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Abstract

Exploring the molecular basis of disease severity in rare disease scenarios is a challenging
task provided the limitations on data availability. Causative genes have been described for
Congenital  Myasthenic  Syndromes  (CMS),  a  group  of  diverse  minority  neuromuscular
junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences
remains unclear. Here, we present a workflow to explore the functional relationships between
CMS causal genes and altered genes from each patient, based on multilayer network analysis
of protein-protein interactions, pathways and metabolomics.

Our  results  show  that  CMS  severity  can  be  ascribed  to  the  personalized  impairment  of
extracellular  matrix  components  and  postsynaptic  modulators  of  acetylcholine  receptor
(AChR) clustering. Moreover, reducing expression of the zebrafish orthologue, we confirm
the effect on movement and NMJ morphology of a gene previously unknown to be a NMJ
interactor, USH2A.

This  work showcase  how coupling  multilayer  network  analysis  with personalized  -omics
information provides molecular explanations to the varying severity of rare diseases; paving
the way for sorting out similar cases in other rare diseases.

Keywords: multi-omics data, network biology, multilayer networks, personalized medicine,
applied network science, network community analysis, rare diseases, congenital myasthenic
syndromes.
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Introduction

Understanding phenotypic severity is crucial for prediction of disease outcomes, as well as
for  administration  of  personalized  treatments.  Different  severity  levels  among  patients
presenting  the  same medical  condition  could  be  explained  by characteristic  relationships
between diverse molecular entities (i.e. gene products, metabolites, etc) in each individual. In
this setting, multi-omics data integration is becoming a promising tool for research, as it has
the  potential  to  gain  complex  insights  of  the  molecular  determinants  underlying  disease
heterogeneity. However, even in a scenario where the level of biomedical detail available to
study is growing in an exponential manner (Karczewski and Snyder, 2018), the analysis of
the  molecular  determinants  of  disease  severity  is  not  typically  adressed  in  rare  disease
research literature (Boycott  et  al.  2013), despite its  obvious relevance at  the medical  and
clinical level. Rare diseases represent a challenging setting for the application of precision
medicine because, by definition, they affect a small number of patients, and therefore the data
available for study is considerably limited in comparison to other conditions. Accordingly,
leveraging  the  wealth  of  biomedical  knowledge  of  diverse  nature  coming  from publicly
available databases have the potential to adress data limitations in rare diseases (Mitani and
Haneuse, 2020) (Buphamalai et al,  2021). In this sense, multilayer networks can offer an
holistic representation of biomedical data resources (Halu et al. 2017) (Gosak et al. 2018),
which may allow to explore the biology related to a given disease independently of cohort
sizes and their available omics data. 
Here, in order to evaluate and demonstrate the potential of multilayer networks as means of
assesing severity in rare disease scenarios, we provide an illustrative case where we develop a
framework for  analyzing  a  patient  cohort  affected  by  Congenital  Myasthenic  Syndromes
(CMS), a group of inherited rare disorders of the neuromuscular junction (NMJ). Fatigable
weakness is a common hallmark of these syndromes, that affects approximately 1 patient in
150,000 people worldwide. The inheritance of CMS is autosomal recessive in the majority of
patients. CMS can be considered a relevant use case because, while patients share similar
clinical  and genetic  features (Finsterer 2019),  phenotypic severity  of CMS varies greatly,
with patients experiencing a range of muscle weakness and movement impairment. While
over 30 genes are known to be monogenic causes of different forms of CMS (Table 1), these
genes do not fully explain the ample range of observed severities, which has been suggested
to be determined by additional factors involved in neuromuscular function (Thompson et al.
2019).  Examples  of  CMS-related  genes  are  AGRN,  LRP4  and  MUSK  which  code  for
proteins that mediate  communication between the nerve ending and the muscle,  which is
crucial for formation and maintenance of the NMJ (Figure 1). 
In  particular,  the  AGRN-LRP4  receptor  complex  activates  MUSK  by  phosphorylation,
inducing  clustering  of  the  acetylcholine  receptor  (AChR)  in  the  postsynaptic  membrane
allowing  the  presynaptic  release  of  acetylcholine  (ACh)  to  trigger  muscle  contraction
(Whicher, Philbin, and Aronson 2018). Additional evidence of CMS severity heterogeneity
emerged within the NeurOmics and RD-Connect projects (Lochmüller et al. 2018) studying a
small population (about 100 individuals) of gypsy ethnic origin from Bulgaria.
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Location Phenotype Inheritance Gene
2q31.1 CMS1A, slow-channel AD

CHRNA1
2q31.1 CMS1B, fast-channel AR, AD

17p13.1 CMS2A, slow-channel AD
CHRNB1

17p13.1
CMS2C, associated with 

acetylcholine receptor deficiency
AR

2q37.1 CMS3 A, slow-channel AD

CHRND
2q37.1 CMS3 B, fast-channel AR

2q37.1
CMS3 C, associated with 

acetylcholine receptor deficiency
AR

17p13.2 CMS4 A, slow-channel AR, AD

CHRNE17p13.2 CMS4 B, fast-channel AR

17p13.2
CMS4 C, associated with 

acetylcholine receptor deficiency
AR

3p25.1 CMS5 AR COLQ

10q11.23 CMS6, presynaptic AR CHAT

1q32.1 CMS7, presynaptic AD SYT2

1p36.33 CMS8, with pre- and postsynaptic defects AR AGRN

9q31.3
CMS9, associated with 

acetylcholine receptor deficiency
AR MUSK

4p16.3 CMS10 AR DOK7

11p11.2
CMS11, associated with 

acetylcholine receptor deficiency
AR RAPSN

2p13.3 CMS12, with tubular aggregates AR GFPT1

11q23.3 CMS13, with tubular aggregates AR DPAGT1

9q22.33 CMS14, with tubular aggregates AR ALG2

1p21.3 CMS15, without tubular aggregates AR ALG14

17q23.3 CMS16 AR SCN4A

11p11.2 CMS17 AR LRP4

20p12.2 CMS18 AD SNAP25

10q22.1 CMS19 AR COL13A1

2q12.3 CMS20, presynaptic AR SLC5A7

10q11.23 CMS21, presynaptic AR SLC18A3

2p21 CMS22 AR PREPL

22q11.21 CMS23, presynaptic AR SLC25A1

15q23 CMS24, presynaptic AR MYO9A

12p13.31 CMS25, presynaptic AR VAMP1

3p21.31 CMS, related to GMPPB AR GMPBB

20q13.33 CMS, presynaptic AR LAMA5

3p21.31 CMS, with nephrotic syndrome AR LAMB2

8q24.3 CMS, with plectin defect AR PLEC

12q24.13 CMS, related to RPH3A AR RPH3A

9p13.3 CMS, presynaptic, related to MUNC13-1 AR UNC13B

2q37.1 Escobar syndrome AR CHRNG

Table  1. Location,  phenotype,  inheritance  and  genes  involved  in  CMS  (adapted  from
https://omim.org/phenotypicSeries/PS601462 and  http://www.musclegenetable.fr).  AR:  autosomal
recessive; AD: autosomal dominant.
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Figure  1.  A schematic  depiction  of  the  main  molecular  activities  of  known  CMS causal  genes
(Methods) taking place at the neuromuscular junction (NMJ) in the presynaptic terminal (in blue),
synaptic cleft (in white), and skeletal muscle fiber (in yellow) (for a detailed description of this system
see Supplementary Information).

All affected individuals shared the same causal homozygous mutation (a deletion within the
AChR ε  subunit,  CHRNE c.1327delG (A.  Abicht  et  al.  1999)),  however,  the  severity  of
symptoms  across  this  cohort  varies  considerably  regardless  of  age,  gender  and  initiated
therapy,  suggesting the existence  of additional  genetic  causes for the diversity  of disease
phenotypes. By analyzing multi-omics data, we performed an in-depth characterization of 20
CMS patients,  representing the two opposite  ends of the spectrum observed in the wider
cohort, aiming to investigate the molecular basis of the observed differences in the individual
severity  of the disease.  Two CMS severity  levels  have been identified  through extensive
phenotyping,  namely  a  severe  disease  phenotype  (8  patients)  and  a  not-severe  disease
phenotype (2 intermediate and 10 mild patients) (Suppl. Table 1). No demographic factor
(age, sex) nor clinical tests (speech, mobility, respiratory dysfunctions, among others) show a
significant  association  with the severity  classes,  with exception  of Forced Vital  Capacity
(FVC) and shoulder  lifting  ability  (two-tailed  Fisher’s  exact  test  p-values  of  0.0128 and
0.0418,  respectively;  Suppl.  Figure  1).  We  sought  to  interrogate  whether  severity  was
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determined by additional genetic variations impacting neuromuscular activity, on top of the
causative  CHRNE mutation.  We  analyzed  three  main  types  of  genetic  variations:  single
nucleotide  polymorphisms  (SNPs),  copy  number  variations  (CNVs),  and  compound
heterozygous variants (two recessive alleles located at different loci within the same gene in a
given individual).  The extensive  analysis  of  the  genomic  information  did  not  render  any
SNPs that could be considered a unique cause of disease severity by being common to all the
cases. Nevertheless, a number of CNVs and compound heterozygous variants were found to
appear exclusively in the different severity groups, in one or more patients. Moreover, the
compound heterozygous variants of the severe group are enriched in pathways related to the
extracellular matrix (ECM) receptors, which have been proposed as a target for CMS therapy
(Ito and Ohno 2018).  To investigate the functional relationship between these variants and
CMS severity, we designed an analytical workflow based on multilayer networks (Figure
2),  allowing the integration of external  biological knowledge to acquire deeper functional
insights.  A multilayer  network  consists  of  several  layers  of  nodes  and  edges  describing
different aspects of a system (Kivelä et al. 2014). In biomedicine, this data representation has
been used to study biomolecular interactions (Zitnik and Leskovec 2017) and diseases (Halu
et al. 2017), facilitating integration and interpretation of heterogeneous sources of data. 

Figure 2.  Analytical workflow employed to address the severity of a cohort of patients affected by
Congenital  Myasthenic  Syndromes  (CMS).  A multi-scale  functional  analysis  approach,  based  on
multilayer  networks,  was used to  identify the  functional  relationships  between genetic  alterations
obtained  from omics  data  (Whole  Genome  Sequencing,  WGS;  RNA-sequencing,  RNAseq)  with
known CMS causal  genes.  Modules  of  CMS linked  genes  are  detected  using  graph  community
detection  at  a  resolution  range  (γ)  (Methods)  where  the  most  prominent  changes  in  community
structure occur. Modules that emerged from this analysis were characterized at single individual level.
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Several  established  tools  for  network  analysis  have  been recently  adapted  for  multilayer
networks, such as random walk with restart (Valdeolivas et al. 2019), community detection
algorithms (Didier, Brun, and Baudot 2015) and node embeddings (Pio-Lopez et al. 2021). 
By crossing patient genomic data with the information provided by a biomedical knowledge
multilayer  network,  we  are  able  to  describe  the  functional  relationships  of  new  genetic
modifiers responsible for the different phenotypic severity levels, showcasing the potential of
multilayer networks to provide support on the personalized analysis of rare disease patients.

Results

Variants do not segregate with patient severity
We first  searched for  variants  able  to  segregate  the  disease  phenotypes  (severe  and not-
severe) by analyzing a large panel of mutational events (mutations in isoforms, splicing sites,
small and long noncoding genes, promoters, TSS, predicted pathogenic mutations,  loss of
function mutations, among others). We could not find one single mutation or combinations of
mutations  that  were  able  to  completely  segregate  the  two  groups  (Supplementary
Information)  although partial  segregation can be observed (Suppl.  Table 2).  As already
described  for  monogenic  diseases  (Kousi  and  Katsanis  2015)  and  cancer  (Castro-Giner,
Ratcliffe,  and  Tomlinson  2015),  we  hypothesized  that  distinct  weak  disease-promoting
effects may represent patient-specific causes to CMS severity, which bring damage to sets of
genes that are functionally related. To find these causes, we sought to search for variants with
the potential  to alter gene functions, such as CNVs and compound heterozygous variants,
which  have  been  previously  reported  to  be  key  to  CMS  (Angela  Abicht,  Müller,  and
Lochmüller 1993; Richard et al. 2003; Bevilacqua et al. 2017; Yang et al. 2018).

Compound heterozygous variants are functionally related
In order to explore the hypothesis that disease severity in this cohort is due to variants in
patient-specific  critical  elements,  we  sought  to  identify  potentially  damaging  compound
heterozygous variants and CNVs. We analyzed the gene lists associated with these mutations
to search for evidence of alterations in relevant pathways for the severe (n=8) and not-severe
cases (n=12). We first performed a functional enrichment analysis (Methods) of the genes
with  CNVs  found  in  the  two  groups.  The  set  of  affected  genes  in  the  severe  group  is
composed of 26 unique genes (10 private to the severe group), while the not-severe group
presented 86 unique genes (Suppl. Table 3). None of these gene sets showed any functional
enrichment. Moreover, none of these genes had been described as causal for CMS, and none
carried compound heterozygous variants. (Suppl. Figure 2).
As for compound heterozygous variants,  the set  of affected genes in the severe group is
composed of 112 unique genes (89 private to the severe group), while the not-severe group
resulted  in  152 unique  genes  (Suppl.  Table  3).  We found  that  the  severe  group  shows
significant  enrichment  in  genes  belonging  to  extracellular  matrix  (ECM)  pathways,  in
particular “ECM receptor interactions” (KEGG hsa04512, adjusted p-value 0.002337) and
“ECM proteoglycans” (Reactome R-HSA-30001787, adjusted p-value 0.001237), which are
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the top-hit pathways when the 89 genes appearing only in the severe group are considered.
Both these pathways share common genes, namely  TNXB,  LAMA2,  TNC, and  AGRN. The
role  of  extracellular  matrix  proteins  for  the  formation  and maintenance  of  the  NMJ has
recently drawn attention to the study of CMS (Beeson 2016; Rodríguez Cruz, Palace, and
Beeson 2018). In particular, within the genes linked with ECM pathways, AGRN and LAMA2
stand out for their implication in CMS and other rare neuromuscular diseases (Bertini et al.
2011; Nicole et al. 2014; Bönnemann et al. 2014). ECM-related pathways are not enriched in
the not-severe set of genes (KEGG hsa04512, adjusted p-value 0.6170). Moreover, top-hit
pathways of the not-severe set of genes are not explicitly related to ECM and not consistent
between  Reactome  and  KEGG  (Reactome  “Susceptibility  to  colorectal  cancer”  R-HSA-
5083636, adjusted p-value 4.131e-7, genes MUC3A/5B/12/16/17/19; KEGG “Huntington's
disease”  hsa05016,  adjusted  p-value  0.07103,  genes  REST,  CREB3L4,  CLTCL1,
DNAH2/8/10/11).  These  findings  support  our  hypothesis  that  the  severe  patients  might
present disruptions in NMJ functionally related genes that, combined with CHRNE causative
alteration, may be responsible for the worsening of symptoms.

CMS-specific monolayer and multilayer community detection
As  disease-related  genes  tend  to  be  interconnected  (Menche  et  al.  2015),  we  sought  to
analyze the relationships among the CMS linked genes (i.e. known CMS causal genes, and
severe and not-severe compound heterozygous variants and CNVs; Methods) using network
community  clustering  analysis. We  employed  the  Louvain  algorithm  (Methods)  to  find
groups  of  interrelated  genes  in  three  monolayer  networks  that  represents  biological
knowledge contained in databases, separately: the Reactome database (Fabregat et al. 2018),
the Recon3D Virtual Metabolic Human database (Brunk et al. 2018) (both downloaded in
May  2018),  and  from  the  Integrated  Interaction  Database  (IID)  (Kotlyar  et  al.  2016)
(downloaded  in  October  2018)  (Suppl.  Figure  3).  The  last  two  networks,  represent  the
‘metabolome’ and the ‘interactome’ data, respectively. By measuring community similarity
(Methods), we observed that the same CMS linked genes did not form the same communities
across the different networks (Suppl. Figure 4). These results show that, although disease-
related genes are prone to form well-defined communities in distinct networks (Goh et al.
2007;  Cantini  et  al.  2015),  different  facets  of  biological  information  (i.e.  reactome,
metabolome,  interactome)  reflect  diverse  participation  modalities  of  such  genes  into
communities. In order to deliver an integrated analysis of such heterogeneous information,
we further consider them as a multilayer network (Gosak et al. 2018).

Large-scale multilayer community detection of disease associated genes
We first sought to test the hypothesis that disease-related genes tend to be part of the same
communities  also in a multilayer  network. We used the curated gene-disease associations
database  DisGeNET  (Piñero  et  al.  2017),  showing  that  disease-associated  genes  are
significantly found to be members of the same multilayer communities (Wilcoxon test  p-
value  <  0.001  in  a  range  of  resolution  parameters  described  in  the  Methods).  We  pre-
processed DisGeNET database by filtering out diseases and disease groups with only one
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associated gene (6,352 diseases), and those whose number of associated genes was more than
1.5 * interquartile range (IQR) of the gene associated per disease distribution (823 diseases
with  more  than  33  associated  genes)  (Suppl.  Figure  5A-B).  This  procedure  prevents  a
possible  analytical  bias  due to the higher amounts  of genes annotated  to specific  disease
groups (e.g. entry C4020899, “Autosomal recessive predisposition”, annotates 1445 genes).
We then retrieved the communities of each associated gene, excluding 428 genes not present
in our  multilayer  network and the diseases  left  with only one associated  gene.  The final
analysis  comprised  a  total  of  5,892 diseases  with  an  average  number  of  7.38  genes  per
disease. For each disease, we counted the number of times that the disease-associated genes
are  found  in  the  same  multilayer  communities,  and  compared  the  distribution  of  such
frequencies with that of balanced random associations (1000 randomizations). Results show
that  disease-associated  genes  are  significantly  found in the  same multilayer  communities
across the resolution interval (Suppl. Figure 5C).

Modules within the CMS multilayer communities
We define a module as a group of CMS linked genes that are systematically found to be part
of  the  same  multilayer  community  while  increasing  the  multilayer  network  community
resolution parameter (Methods; Supplementary Information; Figures 3-4). 

Figure 3. Identification of the largest module containing genes that are found in the same community
in the entire range of resolution parameters (Methods). In each module, genes are connected if they
are found in the same multilayer communities at  n values of the resolution parameter γ within the
range under consideration (γ (0,4]). The arrows indicate the systematic increase of ∈ n. At n = 8, the
module contains genes that are always found in the same community in the entire range of resolution
(see Supplementary Information "Multilayer community detection analysis").  The largest  modules
containing the CMS linked gene set (highlighted in pink), which includes known CMS causal genes,
severe-specific heterozygous compound variants and CNVs, are shown. 
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Within each of these communities, we identified smaller modules of CMS linked genes that
are specific to the severe and not-severe groups. We tested the significance of obtaining these
exact genes in the severe and not-severe largest modules upon severity class label shuffling
among all individuals (1000 randomizations). We found that 13 (p-value 0.034; on average 8
CMS linked genes and 5 causal genes) and 14 (p-value 0.026; on average 8 CMS linked
genes and 4 causal genes) are the minimum number of genes composing the modules that are
not  expected  to  be  found  at  random  in  the  severe  and  not-severe  largest  components,
respectively  (Suppl.  Figure  6).  In  the  two  groups,  the  significantly  largest  module  that
contains known CMS causal genes is composed of 15 genes (Figure 4). 6 out of these 15 are
previously  described  CMS  causal  genes  (Methods),  namely  the  ECM  heparan  sulfate
proteoglycan  agrin  (AGRN);  the  cytoskeleton  component  plectin  (PLEC),  causative  of
myasthenic disease (Forrest et al. 2010); the agrin receptor LRP4, key for AChR clustering at
NMJ  (Barik  et  al.  2014)  and  causative  of  CMS  by  compound  heterozygous  variants
(Ohkawara et al. 2014); the ECM components LAMA5 and LAMB2 laminins, and COL13A1
collagen.

Figure 4. Largest module, containing known CMS causal genes, within the multilayer communities
of CMS linked genes that  are specific to the not-severe (A) and severe (B) groups.  In turquoise,
compound heterozygous variants; in yellow, CNVs; in pink, known CMS causal genes. Being a CMS
causal gene bearing compound heterozygous variants, AGRN is depicted using both turquoise and
pink.

All  the  other  genes  of  the  two  modules  are  involved  in  a  varied  spectrum of  muscular
dysfunctions, discussed in the following sections. As the location of the causal gene products
determine  the  most  common classification  of  the  disease  (i.e.  presynaptic,  synaptic,  and
postsynaptic  CMS) (Rodríguez Cruz, Palace,  and Beeson 2018), we determined class and
localization of the members of the found modules (Table 2). Laminins, well-known CMS
glycoproteins, are affected in both severe (LAMA2, USH2A) and not-severe (LAMB4) groups,
and  are  bound by  specific  receptors  that  are  damaged  in  the  not-severe  group (MCAM)
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(Dagur and McCoy 2015). Collagens, known CMS-related factors, are associated with the
not-severe group (COL6A5), and bound by specific receptors that are damaged in the not-
severe group (MSR1) (Gowen et al. 2000). 
However,  overall  collagen biosynthesis  is  affected  in  both severe  and not-severe  groups.
Indeed,  metalloproteinases,  damaged  in  the  not-severe  group,  are  responsible  for  the
proteolytic  processing  of  lysyl  oxidases  (LOXL3),  which  are  implicated  in  collagen
biosynthesis (Panchenko et al. 1996) and damaged in the severe group.
Alterations in proteoglycans (AGRN, HSPG2, VCAN, COL15A1) (Iozzo and Schaefer 2015),
tenascins  (TNC,  TNXB)  (Pedrosa-Domellöf,  Virtanen,  and  Thornell  1995),  and
chromogranins  (CHGB)  (Andreose,  Sala,  and Fumagalli  1994)  are  specific  of  the  severe
group. We observed no genes associated with proteoglycan damage in the not-severe group,
suggesting a direct involvement of ECM in CMS severity.

Personalized analysis of the severe cases
We sought to analyze the 15 genes of the largest module of the severe group in each one of
the 8 patients, hereafter referred to using the WGS sample labels (Suppl. Table 1). Overall,
these genes have a varied range of expression levels in tissues of interest (Suppl. Figure 7),
for instance in skeletal muscle HSPG2, LAMA2, PLEC and LAMB2 show medium expression
levels (9 to 107 TPM) while the others show low expression levels (0.6 to 9 TPM) (Methods).
Patient 2, a 15 years old male, presents compound heterozygous variants in tenascin C (TNC),
mediating  acute  ECM  response  in  muscle  damage  (Sorensen  et  al.  2018),  and  CNVs
(specifically, a partial heterozygous copy number loss) in usherin (USH2A), which has been
associated with hearing and vision loss (Austin-Tse et al. 2018). 
Patient 16, a 25 years old female, presents compound variants in tenascin XB (TNXB), which
is  mutated  in  Ehlers-Danlos  syndrome,  a  disease that  has  already  been reported  to  have
phenotypic overlap with muscle weakness  (Kirschner et al. 2005; N. C. Voermans and van
Engelen 2008) and whose compound heterozygous variants have been reported for a primary
myopathy case (Pénisson-Besnier et al. 2013; Nicol C. Voermans et al. 2014); and versican
(VCAN), which has been suggested to modify tenascin C expression (Keller et al. 2012) and
is upregulated in Duchenne muscular dystrophy mouse models (McRae et al. 2017). 
Patient 13, a 26 years old male, presents compound mutations in laminin α2 chain (LAMA2),
a previously reported gene related to various muscle disorders (Amin et al. 2019; Løkken et
al.  2015,  2;  Dimova  and  Kremensky  2018,  2)  whose  mutations  cause  reduction  of
neuromuscular junction folds (Rogers and Nishimune 2017), and collagen type XV α chain
(COL15A1), which is involved in guiding motor axon development (Guillon, Bretaud, and
Ruggiero 2016) and functionally linked to a skeletal muscle myopathy (Eklund et al. 2001;
Muona et al. 2002). 
Patient  12,  a  49  years  old  female,  presents  compound  mutations  in  chromogranin  B4
(CHGB), potentially associated with amyotrophic lateral sclerosis early onset (Pampalakis et
al. 2019). Patient 18, a 51 years old man, presents compound mutations in agrin (AGRN), a
CMS causal gene that mediates AChR clustering in the skeletal fiber membrane (Huzé et al.
2009). 
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Activity
localization Class

CMS
causal
gene

Phenotype group
Function

Synaptic
localization

(Manual
curation)

Localization
(UniProt)Not-severe Severe

ECM
(ECM)

Proteoglycans

AGRN - AGRN

Cell hydration
and growth

factor trapping

Pre- and
postsynaptic

(PMID:
29462312)

Synaptic basal
lamina / ECM

- - HSPG2
Basement
membrane

(PMID:30453502)

Basement
membrane / ECM

- - VCAN ECM
(PMID:29211034)

ECM

- - COL15A1
Basement
membrane

(PMID:26937007)
ECM

Collagens

COL13A1 - -
Structural
support

Basement
membrane, post-

synaptic
(PMID:

30768864)

Post-synaptic cell
membrane

- COL6A5 -
Basement
membrane

(PMID:23869615)
Extracellular matrix

Laminins

LAMA5 - -

Web-like
structures

Pre-synaptic
(PMID:28544784)

Basement
membrane / ECM

LAMB2 - -
Basement
membrane

(PMID:27614294)

Basement
membrane / ECM /

Synaptic cleft

- LAMB4 -

Myenteric plexus
basement
membrane

(PMID:
28595269)

Basement
membrane / ECM

- - LAMA2 Pre-synaptic
(PMID:9396756)

Basement
membrane / ECM

- - USH2A

Neuronal
projection of
stereocilia

(PMID:19023448)

Stereocilia
membrane /

Secreted
(Extracellular

region)

Fibulins - HMCN1 - Scaffolding

Glomerular
Extracellular

matrix
(PMID:

29488390)

Basement
membrane / ECM

Tenascins - -

TNC

Anti-adhesion

Basement
membrane

(PMID:
29466693)

ECM / Perisynaptic
ECM (Ensembl)

TNXB

Basement
membrane

(PMID:
23768946)

ECM

Enzymes - - LOXL3 Collagen
assembly

Basement
membrane

(PMID:26954549)

Secreted
(extracellular

region)
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ADAMTS9 -

Proteoglycan
cleavage

Secreted to ECM
(PMID:30626608)

ECM

ADAM28 ECM
(PMID:24613731)

Cell membrane /
Secreted

(extracellular
region)

Neuropeptides - - CHGB
Regulatory
peptides
precursor

Pre- and
postsynaptic

(PMID:7526287)

Secreted
(extracellular

region)

Others - ITIH5 -
Hyaluronic acid

binding
ECM

(PMID:27143355)

Secreted
(extracellular

region)

Cell
surface

Receptors

-

MSR1

-
Proteoglycan
and collagen

binding

Macrophage
surface

Scavenger
Receptor

(PMID:12488451)

Plasma membrane

MCAM
Plasma

membrane
(PMID:28923978)

Plasma membrane

LRP4 - - Laminin binding
Post-synaptic

(PMID:25319686)
Post-synaptic cell

membrane

Cytoplasm Cytoskeleton PLEC - -
Structural
support

Post-synaptic
(PMID:20624679)

Post-synaptic
cytoskeleton

Table 2. Localization and functions of proteins encoded by the genes found in the largest modules of
the multilayer communities of severe and not-severe groups. In turquoise, compound heterozygous
variants; in yellow, CNVs; in pink, known CMS causal genes. Synaptic localization was retrieved
from manual curation and Uniprot database (Methods).

Patient  20,  a  57  years  old  male,  presents  compound  mutations  in  lysyl  oxidase-like  3
(LOXL3),  involved  in  myofiber  extracellular  matrix  development  by  improving  integrin
signaling  through fibronectin  oxidation  and interaction  with laminins  (Kraft-Sheleg  et  al.
2016), and perlecan (HSPG2), a gene whose deficiency leads to muscular hypertrophy (Xu et
al.  2010),  that  is  also  mutated  in  Schwartz-Jampel  syndrome  (Stum  et  al.  2006),
Dyssegmental dysplasia Silverman-Handmaker type (DDSH) (Arikawa-Hirasawa et al. 2002)
and fibrosis (Lord et al. 2018), such as Patient 19, a 62 years old female. Furthermore, based
on the estimated familial relatedness (Methods) and personal communication (February 2018,
Teodora Chamova), patients 19 and 20 are siblings (Suppl. Table 4).

Functional consequences of variants in the severe-specific module
Studying the functional impact of the compound heterozygous variants in the severe-specific
genes of the module, we observed that in 6 of the 8 patients at least one of the variants is
predicted to be deleterious by the Ensembl Variant Effect Predictor (VEP) (McLaren et
al. 2016) (Methods; Suppl. Table 5). For example, as for Patient 18, who presents 3 different
variants in AGRN gene, only rs200607541 is predicted to be deleterious by VEP’s Condel
(score = 0.756), SIFT (score = 0.02), and PolyPhen (score = 0.925). 
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In particular, the variant (a C>T transition)  presents an allele frequency (AF) of 4.56E-03
(gnomAD exomes) (Karczewski et al. 2020) and affects a region encoding a position related
to  a  EGF-like  domain  (SMART:SM00181)  and  a  Follistatin-N-terminal  like  domain
(SMART:SM00274). Both of these domains are part of the Kazal domain superfamily which
are specially found in the extracellular part of agrins (PFAM: CL0005) (Laskowski and Kato
1980). On the other hand, Patient 16 presents a total of 38 TNXB transcripts affected by three
gene  variants  (rs201510617,  rs144415985,  rs367685759) that  are  all  predicted  to  be
deleterious by the three scoring systems, have allele frequencies of 3.17E-02, 4.83E-02 and
5.90E-03, respectively; and in overall, are affecting two conserved domains. The first consists
of a fibrinogen related domain that is present in most types of tenascins (SMART:SM00186),
while the second is a fibronectin type 3 domain (SMART:SM00060) that is found in various
animal protein families such as muscle proteins and extracellular-matrix molecules (Bork and
Doolittle 1992). Two of the severe patients (Patients 12 and 19) present severe-only specific
compound  heterozygous  variants  that  are  not  predicted  to  be  deleterious.  However,  one
variant  in  the  CHGB gene  (rs742710,  AF=1.07E-01),  present  in  patient  12,  has  been
previously reported to be potentially causative for amyotrophic lateral sclerosis early onset
(Pampalakis  et  al.  2019).  This  gene  has  also  been  strongly  suggested  in  literature  as  a
possible marker for multiple sclerosis (Mo et al. 2013), and other related neural diseases like
Parkinson’s  (Nilsson et  al.  2009) and Alzheimer’s  disease  (Y.  Chen et  al.  2019).  As for
patient 19, the variant rs146309392 (AF=8.40E-04) in the gene HSPG2 has been previously
referred  to  be  causal  of  Dyssegmental  dysplasia  as  a  compound  heterozygous  mutation
(Arikawa-Hirasawa et al. 2001). This variant, as pointed out before, is shared with sibling
patient 20. One severe individual (Patient 3), a 37 years old female, does not carry compound
heterozygous variants  included in this  module but others at  a lower resolution parameter
value (Suppl. Figure 8; Suppl. Table 6). Interestingly, most of the genes carrying severe-
specific  deleterious  compound  heterozygous  variants  in  this  patient  (CDH3,  FAAP100,
FCGBP,  GFY,  RPTN)  are  not  related  to  processes  at  the  NMJ  level  (Hull  et  al.  2016;
Ramanagoudr-Bhojappa et al. 2018; Johansson, Thomsson, and Hansson 2009; Swuec et al.
2017;  Kaneko-Goto  et  al.  2013).  Nevertheless,  three  of  these  variants  occur  in  genes
potentially involved in NMJ functionality. In particular, variants rs111709242 (AF=2.64E-
03) and rs77975665 (AF=3.03E-02) affect gene PPFIBP2,  which encodes a member of the
liprin family (liprin-β) that has been described to control synapse formation and postsynaptic
element  development  (Bernadzki  et  al.  2017;  Astigarraga  et  al.  2010).  Furthermore,  the
variant rs111709242 is predicted to be deleterious by the SIFT algorithm (see Suppl. Table
6). Moreover, variant rs151154986 (AF=2.18E-02) affects the acyl-CoA thioesterase ACOT2,
which generate CoA and free fatty acids from acyl-CoA esters in peroxisomes (Grevengoed,
Klett, and Coleman 2014). A role for CoA levels in skeletal muscle for this enzyme class has
been previously described (Li et  al.  2015).  Interestingly,  PPFIBP2 appears in  modules at
lower resolution parameter  values associated with known CMS causal genes (e.g.  DOK7,
RPSN,  RPH3A,  VAMP1,  UNC13B).  Moreover,  this  patient  presents high relatedness  with
three not-severe patients (Patients 8, 9, and 10) who in turn display a very high relatedness
among them (Suppl. Table 4).
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Potential pharmacological implications
Finding a genetic diagnosis might help select the appropriate medication for each patient. For
instance,  fluoxetine  and  quinine  are  used  for  treating  the  slow-channel  syndrome,  an
autosomal dominant type of CMS caused by mutations affecting the ligand binding or pore
domains of AChR, but this treatment should be avoided in patients with fast-channel CMS
(Engel et al. 2015).
Within our cohort, 13 (7 mild, 2 moderate and 4 severe) out of 20 individuals from our CMS
cohort  are  receiving  a  pharmacological  treatment  consisting  of  pyridostigmine,  an
acetylcholinesterase inhibitor used to treat muscle weakness in myasthenia gravis and CMS
(Lee,  Beeson,  and  Palace  2018).  This  treatment  slows  down  acetylcholine  hydrolysis,
elevating  acetylcholine  levels  at  the NMJ,  which eventually  extends the synaptic  process
duration when the AChR are mutated. Although the severity could potentially be related to
how well a patient responds to the standard treatment with the AchE inhibitors, we could not
find a clear correlation between severity and pyridostigmine treatment (two-tailed Fisher’s
exact test p-value 0.356;  Suppl. Figure 1). 
In Addition to the causal mutation in CHRNE, our results indicate that severity is related to
AChR clustering  at  the  Agrin-Plectin-LRP4-Laminins  axis  level,  suggesting  the  potential
benefit  of  pharmaceutical  intervention  enhancing  the  downstream  process  of  AChR
clustering. For example, beta-2 adrenergic receptor agonists like ephedrine and salbutamol
have been documented  as  capable  of  enhancing  AChR clustering  (Clausen,  Cossins,  and
Beeson 2018)  and proved to  be  successful  in  the  treatment  for  severe  AChR deficiency
syndromes (Rodríguez Cruz et al. 2015) (Garg and Goyal, 2022). Furthermore, the addition
of salbutamol in pyridostigmine treatments have been described as being able to ameliorate
the  possible  secondary  effects  of  pyridostigmine  in  the  postsynaptic  structure
(Vanhaesebrouck et al. 2019).

Experimental validation of USH2A involvement at the NMJ
To determine the potential  relevance of one of our identified potential  modifiers with no
previously published relationship to the NMJ, we analyzed its function using zebrafish. For
this we chose  USH2A,  a gene associated with Usher syndrome and Retinitis pigmentosa in
humans (OMIM ID 608400, https://omim.org/), which was identified as a copy number loss
in patient 2. While we expect the phenotypic outcome (more severe disease) of this genetic
difference to manifest when expressed in conjunction with the CHRNE mutation causing this
patients’  CMS, we hypothesized that  knockdown of  USH2A  expression alone  may cause
detectable NMJ impairments. Therefore, we used a MO to knockdown the expression of the
zebrafish  orthologue;  ush2a,  and  studied  the  effects  on  survival,  development  and  NMJ
function. Zebrafish ush2a is expressed from 1 to 5 dpf, as shown in Suppl. Figure 9A. Using
a MO targeting the exon 3/intron 3 splice donor site we were able to decrease expression of
ush2a with a 6 ng to 18 ng MO injection (Suppl. Figure 9B). Survival of control and ush2a-
MO zebrafish was not significantly affected as compared to wildtype (WT) fish over 5 dpf
(log-rank test, WT n = 574, control MO 4 ng n = 46, 6 ng n = 75, 18 ng n = 34, ush2a-MO 2
ng n = 72, 4 ng n = 68, 6 ng n = 360, 12 ng n = 288, 18 ng n = 139, Suppl. Figure 9C). 
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There were no obvious gross morphological differences between control MO and ush2a-MO
fish up to 5 dpf (representative images of 2 dpf fish shown in Suppl. Figure 9D). As length
is an indicator of developmental stage, we measured the length of 18 ng injected ush2a-MO
fish at 2 dpf and found a significant reduction in length as compared to controls (p = 0.013, t
= 2.59, df = 38, unpaired t-test, control MO n = 20, ush2a-MO n = 20, Suppl. Figure 9E).
Eye  area  can  be  reduced  in  zebrafish  models  of  retinitis  pigmentosa,  the  condition  that
USH2A mutations are associated with in humans. We measured eye area in 2 dpf fish and
found it to be significantly reduced in 18 ng-injected ush2a-MO fish as compared to controls
(p = 0.0006,  t  =  3.73 df  = 38,  unpaired  t-test,  control  MO n = 20,  ush2a-MO n = 20,
Supplementary Figure 9F). 

Figure 5. Early movement behaviors in ush2a-MO zebrafish. (A) Chorion rotations per minute (burst
count),  and  (B)  mean  chorion  rotation  duration  in  seconds  for  control  and  ush2a-MO-injected
zebrafish at 1 days post fertilization (dpf). (C) Average velocity and (D) initial acceleration of control
and ush2a-MO zebrafish at 2 dpf in response to touch. Dashed line shows the median, dotted lines
show the quartiles, **p < 0.01, ****p < 0.0001, ns = not significant, Mann Whitney test (A and B),
unpaired t-test (C and D).
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Eye area remains significantly different after normalizing for body length (data not shown).
CMS manifests as fatigable muscle weakness in patients and in developing zebrafish we can
study  the  ability  of  fish  to  perform  repetitive,  well-characterized  movements  during
development  to  determine  whether  impairments  to  the  functioning  of  the  neuromuscular
system may be present. We quantified the number and duration of chorion movements in 1
dpf fish following administration of a control or 18 ng ush2a-MO. This revealed a significant
decrease in the number of burst events performed per minute in knockdown fish as compared
to controls (p = 0.003, Mann Whitney test, control MO n = 84,  ush2a-MO n = 74,  Figure
5A). The average duration of each burst event was not significantly affected by loss of Ush2a
(p = 0.467, Mann Whitney test, control MO n = 72,  ush2a-MO n = 49,  Figure 5B).  To
ascertain  whether  impairments  to  movement  are  present  in  the  knockdown  fish  while
swimming  free  of  the  chorion,  we also  performed  a  touch  response  assay  at  2  dpf.  We
observed a significant decrease in average velocity of the fish injected with  ush2a-MO as
compared to control MO in response to a touch stimulus (p < 0.0001, t = 4.42, df = 48,
unpaired t-test; n = 25,  Figure 5C). There was no significant difference in acceleration of
ush2a-MO fish as compared to controls (p = 0.263, t = 1.13 df = 47, unpaired t-test; control
MO n = 24, ush2a-MO n = 25, Figure 5D). 
To determine whether changes in movement are reflected at the level of gross NMJ structure,
analysis of NMJ morphology was performed on 2 dpf zebrafish (Figure 6A). A significant
decrease  in  the  number  of  SV2-positive  clusters  per  100 µm2 (representative  of  the  pre-
synaptic  motor  neurons)  was  identified  on  the  fast  muscle  fibers  of  ush2a-MO  fish  as
compared to controls (p = 0.0004, Mann Whitney test, control MO n = 11, ush2a-MO n = 15,
Figure  6B).  SV2-positive  clusters  overlie  postsynaptic  AChRs  to  form NMJs  and  these
receptors  can  be  detected  with  fluorophore-labelled  α-bungarotoxin.  Analysis  of  AChR
clusters  revealed  no  significant  differences  in  number  per  100  µm2  between  the  two
conditions (p = 0.217, Mann Whitney test, control MO n = 11,  ush2a-MO n = 15,  Figure
6C).  Colocalization analysis revealed no significant differences in co-occurrence of SV2 and
AChR on fast muscle fibers (SV2 colocalization with AChRs: p = 0.371, t = 0.911, df = 24,
nested t-test,  Figure 6D and AChR colocalization with SV2: p = 0.372, t = 0.909, df = 24,
control  MO  n  =  11,  ush2a-MO  n  =  15,  nested  t-test,  Figure  6E).  There  was  also  no
significant  difference  in  colocalization  of  SV2 with  AChRs on slow muscle,  however,  a
significant reduction in co-occurrence of AChRs with SV2 is present on  ush2a-MO slow
muscle (SV2 colocalization with AChRs: p = 0.516, t = 0.660, df = 24, nested t-test, Figure
6F and AChR colocalization with SV2: p = 0.002, t =  3.41, df = 24, control MO n = 11,
ush2a-MO n = 15, nested t-test, Figure 6G). Movement differences in zebrafish may also be
caused by changes in muscle growth and development. Therefore, we assessed 2 dpf fish for
gross phenotypic differences in muscle fiber orientation and structure using a phalloidin stain
to detect actin in muscles (Suppl. Figure 10A). We identified no significant differences in
muscle fiber dispersion (organization) or myotome size between ush2a-MO and control-MO
zebrafish (p = 0.922, t = 0.099, df = 24 unpaired t-test and p = 985, t = 0.019, df = 24 nested
t-test, respectively. Control MO n = 11 and ush2a-MO n = 15, Suppl. Figure 10B, C). 
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Figure 6. Neuromuscular junction morphology in ush2a-MO zebrafish. (A) Representative images of
neuromuscular  junctions  from control  and  ush2a-MO zebrafish  at  2  days  post  fertilization (dpf).
Acetylcholine receptors (AChRs) are stained with fluorophore bound α-bungarotoxin (aBt, cyan), and
motor neurons detected with an antibody against synaptic vesicle protein 2 (SV2, magenta). Scale bar
= 50 µm. (B) Number of SV2-positive clusters and (C) number of aBt-positive clusters per 100 µm2.
(D) Colocalization of SV2 with aBt and (E) colocalization of αBT with SV2 on fast muscle cells,
using  Mander’s  correlation  coefficient  (0  =  no  colocalization,  1  =  full  colocalization).  (F)
Colocalization of SV2 with aBt and (G) colocalization of aBt with SV2 on slow muscle cells at the
myosepta, using Mander’s correlation coefficient. Dashed line shows the median, dotted lines show
the quartiles, **p < 0.05, ***p < 0.001, ns = not significant, nested t-test.
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Discussion
In this work, we have developed a framework for the analysis of disease severity in scenarios
heavily impacted by sample size. Presenting limited numbers of cases is one of the main
obstacles for the application of precision medicine methods in rare disease research, as it
critically affects the level of expected statistical power, a common hallmark in the analysis of
minority conditions (Whicher, Philbin, and Aronson 2018). This fact difficults exploring the
molecular  relationships that define the inherently heterogeneous levels of disease severity
observed in rare disease populations, making it an atypically addressed biomedical problem
(Boycott et al. 2013).  Our approach, based on the application of multilayer networks, enable
the user to account for the many interdependencies that are not properly captured by a single
source of information, effectively combining the available patient genomic information with
general  biomedical  knowledge  from  relevant  databases  representing  different  aspects  of
molecular biology.  The application to a relevant clinical case, where we tested the hypothesis
that  the  severity  of  CMS  is  determined  by  patient-specific  alterations  that  impact  NMJ
functionality, provided evidence on how the methodology is able to recover the molecular
relationships between the candidate  patient-specific  genomic variants,  the observed causal
AChR mutation and previously described CMS causal genes (Table 1).  
Our in-depth functional analysis focused on a cohort of 20 CMS patients, from a narrow,
geographically isolated and ethnically homogenous population, who share the same causative
mutation in the AChR ε subunit (CHRNE) but present with different levels of severity. The
isolation and endogamy that characterize the population from which these patients come from
might  have  favored  the  accumulation  of  damaging  variants  (Fareed  and  Afzal  2017;
Petukhova et al. 2009), giving rise to the emergence of compound effects on relevant genes
for CMS. This  observation  has  previously been made in  similar  syndromes (Ohno 2003;
Müller et al.  2004) and in a number of other neuromuscular diseases (Zhong et al. 2017;
Wang et al. 2018). In CMS, compound heterozygous variants are known to be concentrated
in CHRNE (Thompson et al. 2019). The initial analysis of compound heterozygous variants
revealed a significant enrichment of functional categories that are specific to the severe cases,
namely ECM functions. This suggests the existence of functional relationships between major
actors  of  the  NMJ  that  are  affected  by  severity-associated  damaging  mutations.  Such
interactors include already known CMS causal genes (e.g. AGRN, LRP4, PLEC) as well as
genes known to interact with them. While severity-specific compound heterozygous variants
and CNVs are observed, demographic factors (e.g. sex, age), pharmacological treatment, and
personalized  omics  data  (e.g.  variant  calling,  differential  gene  expression,  allele  specific
expression, splicing isoforms) do not segregate with patient severity.
Therefore,  this motivated the developing of our multilayer network community analysis to
investigate  the  relationship  between  known  CMS  causal  genes  and  severity-associated
variants  (compound  heterozygous  variants  and  CNVs),  integrating  pathways,  metabolic
reactions,  and  protein-protein  interactions.  Recently,  we  used  a  multilayer  network  as  a
means  to  perform  dimensionality  reduction  tasks  for  patient  stratification  in
medulloblastoma, a childhood brain tumor (Núñez-Carpintero et al. 2021). Here, we started
by analyzing DisGeNET data in order to verify that disease-associated genes tend to belong
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to the same multilayer communities. We then identified stable and significantly large gene
modules within our CMS cohort’s multilayer communities and mapped the corresponding
damaging  mutations  back  to  the  single  patients,  providing  a  personalized  mechanistic
explanation  of  severity  differences.  Given  the  difficulties  of  cohort  recruitment  for  rare
diseases, this approach could be used to investigate forms of CMS and other phenotypically
variable rare diseases caused by a common mutation (Estephan et al. 2018).
Overall,  the  personalized  analysis  of  these  mutations  suggests  that  CMS severity  can  be
ascribed to the damage of specific molecular functions of the NMJ which, despite affecting
individuals  in  a  personalized  manner,  involve  genes  belonging  to  distinct  classes  and
localizations,  namely  ECM  components  (proteoglycans,  tenascins,  chromogranins)  and
postsynaptic modulators of AChR clustering (LRP4, PLEC) (Table 2). Alterations of other
genes related  to  the production  of  ECM components,  such as laminins  and collagen,  are
observed but are not specific to the severity levels. 
Finding  a  personalized  genetic  diagnosis  for  phenotypic  severity  might  help  select  the
appropriate medication for each patient.  For instance,  fluoxetine and quinine are used for
treating  the  slow-channel  syndrome,  an  autosomal  dominant  type  of  CMS  caused  by
mutations affecting the ligand binding or pore domains of AChR, but this treatment should be
avoided in patients with fast-channel CMS (Engel et al. 2015). Within our cohort, 13 out of
20 individuals from our CMS cohort are receiving a pharmacological treatment consisting of
pyridostigmine,  an  acetylcholinesterase  inhibitor  used  to  treat  muscle  weakness  in
myasthenia gravis and CMS (Lee, Beeson, and Palace 2018). Although the severity could
potentially be related to how well a patient responds to the standard treatment with the AchE
inhibitors,  we  could  not  find  a  clear  correlation  between  severity  and  pyridostigmine
treatment (two-tailed Fisher’s exact test p-value 0.356; Suppl. Figure 1). Our results indicate
that severity is related to AChR clustering at the Agrin-Plectin-LRP4-Laminins axis level,
suggesting the potential  benefit  of pharmaceutical  intervention enhancing the downstream
process of AChR clustering. Strikingly,  beta-2 adrenergic receptor agonists like ephedrine
and salbutamol have been documented as capable of enhancing AChR clustering (Clausen,
Cossins, and Beeson 2018) and proved to be successful in the treatment for severe AChR
deficiency  syndromes  (Sadeh,  Shen  and  Engel,  2011)  (Rodríguez  Cruz  et  al.  2015)
(Vanhaesebrouck et al. 2019) (Garg and Goyal, 2022), but a strong molecular explanation for
the observed favorable effects was still missing. This study reinforces explainability for the
described successful usage of such treatments by relating CMS phenotypic severity with the
normal development of AChR clusters at the motor neuron membrane.
Several of the genes identified in this analysis do not have previous associations with the
NMJ,  such  as  the  Usher  syndrome  and  Retinitis  pigmentosa  associated  gene;  USH2a,
identified as a copy number loss in patient 2. To provide proof of principal for this gene
acting as a potential modifier of CMS severity, we investigated whether knockdown of ush2a,
the zebrafish orthologue, could result in NMJ defects. Both CRISPR and TALEN-mediated
knockout of ush2a in zebrafish have previously revealed phenotypes consistent with Usher
syndrome and Retinitis pigmentosa such as hearing loss and progressive visual impairments
(Han et al. 2018). 
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However,  neither  study  assessed  impacts  on  muscle  structure  or  movement  of  the  fish.
Zebrafish  perform  well-characterized  movements  throughout  development,  starting  with
spontaneous chorion rotations from approximately 17 hours post fertilization (hpf, the time at
which  primary  motor  axons  start  extending  into  the  muscle)  to  30  hp  (Saint-Amant  &
Drapeau.  1998).  We  treated  1-cell-stage  embryos  with  a  high  dose  of  MO  to  reduce
expression of ush2a (or equivalent dose of a control MO) and found a decrease in the number
of chorion rotations performed at 24 hpf. These movements are mediated at the level of the
spinal  cord  and  are  independent  of  supraspinal  inputs  (Downes  &  Granato.  2006),  thus
implying an early defect in NMJ or muscle development,  or in signal transduction in the
spinal cord/peripheral nervous system. By 2 dpf zebrafish can respond to touch and do so by
rapidly swimming at least 1 body-length away from the stimulus (Saint-Amant & Drapeau.
1998). In ush2a-MO fish the average swimming velocity was significantly slower than in
controls, whereas the initial acceleration (proportional to the force of muscle contraction) was
unaffected  (Sztal  et  al  2016).  This  implies  that  the  initial  fast  muscle  response  is  not
significantly affected at this time-point, but that loss of Ush2a at the NMJs of slow muscle
may be impacting swimming.  Defects in movement are reported in many other zebrafish
models of CMS, such as those lacking Dok7 (Müller et al.  2010), Gfpt1 (Senderek et al.
2011) and Syt2 (Wen et al. 2010). Our motility findings are supported by the identification of
a reduction in colocalization of AChRs with SV2-positive clusters on slow muscle fibers in 2
dpf fish, thus showing an increase in the number of AChRs that have not been contacted by a
motor axon. We also identified an overall reduction in the number of SV2-positive clusters,
which may be indicative of a defect or delay in development of the motor nervous system.
Previous  studies  have  commented  on  USH2A  presence  on  the  basement  membranes  of
perineurium nerve  fibers  (Pearsall  et  al.  2002)  (Schwaller  et  al.  2021),  however,  further
functional studies will be required to determine the precise localization of the defect and
whether  loss  of  USH2a alone  can  impact  NMJ signaling  or  whether  co-occurrence  with
CHRNE  CMS  is  required.  Further  functional  work  is  also  required  to  ascertain  the
importance of other potential modifiers identified in this study. 
Our  work  represents  a  thorough  study  of  a  narrow  population  showing  a  differential
accumulation of damaging mutations  in patients with CMS who have varying phenotypic
severities, building on the initial impact of CHRNE mutations on the NMJ. It is important to
remark that  CMS is of particular  interest  among rare diseases,  since drugs that  influence
neuromuscular transmission can produce clear improvements in the affected patients (Engel
2007). In this sense, identifying meaningful molecular relationships between gene variants
allow  us  to  gain  insight  into  the  disease  mechanisms  through  a  multiplex  biomedical
framework, paving the way for a whole new set of computational approximations for rare
disease research.
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Methods

WGS and RNA-seq
Whole genome sequencing (WGS) data have been obtained from blood using the Illumina
TruSeq PCR-free library preparation kit. Sample sequencing was performed with the HiSeqX
sequencing platform (HiseqX v1 or v2 SBS kit, 2x150 cycles), with an average mean depth
coverage ≥ 30X. Samples have been analyzed using the RD-Connect specific pipeline: BWA-
mem for alignment; Picard for duplicate marking and GATK 3.6.0 for variant calling. RNA
sequencing (RNA-seq) data have been obtained from fibroblasts, using Illumina TruSeq RNA
Library Preparation Kit v2, sequencing with an average of 60M reads per sample (paired-end
2X125 cycles). Data has been processed with the following pipeline (Laurie et al.  2016):
STAR 2.35a  for  alignment,  RSEM 1.3.0 for  quantification,  and GATK 3.6.0  for  variant
calling. All analyses have been performed using the human genome GRCh37d5 as reference.

Copy number variants
Copy  Number  Variants  (CNVs)  have  been  extracted  using  ClinCNV
(https://github.com/imgag/ClinCNV) by employing a set of Eastern European samples as a
background  control  group.  Out  of  the  569  autosomal  CNVs  we  selected  as  potential
candidates the CNVs of the following types that overlapped with protein-coding genes: 1)
whole gene gains or losses, and 2) partial losses (deletions overlapping with exons but not
with the whole gene). The list of potential candidates included 55 CNVs that created a total
of 82 whole gene gains or losses and 28 partial losses. 
 
Compound heterozygous variants
Compound heterozygous variants have been obtained by phasing the WGS variant calls with
the RNA-seq aligned BAM files using phASER (Castel et al. 2016). At first, variants are
imputed using Sanger Imputation  Service with EAGLE2 pre-phasing step (Durbin 2014).
PhASER is then applied to extend phased regions to gene-wide haplotypes. By accurately
reflecting the muscle transcriptome, fibroblasts have been previously proved to be excellent
and minimally invasive diagnostic tools for rare neuromuscular diseases (Gonorazky et al.
2019). We then annotated variants with eDiVA tool (www.ediva.crg.es) (Bosio et al. 2019),
and  removed all mutations with Genome Aggregation Database (gnomAD) (Lek et al. 2016)
that show allele  frequency > 3% globally,  all  variants outsde exonic and splicing regions
using  Ensembl  annotation,  all  synonymous  mutations,  and  all  variants  with  read  depth
(coverage) smaller than 8. Afterwards we selected all genes with at least two hits on different
alleles as genes affected by damaging compound heterozygous variants.  Each sample has
been processed individually throughout the whole process.

Monolayer community detection
We  performed  a  network  community  detection  analysis  using  the  Louvain  clustering
algorithm (Blondel et al. 2008) implemented in R package igraph (https://igraph.org/) with
default parameters. We carried out the analysis using three (monolayer) networks, obtained
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from Reactome database (Fabregat et al. 2018), from the Recon3D Virtual Metabolic Human
database  (Brunk  et  al.  2018)  (both  downloaded  in  May  2018),  and  from the  Integrated
Interaction Database (IID) (Kotlyar et  al.  2016) (downloaded in October 2018). The first
network consists of 10,618 nodes (genes) and 875,436 edges, representing shared pathways
between genes.  The second network  consists  of  1,863 nodes  (genes)  and 902,188 edges,
representing shared reaction metabolites between genes. The third network consists of 18,018
nodes (genes) and 947,606 edges, representing aggregated protein-protein interactions from
all  tissues.  All  gene  identifiers  of  each  network  were  converted  to  NCBI  Entrez  gene
identifiers  using  R  packages  AnnotationDbi  v1.44.0  and  org.Hs.eg.db  v3.7.0
(http://bioconductor.org/).  After  detecting  the  community  structure  from  each  layer
independently, we retrieved the community membership of the genes of interest, henceforth
called  “CMS  linked  genes”,  i.e.  known  CMS  causal  genes,  and  severe  and  not-severe
compound  heterozygous  variants  and  CNVs.  We  then  defined  a  community  similarity
measure  as  Jaccard  Index,  i.e.  the  number  of  shared  genes  of  interest  between  the
communities divided by the sum of the total number of genes of each community.

Multilayer community detection
We  constructed  a  multilayer  gene  network  composed  of  the  three  monolayer  networks
described  in  the  previous  section  (Reactome,  Virtual  Metabolic  Human  and  Integrated
Interaction Database). Each of these three networks represents one layer of the multilayer
network and, in general, three facets of fundamental molecular processes in the cell (Suppl.
Figure 11).  The multilayer  community detection analysis  was performed by using MolTi
software  (Didier, Brun, and Baudot 2015), which adapts the Louvain clustering algorithm
with modularity maximization to multilayer networks. The algorithm is parametrized by the
resolution  (γ):  the  higher  the  value  of  γ,  the  smaller  the  size  of  the  detected  multilayer
communities.  By varying the resolution parameter γ it is possible to uncover the modular
structure of network communities (Fortunato and Barthelemy 2007). By exploring a wide
range  of  resolution  parameter  values,  we  identified  γ=4  (727  communities,  each  one
composed of 26.46 genes on average) as an extreme value before both size and number of the
detected multilayer communities stabilize (Suppl. Figure 12). The most dramatic changes in
number and composition of detected communities are observed in the resolution parameter
interval  γ (0,4].  We,  therefore,  used  this  parameter  interval  to  test  the  hypothesis  that∈
disease-related genes consistently appear in the same multilayer communities, as well as to
identify modules containing CMS linked genes within them. In this analysis, we define a
module as a group of CMS linked genes that are systematically found to be part of the same
multilayer  community  while  increasing  the  resolution  parameter  (see  Supplementary
Information "Multilayer community detection analysis").

Additional analyses and code availability
We retrieved known CMS causal genes from the GeneTable of Neuromuscular Disorders
(http://www.musclegenetable.fr ,  version  November  2018)  (Bonne,  Rivier,  and  Hamroun
2017). Segregation analysis of WGS data has been performed using Rbbt (Vázquez et al.
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2010). DisGeNET database (Piñero et al.  2017) was downloaded in November 2018. The
association between CMS severity, demographic factors and clinical tests was assessed with a
two-tailed Fisher’s test using R statistical environment (www.R-project.org). Networks were
rendered with Cytoscape (Saito et al.  2012). We used VCFtools (Danecek et al.  2011) to
compute familial relatedness Ω among patients, scaled to -log2(2Ω). We used Enrichr (E. Y.
Chen et al. 2013) for  the functional enrichment analysis of the gene lists under study. We
used Ensembl Variant Effect Predictor (VEP) (McLaren et al. 2016) to assess the impact of
the  compound  heterozygous  variants  in  the  genes  of  the  severe-specific  largest  module.
Expression levels in tissues of interest (GTEx and Illumina Body Map) were retrieved from
EBI Expression Atlas (www.ebi.ac.uk/) by filtering with the following keywords: ‘nerve’,
‘muscle  cell’,  ‘fibroblast’  and  ‘nervous  system’  (0.5  TPM  default  cutoff).  We  used
Expression Atlas expression level  categories:  low (0.5 to 10 TPM), medium (11 to 1000
TPM), and high (more than 1000 TPM) (Petryszak et al. 2016). Synaptic localization was
retrieved from the UniProt database (https://www.uniprot.org/). All code from the original
analysis  is  available  for  reproducibility  purposes  at:  https://github.com/ikernunezca/CMS.
The  analysis  of  multilayer  community  communties  can  also  be  performed  using  CmmD
(Nuñez-Carpintero  et  al.,  2021)  (https://github.com/ikernunezca/CmmD)  with  parameters:
resolution_start: 0, resolution_end: 4,  interval: 0.5 and the CMS linked genes as nodelist. 

Zebrafish morpholino injections
Zebrafish  have  one  orthologue  of  human  USH2a:  ush2a,  as  identified  using  the  UCSC
database (http://genome.ucsc.edu/, GRCz11/danRer11 assembly). We confirmed that ush2a is
expressed throughout the first 5 days post fertilization (dpf). Gene Tools LLC (USA) then
designed and synthesized an antisense morpholino oligonucleotide (MO) targeting the splice
donor  site  of  exon  3/intron  3  of  ush2a (5’-3’  GAGAAATGCTGCTCACCTGTAGAGC,
ENSDART00000086201.5). We also obtained a control MO that targets a human beta-globin
mutation (5’-3’ CCTCTTACCTCAGTTACAATTTATA). MOs were diluted to 2 ng/nl in
Danieau buffer (58 mM NaCl, 5 mM HEPES, 0.7 mM KCl, 0.6 mM Ca(NO3)2,  0.4 mM
MgSO4; pH 7.6) and supplemented with 1% phenol red, before being injected into the yolk-
sac of 1-cell stage embryos. A range of doses between 6 and 18 ng per 1-cell stage embryo
were trialed for success in reducing ush2a expression and producing a measurable phenotypic
change.  A  dose  of  18  ng  per  1-cell  stage  embryo  was  selected  for  behavioral  and
morphological  analysis,  as  survival  was  not  significantly  affected  for  any  dose  tested.
Embryos were maintained at 28.5°C in blue water (system water with 0.1 µg/ml Methylene
Blue) for up to 5 dpf and survival recorded daily. At 2 dpf zebrafish were imaged using a
Leica EZ4 W stereomicroscope and eye size and length measured using Fiji (ImageJ).

Chorion movement analysis in zebrafish
At 1 dpf (24 hours post fertilization), zebrafish were recorded in their chorions for 1 minute
at 30 frames per second using a Leica EZ4 W stereomicroscope. Videos were analyzed using
DanioScope software (Noldus Information Technology Inc., Leesburg, VA) to automatically
assess duration of bursts and burst count/minute (bursts are full rotations performed by the
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zebrafish within the chorion). 
Touch response analysis
At 2 dpf, a touch response assay was performed as previously described (O’Connor et al.
2018). Only fish with a normal phenotype were used for movement analysis. Briefly, fish that
had not hatched from the chorion were enzymatically dechorionated with pronase (1 mg/ml,
Sigma) for 10 min in blue water, followed by 3x washes in blue water. An individual fish was
placed in a petri dish containing blue water and a Sony RX0 II (DSC-RX0M2) camera was
placed 20 cm above the petri dish. A ruler with 1 mm markings was used as a scale for
recordings. A gel loading pipette tip was used to touch the zebrafish on the back of the head
and the response recorded. Videos were imported into Fiji ImageJ (Schindelin et al. 2012) as
FFmpeg movies and movements analyzed using the Trackmate plugin (Tinevez et al. 2017).
Values for average speed were exported and used to derive initial acceleration. 

RNA isolation, cDNA synthesis and RT-PCR in zebrafish
RNA was isolated from pools of around 20 2 dpf zebrafish (control MO and  ush2a MO-
injected) following removal of chorions with pronase (Streptomyces griseus, Roche,1 mg/ml
in blue water). Zebrafish were washed 3 times with blue water, euthanized with a 1:1 ratio of
fresh system water:4 mg/ml tricaine methanesulfonate (Sigma). Fish were homogenized in
RLT buffer (RNeasy mini kit, Qiagen) using 5 mm stainless steel beads with a TissueLyser II
(Qiagen)  at  25  Hz  for  2  mins.  RNA  was  then  isolated  following  the  RNeasy  kit
manufacturer’s  instructions,  including  on-column  DNase  digestion.  RNA  was  measured
using a Nanodrop ND-1000 and 1 µg used for cDNA synthesis according to manufacturer’s
instructions (5X All-In-One RT MasterMix, abm). Reverse-transcriptase PCR (RT-PCR) was
performed  to  check  for  ush2a  gene  expression  and  knockdown  success  in  MO-treated
embryos, using MyTaq™ DNA Polymerase (Meridian Bioscience) and primers as follows:
eef1a1l1  forward  5’-CTGGAGGCCAGCTCAAACATGG-3’,  reverse  5’-
CTTGCTGTCTCCAGCCACATTAC-3’  and  ush2a forward  5’-
CTGGGCACACTTGGCTCTAC -3’, reverse 5’-TTCTTCAATCTCCCTGTTGGTT-3’. 

Immunofluorescent staining, imaging and analysis of zebrafish neuromuscular junctions
and muscle fibers
Whole  mount  staining  of  2  dpf  zebrafish  NMJs  was  performed  as  previously  described
(O’Connor et al. 2019).  Briefly, a mouse anti-synaptic vesicle protein 2 (SV2) antibody was
used  to  visualize  motor  neurons  (1:200,  AB2315387,  Developmental  Studies  Hybridoma
Bank) and Alexa Fluor 488-α-bungarotoxin conjugate (1:1000, B13422, Invitrogen) was used
for visualizing acetylcholine receptors (AChRs). Phalloidin-iFluor 594 was used to visualize
filamentous actin within muscle fibers (1:1000, ab176757). Z-stack images encompassing the
depth of the midsection of the zebrafish tail were obtained using a 20× air objective on an
LSM800  confocal  microscope.  Analysis  of  NMJ  structure  was  performed  as  previously
described (O’Connor et al. 2019), using Fiji (ImageJ, Madison, WI, USA). The number of
SV2-positive  and  α-bungarotoxin-positive  clusters  per  100  µm2 were  measured.  Co-
localization analysis between SV2 and α-bungarotoxin was performed on maximum intensity
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projections  using  the  ‘JACoP’  Fiji  plugin  (Bolte  &  Cordelières,  2006).  Briefly,  each
fluorophore was subject to manual thresholding to remove background, and the Mander’s
correlation coefficient calculated to give a value between 0 and 1, reflecting the degree of co-
occurrence of signals between both SV2 and α-bungarotoxin, and α-bungarotoxin with SV2.
For  phalloidin-stained  fish,  average  myotome  size  was  measured,  and  degree  of  fiber
dispersion  quantified  using  the  directionality  plugin.  Data  was  collected  from at  least  4
myotomes per fish.

Statistics for zebrafish experiments
Statistical  analysis was performed using GraphPad Prism software (v9.3.0). Outliers were
removed from data using the ROUT method (Q = 1 %). Cleaned data was tested for normal
distribution  then  depending  on  outcome  either  a  nonparametric  Mann-Whitney  test  or
parametric unpaired t-test were applied for behavioral studies and degree of dispersion. For
NMJ  morphology  experiments  in  which  4+  myotomes  (technical  replicates)  per  fish
(biological replicates) were analyzed, data was assessed for significance using a nested t-test
to avoid pseudoreplication. Statistical significance was taken as p < 0.05, degrees of freedom
(df) and t-value are given for all parametric tests, and n numbers listed in the results section.
Survival  analysis  was  performed  using  the  log-rank  test  comparing  WT  to  each  other
condition, and threshold for significance was corrected for multiple comparisons using the
Bonferroni  method  (p  <  0.006).  Zebrafish  studies  were  blinded  before  image/video
acquisition and unblinded following analysis. 
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