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1. Additional experimental detail 

a. Database segmentation for synthetic peptide benchmark dataset 1. 

>Cas9a 

GAASMDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIG 

ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLE 

ESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYL 

ALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDA 

KAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAE 

DAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKA 

PLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGG 

ASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFD 

 

>Cas9b 

NGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARG 

NSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK 

HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK 

QLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENED 

ILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKL 

INGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGD 

SLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTT 

QKGQKNSRERMKRIEEGIKELGSQILKEHPVEN 

 

>Cas9c 

TQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNK 

VLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGG 

LSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLK 

SKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG 

DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI 

 

>Cas9d 

TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQT 

GGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKS 

KKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFEL 

ENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLF 

VEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENII 

HLFTLTNLGAPAAFKYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDL 

SQLGGD 
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b. CRIMP search settings  

Parameters changed Synthetic Benchmark 1  

Synthetic 

Benchmark 

2 

Proteome Search 

Crosslinker DSS DSSO DSSO BS3 DSSO 

Digest 
Trypsin 

(K/R only) 

Trypsin (K/R 

only) 

Trypsin 

(K/R only) 

Trypsin (K/R 

only) 

Trypsin (K/R 

only) 

E 99% 99% 99% 99% 99% 

E 25% 25% 10% 10% 10% 

Top N 10 10 10 10 10 

Min. Peptide Size 5 5 6 6 6 

Max. Peptide Size 60 60 30 30 60 

Min. m/z Range 400 400 375 400 400 

Min. m/z Range 1600 1600 1500 1450 1450 

Database 

Propagation 
Dataset None None None 

Run/State 

Group 

MS1 Tolerance 5ppm 5ppm 5ppm 5ppm 5ppm 

MS2 Tolerance 20ppm 20ppm 10ppm 10ppm 10ppm 

Fragmentation 

Events 
2 1 1 2 1 

Exclude Y1s 

(Processor) 
FALSE FALSE TRUE TRUE TRUE 

Table S1. A list of search parameters for each dataset. The parameters highlight modified (non-

default) parameters values plus the default TopN, E and E settings, and follow the specifications of 

each benchmark publication as close as possible.  

 

2. Scoring XLs in CRIMP 2.0 

a. Core OMSSA++ score.  As described in the main text, we revised our peak 

identification process to better support a revised scoring method. The essence of the scoring 

method remains the OMSSA+ score defined in Sarpe et al.2, which assigns a probabilistic E-

value based loosely on the original OMSSA concept3. Here, in the MS1 space, our new peak 

identification process improves our use of the precursor ion isotopic envelope and changes the 

way in which precursor mass is handled. In MS2 space, fragments are assigned using a “greedy 

feature overlap solver (GFOS)”, that assigns weights, or priorities, to fragment types in the MS2 

spectrum based on a hierarchical approach to spectral assignment. GFOS also partially 

deconvolves overlapped isotopic distributions, reduces the frequency of monoisotopic 

misassignments and improves charge identification. We refer to the collection of enhancements 

as generating a core OMSSA++ score for a given MS2 spectrum. We note also that annotation 

support and scoring is provided for cleavable reagents and their fragment types, based on doublet 

detection for the component peptides as well as their fragments.  

b. Multiple Perspectives Scoring Strategy.  The OMSSA++ score, or any single 

scoring method, does not readily support distinguishing between hits that draw from variable 

database sizes, as occurs when considering the different reaction products arising from a 
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crosslinking reaction. The various fragment categories that can arise from these reaction products 

also contain different information about spectrum matches.  For example, crosslink-specific 

fragments will indicate a crosslink has occurred but these are of less value in determining the 

sequences that comprise the crosslink. Finding a best solution (here, the best-scoring reaction 

product) can be approached using strategies derived from computer vision applications (such as 

autonomous vehicle guidance). The spectral identification process is like viewing an image from 

multiple perspectives, where each viewpoint captures overlapping sets of information, and 

synthesizes the information to classify an object.   

We developed a Multiple Perspectives Scoring (MSP) process to generate better 

spectral “depth perception”, involving the creation of a multi-component scoring vector with the 

following elements, each scored separately using OMSSA++: 

• All annotated single-fragmentation events. 

• All annotated fragments from a linear free (i.e., noncrosslinked) peptide. 

• All annotated “single-fragment” crosslinks, which refers to a single sequence 

fragment in a crosslinked peptide (i.e., with retention of the linkage). 

• All annotated fragments that support the most likely crosslinked residue pair, 

including internal (or two-fragment) ions.  

• All annotated fragments, including internal ions. 

These components were selected to represent fragment classes differently in the final score, 

preventing the noise from potentially large classes of fragments (such as internal ions) from 

overwhelming other low-complexity annotations (such as single-fragment crosslinks). The 

fragment allocation process used in OMSSA++ scoring is synergistic with this strategy. The 

scoring vector is augmented with an equivalent set of scores for the weakest of the two 

component peptides, creating 10 probabilistic components. These are further augmented with an 

additional 4 components that contribute non-probabilistic (and class-independent) spectral 

information, to create a 14-component scoring perspective.  

c. Calculating the Competitive Label Assignment Method (CLAM) Composite 

Score. We then score the MS2 spectra using a three-stage process: 

• First, spectral matches are scored independently for all reaction products, assuming no 

spectral conflicts, using the 14-component vector. 

• Second, spectral conflicts are identified using only the probabilistic components of the 

soring vector. All matches competing for a spectrum are evaluated in a “one vs. rest” 

strategy to generate a  discriminator for a given spectral assignment, j: 

𝛾𝑗 = 𝑛 ×
𝑥𝑗

1 + 𝑚𝑎𝑥 {𝑥1 … 𝑥𝑛}
 

where j is an element in a vector of all n spectral conflicts and 

 

𝑥𝑗 = ∑ (−ln(𝐸𝑡𝑜𝑡𝑎𝑙,𝑖) + ln(𝐸𝑠ℎ𝑎𝑟𝑒𝑑,𝑖))
𝑗

𝑘

𝑖
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Etotal,i is the OMSSA++ score for the ith component of the score vector for the full set of 

fragments for a given spectral assignment, and Eshared,i is the OMSSA++ score for the ith 

component of the vector for the shared set of fragments arising from all other possible 

spectral assignments; k is number of components in the scoring vector.  

Then, the total fragment set for a given spectral assignment is penalized by the 

cumulative shared fragment set from other possible assignments. A i score is calculated 

for the given assignment as follows:  

𝛿𝑖 = −ln(𝐸𝑡𝑜𝑡𝑎𝑙,𝑖) + ln (
𝛾𝑗

1 − 𝛾𝑗
𝐸𝑠ℎ𝑎𝑟𝑒𝑑,𝑖) 

where i is a penalized score for the given vector component i, upon which point the non-

probabilistic components of the vector are reintroduced.  

• Third, each term in the scoring vector is then scaled (0,100) and marginal q values are 

calculated for each component (using the decoy information and FDR estimation 

described below) and applied to the  score: 

 

𝐷𝑖 = (1 − 𝑞𝑖)𝛿𝑖 

 

This transforms the scores vector by the specific error function of each component. 

Finally, a CLAM score is calculated, reducing the vector to a scalar quantity, through the 

log-link of the inner product: 

 

𝐶𝐿𝐴𝑀 𝑠𝑐𝑜𝑟𝑒 = ln (∑ ∑ 𝐷𝑖𝐷𝑗

𝑘

𝑗

𝑘

𝑖

) 

 

In summary, the MSP scoring approach generates a CLAM score that identifies the best 

hit across all categories of reaction product. The final CLAM score is rescaled (0,100) for 

ease of “in run” comparisons.  They are not directly comparable between experiments.  

 

3. Error estimation in CRIMP 2.0 

The different categories of crosslinker reaction products all have different noise distributions in 

database searches, leading most tools to calculate False Discovery Rates (FDRs) in a category-

specific manner. The strategy adopted in CRIMP 2.0 removes the need for category-specific 

error estimation. First, database matches are grouped according to their unique database 

configurations: 

• Free linear peptides 

• Mono-link peptides 

• Loop-linked peptides  

• Intra-protein crosslinking peptides 

• homotypic inter-protein crosslinks 
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• heterotypic inter-protein crosslinks. 

Within each of these groups, the match scores are standardized by their error distributions 

(approximated with a Poisson mixture model, to account for uneven sampling of decoys). This 

establishes a situation where the FDR category-specific error distributions are essentially a 

sampling of a universal error distribution, which allows us to directly combine the results across 

the categories and achieve a more robust single error estimate. Only then are the scores scaled 

(0,100). Next, we calculate both a global and a local q value and combine them in a geometric 

mean as follows, to achieve a category-independent FDR estimate: 

 

• Global q-estimate 

 

𝑞𝑔𝑙𝑜𝑏𝑎𝑙 =
(𝑁𝐷 + 𝑁𝑇𝐷)  −  𝑁𝐷𝐷

(𝑁𝑇 + 𝑁𝑇𝑇)
∈  { 𝐷𝑒𝑐𝑜𝑦𝑠 | 𝑆𝑐𝑜𝑟𝑒 ≥ 𝑇𝑖 } 

 

 

• Local/Tailed q-estimate 

 

𝑞𝑙𝑜𝑐𝑎𝑙 =
(𝑁𝐷 + 𝑁𝑇𝐷)  −  𝑁𝐷𝐷

(𝑁𝑇 + 𝑁𝑇𝑇)
∈  {

(𝐷𝑒𝑐𝑜𝑦𝑠 | 𝑆𝑐𝑜𝑟𝑒 ≥  𝑇𝑗)

(𝑇𝑎𝑟𝑔𝑒𝑡𝑠 | 𝑆𝑐𝑜𝑟𝑒 ≥  𝑇𝑗)
 

 

 

• Final estimate 

𝐹𝐷𝑅 =  √𝑞𝑔𝑙𝑜𝑏𝑎𝑙 ∗  𝑞𝑙𝑜𝑐𝑎𝑙  

where ND is the number of decoy hits for a peptide, NT the number of target hits for a peptide, 

NTD the number of target-decoy hits for a crosslink, NDD the number of decoy-decoy hits, and NTT 

the number of target-target hits.  

 

4. Aggregation  

To propagate spectral matches into higher levels of information, we need to implement a score 

cut-off to determine the set of significant matches to use as inputs for aggregation. Here the score 

cut-off is calculated by minimizing the equal-error rate (EER, also known as the crossover-error 

rate (CER)). Matches with scores greater than the EER value are accepted and passed forward to 

aggregation. The EER score is the smallest score that minimizes the distance between the FDR 

and the FOR (false omission rate) and is calculated as follows: 

A. EER point estimate 

𝐸𝐸𝑅 = 𝐹𝐷𝑅 − 𝐹𝑂𝑅 

 B. EER score cut-off (smallest root of EER function) 

     𝛼𝑠𝑐𝑜𝑟𝑒 = min
𝐸𝐸𝑅→0

(𝑠𝑐𝑜𝑟𝑒) 
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This approach avoids artificially truncating positive results prior to the scoring aggregation 

process, which translates into greater sensitivity and a more accurate error estimation for the 

higher levels of information.  

Results are then aggregated within a run and, if replicate samples are processed, across 

multiple runs. CSMs are propagated to higher levels of information (e.g., UPPs) using the 

following equation: 

𝐶𝐿𝐴𝑀𝑖+1 =
𝑚𝑎𝑥(𝐶𝐿𝐴𝑀𝑖) + ∑ 𝐶𝐿𝐴𝑀𝑖

𝑛
𝑖

𝑛 + 2
 

Where subscript i represents the information level (e.g., CSMs is an i = 1). At the conclusion of 

each aggregation step, scores are rescaled and final FDR calculations are applied as above for 

each level of information.  

 

5. Composition-informed PPI scoring 

It has been noted elsewhere and confirmed by our own experience that the true set of PPIs should 

have strong evidence for their unique proteins in addition to the PPI specific evidence. Our 

composition-informed PPI score includes information from the unique proteins in a three-

component vector consisting of:  

• AB-Score, composed of inter-protein dimers, and calculated as above through aggregation.  

• A-Protein Score, composed of intra-protein crosslinks + monomers and calculated as 

above through aggregation. 

• B-Protein Score, composed of intra-protein + monomers and calculated as above through 

aggregation. 

The 3-component scores vector is collapsed to a single scalar using an adaptation of our scoring 

workflow. Here, the marginal q-value transformation and inner-product scoring method of the 

CLAM process are reapplied to the set of component scores. The recalculated score is calculated 

as follows: 

 

• Marginal q transformation applied to PPI score vector 

 

𝐴𝑖 = (1 − 𝑞𝑖) × 𝛼𝑖 

 

• Final PPI score calculation, adapted CLAM product  

 

 𝑃𝑃𝐼 𝑆𝑐𝑜𝑟𝑒 = (𝐴𝑃𝑃𝐼 × 𝐴𝑃𝑃𝐼) + (𝐴𝑃𝑃𝐼 × 𝐴𝑃𝐴) + (𝐴𝑃𝑃𝐼 ×  𝐴𝑃𝐵) +  (𝐴𝑃𝐴 × 𝐴𝑃𝐵) 

 

After the score recalculation, a final FDR estimate is obtained, and the PPI q-values are replaced 

by the new estimate directly. Like the other scores, the final recalculated PPI scores are min/max 

scaled to [0,100] where 100 indicates the most confident match score. 
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Figure S1.  3D Sensitivity plots for N, E and E, using DSS data from Beveridge et al.1 

dataset. A grid search of the library reduction parameter space was conducted with increasing 

entrapment complexity up to addition of the E. coli proteome. Sensitivity was normalized per 

entrapment database per run to facilitate comparison. Search settings used for primary 

experiments (Eb=99, Ea=25, N=10) was chosen for its balance between search time, and 

sensitivity (mean=95.37%, min=84.15%, max=98.63%, Q1=95.84%, Q2=97.06%, Q3=98.1%), 

n=24). 
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Figure S2. A comparison of several crosslink search tools used on the synthetic peptide 

dataset benchmark 1, from Beveridge et al.1  The number of CSMs that correspond to correct 

(blue) and incorrect (orange) crosslinks identified by the indicated search tools. Results were 

filtered to an estimated 5% FDR at the CSM level, and the real FDR, based on knowledge of the 

composition of the dataset (the real FDR) is indicated. Data were searched with 10 additional 

proteins as entrapment. Error bars correspond to the standard deviation from technical replicates 

(n=3). 
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Figure S3. Effect of entrapment on database search times.  Search used an AMD Ryzen 7 - 

5800X computer (16-logical processors, 3.8 GHz, 32 GB RAM), operating on the synthetic 

peptide benchmark dataset 1, from Beveridge et al.1 
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Figure S4. Benchmarking the performance of XL search tools on complex samples, with 

database entrapment. (A) Direct measurement of XLs from the DSSO-linked library mixed 

with linear tryptic HEK 293 digest peptides (1:5 w/w) (B) As in A, but after enrichment with size 

exclusion chromatography. Bars indicate the number of unique crosslinks identified using the 

indicated algorithm at a 1% estimated FDR for databases of 171 E. coli ribosomal proteins, or 

additional human proteins as noted. Green-spectrum bars show true positives, and orange bars 

show false positives. Callouts show actual FDR, and the lowest score at the FDR cutoff is also 

shown for each algorithm. Figure reproduced from Matzinger et al.4 (with permission) with the 

addition of Crimp2 search data from this study.   
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Figure S5.  Analysis of the DSSO crosslinking data from the synthetic peptide benchmark 

dataset 2, for detection of PPIs (A) The enumeration of inter-protein and intra-protein 

crosslinks at a nominal 1% FDR from the 171-protein database search, as a function of algorithm 

type and allowing for the calculation of separate or combined FDR calculations where possible.  

Figure reproduced from Matzinger et al.4, with the addition of a CRIMP 2.0 analysis. (B) PPI 

analysis of the same data, with the addition of the peptide-contaminated data and the enriched 

data, as noted. Data searched at a nominal FDR of 1%, with the indicated database size.  Dark 

green and orange bars show the true and false positives (respectively) for the composition-

informed PPI scoring method.  Light green and orange bars show the true and false positives 

(respectively) for a composition-naïve PPI scoring method, where the score is based solely on 

interprotein crosslinks.  
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