with distinct amounts of coherence in different frequency bands (for example, in Vidauerre et al., 2018; Hirschmann et al., 2020; Sharma et al., 2021)? First, our analyses only used two states, inducing the models to focus on what was most salient to them. Note that while we could have used more states, the goal of this paper was precisely to characterise saliency. Since the HMM-TDE has less spectral detail than the HMM-MAR, broadband coherence resulted to be its most salient feature. Second, power and coherence are not independent. The HMM-MAR’s states had different spectral signatures in coherence (Figure 4c, right-bottom panel) also because they reflected their respective spectral signatures in power (Figure 4c, middle-bottom panel). We established before that the HMM-MAR has great sensitivity to frequency changes, which were present in this data (Figure 4a, middle panel) and hence captured by the model. Altogether, our results do not imply that the HMM-TDE is unable to find spectral-specific changes in coherence, if they existed in the data, but that it would do so with less spectral detail than the HMM-MAR and it would instead prioritise broader frequency bands (or broadband coherence as in this example).

In summary, for bivariate signals exhibiting intermittent periods of high correlation, the first feature of focus for HMM-TDE was broadband connectivity, while the HMM-MAR was more sensitive to detailed frequency modulations and less to broadband connectivity.

3.2.3 Real data

We ran the two HMM were then on two real datasets: LFP data from mice in wakeful rest, and MEG data of humans performing a simple motor task (source-reconstructed onto two motor cortex parcels); see Section 2.1.2 for details.

When applied to the LFP data, the state time courses of HMM-MAR and HMM-TDE were relatively well correlated, with an average correlation of 0.5, for the various tested configurations (number of states $K=2,3,4$, HMM-MAR order $P=3,5,7,9$; HMM-TDE lags $L=3,5,15,21$ in steps of 1, $\delta = 1k$, 10k, 100k, 1m, 10m), indicating that the decompositions had overlapping properties; see Figure 5a for the spectral properties of the data. However, we found that the HMM-TDE inference exhibited much less uncertainty, namely that the HMM-TDE inference assigned very high probabilities to one state at each time point, while the HMM-MAR inference often had mixed probabilities; see state time courses and state properties of HMM-MAR and HMM-TDE in Figure 5bc. In particular, the HMM-TDE assigned probability of ~ 1.0 to 90% of the time points on average, while for the HMM-MAR less than 20% of the points had a state with probability near to 1.0. This instability likely follows from the rich frequency content of high-quality LFP combined with the higher spectral sensitivity of the HMM-MAR.
When applied to MEG data (see Figure 6a for a spectral characterisation of the data), Vidaurre et al. (2016) previously showed that the HMM-MAR could capture task-related information without the model having prior knowledge of the task. Here, we ran the HMMs subject by subject and, similarly to Vidaurre et al. (2016), computed the response evoked state probability (i.e., the average probability of each state to be active within a window around the finger tapping event), alongside with the state power spectra. Since the channels were made orthogonal in order to correct for signal leakage (Brookes et al., 2012) their coherence was greatly diminished (and not considered here). Like with the LFP data, the two HMM variants differed in the uncertainty of the state assignments, with the HMM-TDE assigning probabilities more sharply than the HMM-MAR (see Figure 6b and c, leftmost panels, for an example of the HMM-MAR and HMM-TDE state time courses). Still, both the HMM-MAR and HMM-TDE captured task information well; specifically, one state showed increasing probability of being active in the 2 seconds before the button press and has a drastic drop 1-2 seconds after, while another state had a specular behaviour, with very low probability of being active before the button press and a sharp increase 2-4 seconds after (see Figure 6b and c, rightmost panels, with the response-evoked state
probabilities for HMM-MAR and HMM-TDE respectively). Figure 6 shows the results for one exemplary subject; see Supplementary Figure 5 for the other subjects.

Figure 6. HMM-MAR and HMM-TDE applied to MEG data. a. The data for this analysis are 2 MEG channels from the motor cortex of 8 (human) subjects who performed a simple finger tapping task. Data were downsampled to 200 Hz and band-filtered between 1 and 48 Hz. The spectral content of the two channels is also shown. b. Example of HMM-MAR state time courses, around a button press, marked by a black vertical line (left); the corresponding state power spectra (middle); and the probability of states around the button press (response-evoked state probability, rightmost panel). c. Same as in b., for the HMM-TDE model. The models are trained on 20 mins of recordings with three states. For the HMM-MAR we used order $P=3$, and for the HMM-TDE we used $L=1$, with $S=1$; $\delta=100000$ in both cases.

In conclusion, here the state spectral properties were not as different between two models as in the synthetic simulations, but the HMM-TDE performed in a more stable way in the sense of having a higher certainty in the state time courses estimation.
4. Discussion

In this study, focusing on electrophysiological data with one or two channels—both real and simulated, we explored in detail the behaviour of two types of HMMs: the HMM-MAR (Vidaurre et al., 2016) and the HMM-TDE (Vidaurre et al., 2018). We excluded other models that are instead run on amplitude time series derived from, for instance, a Fourier transform (Baker et al., 2014). Using synthetic data, we first measured the sensitivity of the two observation models to different data features in a stand-alone manner. Then, we studied what dynamic aspects of the data drive the inference of the HMMs. Finally, we confronted the models with real MEG and LFP data.

Our sensitivity analysis of the standalone observation models showed that the MAR is more sensitive to frequency than it is to amplitude, and that it has a higher frequency resolution than the TDE observation model. We also found that it is harder for the TDE model to distinguish amplitude, and that its amplitude resolution is not symmetric (that is, the TDE is more sensitive to a testing amplitude that is higher than the training amplitude, and less sensitive to a testing amplitude that is lower than the training amplitude). The HMM analyses on single-channel signals with non-stationary properties showed that both the HMM-MAR and HMM-TDE preferentially capture changes in frequency when the signal is varying both in frequency and in amplitude. Except for degenerate solutions, the HMM-MAR could capture changes in amplitude when the signal did not vary much in frequency, or when the model was endowed with a high number of states. The HMM-TDE successfully captured amplitude reliably when the signal was only varying in amplitude, provided that the changes in amplitude were large enough. HMM-TDE showed generally more robust states dynamics than the HMM-MAR. Finally, we found that their performance depended on their hyperparameter configuration (on both the prior probability of remaining in the same state and on the model-specific hyperparameters). On two-channel synthetic data with transient periods of high functional connectivity (in the sense of between-channel correlation), we found that the HMM-MAR focuses first on representing frequency-specific changes at the expense of broadband functional connectivity (here, correlation), while the HMM-TDE clearly prefers focusing on broadband changes in functional connectivity above and beyond fine-grained fluctuations in the frequency content of the signals. Overall, we can conclude from these results that the HMM-MAR is the most appropriate model when the main goal of the analysis is detecting detailed changes in the frequency of the signal, or amplitude if the frequency is relatively stationary (for example as a result of filtering), while the HMM-TDE may be more appropriate in multi-channel data when the focus is on capturing spectrally-wide changes in functional connectivity, and, in general, when the MAR model is overparametrised and the inference collapses onto one single state.

While the balance in sensitivity to frequency and amplitude for the different models was unambiguously characterised in our single-channel experiments, it is important to note that our analyses are to some extent contingent to the generative model used to sample the data and its assumptions. In particular, our generative model (as described in Section 2.1.1) for pairs of channels did not explicitly model spectrally fine-grained changes in coherence, and instead manipulated spectrally broadband changes. Here, the HMM-TDE was clearly focusing mostly on changes in functional connectivity, but the HMM-MAR would have probably been more sensitive to connectivity if the ground-truth generative model were targeted at producing frequency-specific changes in coherence. While our generative model for sampling data is a reasonable approximation of actual empirical data in terms of their spectral properties, the sensitivity of the two models to connectivity will in the end be determined by how much explained variance in the real data is attributable to changes in coherence vs. changes in power, and how this variance is spectrally distributed (i.e., coarse vs. fine-grained).
Having a greater sensitivity to the different features present in the data may however come at a price. Whereas the HMM-MAR is more sensitive to detailed spectral content than the HMM-TDE, this can also result in greater estimation volatility or observation model overfitting (where one state dominates most of the time series): for example, in the LFP experiment, the state time courses for the HMM-MAR often showed great uncertainty about which state is active at each time point, as opposed to the HMM-TDE, which was much more stable; also see Figure 4c (left panel), where the HMM-MAR’s capacity to explain frequency showed large variability even when using similar hyperparameters. Volatility and variability can translate in lower reproducibility of the results, since small changes in the data are more likely to elicit larger changes in the resulting estimates. This has made the HMM-TDE the model of choice in several applications of the HMM in electrophysiological data (Khawaldeh et al., 2022; Bai et al., 2021; Higgins et al., 2021; Sharma et al., 2021). The cause of HMM-MAR greater instability is likely due to the nonlinearity of neural oscillatory signals, in the sense that the phase of the oscillations does not progress at linear steps, and, therefore, the shape of the wave is often irregular and asymmetric (that is, the instantaneous frequency of the signal varies irregularly from time point to time point; Huang et al., 2009). Since both the TDE and the MAR models are linear, the only way to accurately model abrupt changes in instantaneous frequency is through the state time courses. For this reason, over-parametrised models with excessive sensitivity can be more volatile, and can even exhibit quick state switches within single oscillatory phase. Whereas these estimates are technically not incorrect, they lend to more complex interpretations.

Crucially, the HMM is not a biophysical model, and different parametrisations or model choices effectively offer alternative perspectives of the data. On these grounds, none of these can be said to be biologically more or less valid than the others. The focus point here is which one is practically more useful given the characteristics of the data and the research inquiry.
5. References

