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Abstract 22 

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with 23 
paralysis by decoding neural activity evoked by attempted speaking movements into text1,2 or sound3,4. 24 
Early demonstrations, while promising, have not yet achieved accuracies high enough for communication 25 
of unconstrainted sentences from a large vocabulary1–5. Here, we demonstrate the first speech-to-text BCI 26 
that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution 27 
recordings, our study participant, who can no longer speak intelligibly due amyotrophic lateral sclerosis 28 
(ALS), achieved a 9.1% word error rate on a 50 word vocabulary (2.7 times fewer errors than the prior 29 
state of the art speech BCI2) and a 23.8% word error rate on a 125,000 word vocabulary (the first 30 
successful demonstration of large-vocabulary decoding). Our BCI decoded speech at 62 words per 31 
minute, which is 3.4 times faster than the prior record for any kind of BCI6 and begins to approach the 32 
speed of natural conversation (160 words per minute7). Finally, we highlight two aspects of the neural 33 
code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators 34 
that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory 35 
representation of phonemes that persists years after paralysis. These results show a feasible path forward 36 
for using intracortical speech BCIs to restore rapid communication to people with paralysis who can no 37 
longer speak. 38 

Results 39 

Representation of orofacial movement 40 

It is not yet known how orofacial movements are organized in human motor cortex at single neuron 41 
resolution. If speech articulators are spatially intermixed within a small area, then accurate speech 42 
decoding should be possible from only a small number of microelectrode arrays. However, prior work 43 
using electrocorticographic grids has suggested that there may be a broader somatotopic organization8. To 44 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.21.524489doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.21.524489


investigate this, we recorded neural activity from four microelectrode arrays, two in area 6v9 (ventral 45 
premotor cortex) and two in area 44 (part of Broca’s area), while our BrainGate study participant 46 
attempted to make individual orofacial movements in response to cues displayed on a computer monitor 47 
(Fig. 1a-b; SFig 1 shows recorded spike waveforms). Our participant (T12) has bulbar-onset ALS and 48 
retains some limited orofacial movement and an ability to vocalize unintelligibly when attempting to 49 
speak. 50 

We found that tuning to speech articulators in area 6v was intermixed at the single electrode level (Fig 1c-51 
d), and that all speech articulators and phonemes were clearly represented even within a single 8x8 array 52 
(3.2 x 3.2 mm). No single category of movement (forehead, eyelids, jaw, larynx, lips, or tongue) appeared 53 
to generate substantially more modulation than any other (SFig 2). Neural activity was highly separable 54 
between movements: using a simple naive Bayes classifier applied to 1 second of neural population 55 
activity for each trial, we could decode from among 34 orofacial movements with 92.7% accuracy (95% 56 
CI = [90.7, 94.5]) and 39 phonemes with 60% accuracy (95% CI = [56.1, 64.1]) (SFig 3).  57 

Robust tuning to all tested movements and phonemes suggests that the representation of attempted 58 
orofacial movement is likely strong enough to support a speech BCI, despite paralysis and narrow 59 
coverage of the cortical surface. We also assessed neural tuning in area 44, which has previously been 60 
implicated in high-order aspects of speech production10,11, but found little to no representation of 61 
movement or attempted speech (SFig 2-3); all further results are based on area 6v recordings only. 62 

 63 
Fig. 1. (a) Microelectrode array locations (cyan squares) are shown on top of MRI-derived brain anatomy (CS = central sulcus). 64 
(b) Neural tuning to orofacial movements and phonemes was evaluated in an instructed delay task. (c) Example responses of an 65 
electrode that was tuned to a variety of speech articulator motions and phonemes. Each line shows the mean threshold crossing 66 
rate across all 16 trials of a single condition, and shaded regions show 95% CIs. Neural activity was denoised by convolving with 67 
a Gaussian smoothing kernel (80-ms SD). (d) Tuning heatmaps for both arrays in area 6v, for each movement category. Circles 68 
are drawn if binned firing rates on that electrode are significantly different across the given set of conditions (p<1e-5 assessed 69 
with a one-way ANOVA; bin width=800 ms). Shading indicates the fraction of variance accounted for by the across-condition 70 
differences in mean firing rate.   71 

Decoding attempted speech 72 
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Next, we tested whether we could neurally decode whole sentences in real-time. We trained a recurrent 73 
neural network (RNN) decoder to emit, at each 80 ms time step, the probability of each phoneme being 74 
spoken at that time. These probabilities were then processed by a language model to infer the most likely 75 
underlying sequence of words, given both the phoneme probabilities and the statistics of the English 76 
language (Fig 2a).   77 
 78 
To train the RNN, at the beginning of each day we recorded data where T12 attempted to speak 260-480 79 
sentences at her own pace (sentences were chosen randomly from the switchboard corpus12 of spoken 80 
English). A computer monitor cued T12 when to begin speaking and what sentence to speak. The RNN 81 
was trained on this data in combination with all prior days’ data, using custom machine learning methods 82 
adapted from modern speech recognition13–15 to achieve high performance on limited amounts of neural 83 
data. In particular, we used unique input layers for each day to account for across-day changes in the 84 
neural activity, and rolling feature adaptation to account for within-day changes (SFig 4 highlights the 85 
effect of these and other architecture choices). By the last day, our training dataset consisted of 10,850 86 
total sentences. 87 
 88 
After training, the RNN was evaluated in real-time on held-out sentences that were never duplicated in 89 
the training set. As T12 attempted to speak, neurally decoded words appeared on the screen in real-time 90 
reflecting the language model’s current best guess (SVideo 1). When T12 was finished speaking, she 91 
pressed a button to finalize the decoded output. We used two different language models: a large 92 
vocabulary model with 125,000 words (suitable for general English) and a small vocabulary model with 93 
50 words (suitable for expressing some simple sentences useful in daily life). Sentences from the 94 
switchboard corpus12 were used to evaluate the RNN with the 125,000 word vocabulary. For the 50 word 95 
vocabulary, we used the word set and test sentences from Moses et al. 20212.  96 

 97 
Performance was evaluated over 5 days of attempted speaking with vocalization and 3 days of attempted 98 
silent speech (“mouthing” the words with no vocalization, which T12 reported she preferred because it 99 
was less tiring). Performance was consistently high for both speaking modes (Fig 2b-c, Table 1). T12 100 
achieved a 9.1% word error rate for the 50 word vocabulary across all vocalizing days (11.2% for silent), 101 
and a 23.8% word error rate for the 125k word vocabulary across all vocalizing days (24.7% for silent). 102 
To our knowledge, this is the first successful demonstration of large-vocabulary decoding, and is also a 103 
significant advance in accuracy for small vocabularies (2.7 times fewer errors than prior work2). These 104 
accuracies were achieved at high speeds: T12 spoke at an average pace of 62 words per minute, which 105 
more than triples the speed of the prior state of the art for any type of BCI (18 words per minute for a 106 
handwriting BCI6).  107 

 108 
Encouragingly, the RNN often decoded sensible sequences of phonemes before a language model was 109 
applied (Fig 2c). Phoneme error rates were 19.7% for vocal speech (20.9% for silent; see Table 1) and 110 
phoneme decoding errors followed a pattern related to speech articulation, where phonemes that are 111 
articulated similarly were more likely to be confused by the decoder (SFig 5). These results suggest that 112 
good decoding performance is not overly reliant on a language model. We further tested the decodability 113 
of the neural activity without a language model by using a special dataset of single-word utterances from 114 
the 50-word vocabulary. When applying a simple naïve Bayes classifier to this dataset, we could achieve 115 
a 95.5% accuracy (95% CI = [94.2, 96.7]), which outperforms prior work based on electrocorticographic 116 
recordings (47.1% 2). This indicates that the performance advance demonstrated here is not due to the 117 
language model, but rather the increased decodability afforded by higher resolution intracortical 118 
recordings.   119 
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 120 
Finally, we explored the ceiling of decoding performance offline by (1) making further improvements to 121 
the language model and (2) evaluating the decoder on test sentences that occur closer in time to the 122 
training sentences (to mitigate the effects of within-day changes in the neural features across time). We 123 
found that an improved language model could decrease word error rates from 23.8% to 17.4%, and that 124 
testing on more proximal sentences further decreased word error rates to 11.8% (Table 1). These results 125 
indicate that substantial gains in performance are likely still possible with further language model 126 
improvements and more robust decoding algorithms that generalize better to nonstationary data. 127 
 128 
 129 

 130 
 131 
Fig. 2. (a) Diagram of the decoding algorithm. First, the neural activity (multiunit threshold crossings and spike band power) is 132 
temporally binned and smoothed on each electrode. Then, a recurrent neural network (RNN) converts a time series of this neural 133 
activity into a probability for each phoneme (plus the probability of an interword “silence” token and a “blank” token associated 134 
with the connectionist temporal classification training procedure). The RNN is a 5-layer gated recurrent unit architecture trained 135 
using TensorFlow 2. Finally, the phoneme probabilities are combined with a large-vocabulary language model (a custom, 136 
125,000-word trigram model implemented in Kaldi) to decode the most likely sentence. (b) Word error rates (edit distances) are 137 
shown for two speaking modes (vocalized vs. silent) and vocabulary sizes (50 vs 125,000 words). Vertical lines indicate 95% 138 
CIs. Word error rates are 2.7 times lower than the prior state of the art when using the same 50 word vocabulary (prior work 139 
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indicated with a dashed black line, which should be compared to the blue line). (c) Same as in b, but for speaking rate (words per 140 
minute). (d) A closed-loop example trial is shown, demonstrating the RNN’s ability to decode sensible sequences of phonemes 141 
(represented in ARPABET notation) without a language model. Phonemes are offset vertically for readability and “<sil>” 142 
indicates the silence token. The phoneme sequence was generated by taking the maximum probability phonemes at each time 143 
step. Note that phoneme decoding errors are often corrected by the language model, which still infers the correct word. 144 
Incorrectly decoded phonemes and words are denoted in red. 145 
 146 
 147 

` Phoneme Error Rate % 
[95% CI] 

Word Error Rate % 
[95% CI] 

Online   
125k Vocal 19.7 [18.6, 20.9] 23.8 [21.8, 25.9] 
125k Silent 20.9 [19.3, 22.6] 24.7 [22.0, 27.4] 
50 Vocal 21.4 [19.6, 23.2] 9.1 [7.2, 11.2] 
50 Silent 22.1 [19.9, 24.3] 11.2 [8.3, 14.4] 
   
Offline   
125k Improved LM 19.7 [18.6, 20.9] 17.4 [15.4, 19.5] 
125k Improved LM +  
         Proximal Test Set 

17.0 [15.7, 18.3] 11.8 [9.8, 13.9] 

 148 

Table 1. Mean phoneme and word error rates (with 95% CIs) for the speech BCI across all evaluation days. Confidence 149 
intervals (CIs) were computed with the bootstrap percentile method (resampling over trials 10,000 times). “Online” refers to what 150 
was decoded in real-time, while “offline” refers to a post-hoc analysis of the data using an improved language model (“Improved 151 
LM”) or different partitioning of training and testing data (“Proximal Test Set”). In the proximal test set, training sentences occur 152 
much closer in time to testing sentences, mitigating the effect of within-day neural nonstationarities.  153 

Preserved representation of speech articulation 154 

Next, we interrogated the representation of phonemes in area 6v during attempted speech. This is a 155 
challenging problem since we do not have ground truth knowledge of when each phoneme is being 156 
spoken (since T12 cannot speak intelligibly). To estimate how each phoneme was neurally represented, 157 
we analyzed our RNN decoders to extract vectors of neural activity (“saliency” vectors) that maximized 158 
the RNN probability output for each phoneme. We then asked whether these saliency vectors encode 159 
details about how phonemes are articulated.  160 

 161 
First, we compared the neural representation of consonants to their articulatory representation, as 162 
measured by electromagnetic articulography in able-bodied speakers. We found broadly similar structure, 163 
which is especially apparent when ordering consonants by place of articulation (Fig 3A); the correlation 164 
between EMA and neural data was 0.61, far above chance (p<1e-4, Fig 3B). More detailed structure can 165 
also be seen – for example, nasal consonants are correlated (M, N, NG), and W is correlated with both 166 
labial consonants and velar/palatal consonants (since it contains aspects of both). Examining a low-167 
dimensional representation of the geometry of the neural representation and articulatory representation 168 
shows a close match in the top two dimensions (Fig. 3c). 169 

 170 
Next, we examined the representation of vowels, which have a two-dimensional articulatory structure: a 171 
high vs. low axis (how high the tongue is in the mouth, corresponding to the first formant frequency) and 172 
a front vs. back axis (whether the tongue is bunched up towards the front or back of the mouth, 173 
corresponding to the second formant frequency). We found that the saliency vectors for vowels mirror 174 
this structure, with vowels that are articulated similarly having a similar neural representation (Fig. 3d-e). 175 
Additionally, the neural activity contains a plane that reflects the two dimensions of vowels in a direct 176 
way (Fig. 3f).   177 

 178 
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Taken together, these results show that a detailed articulatory code for phonemes is still preserved even 179 
years after paralysis.  180 

 181 

 182 
Figure 3. Preserved articulatory representation of phonemes. (a) Representational similarity across consonants for neural data 183 
(left) and articulatory data from people who can speak normally obtained from the USC-TIMIT database (right). Each square in 184 
the matrix represents pairwise similarity for two consonants (as measured by cosine angle between the neural or articulatory 185 
vectors). Ordering consonants by place of articulation reveals a block-diagonal structure in the neural data that is also reflected in 186 
articulatory data. (b) Neural activity is significantly correlated with an articulatory representation. The blue distribution shows the 187 
correlations expected by chance. (c) Low-dimensional representation of phonemes articulatorily (left) and neurally (right). Neural 188 
data was rotated within the top 8 principal components (using cross-validated Procrustes) to show visual alignment with 189 
articulatory data. (d) Representational similarity for vowels, ordered by articulatory similarity. Diagonal banding in the neural 190 
similarity matrix indicates a similar neural representation. For reference, the first and second formant of each vowel is plotted 191 
below the similarity matrices16. (e) Neural activity correlates with the known two-dimensional structure of vowels. (f) Same as 192 
(c) but for vowels, with an additional within-plane rotation applied to align the (high vs. low) and (front vs. back) axes along the 193 
vertical and horizontal.    194 

Design considerations for speech BCIs 195 

Finally, we examined three design considerations for improving the accuracy and usability of speech 196 
BCIs: language model vocabulary size, microelectrode count, and training dataset size.  197 

To understand the effect of vocabulary size, we re-analyzed the 50-word-set data by re-processing the 198 
RNN output using language models of increasingly larger vocabulary sizes (Fig. 4a). We found that only 199 
very small vocabularies (e.g., 50-100 words) retained the large improvement in accuracy relative to a 200 
large vocabulary model. Word error rates saturated at around 1,000 words, suggesting that using an 201 
intermediate vocabulary size may not be a viable strategy for increasing accuracy. 202 

Next, we investigated how accuracy improved as a function of the number of electrodes used for RNN 203 
decoding. Accuracy improved monotonically with a log-linear trend (Fig. 4b), suggesting that an 204 
increased channel count should lead to higher accuracies in the future (doubling the electrode count 205 
appears to cut the error rate approximately in half).  206 

Finally, in this demonstration we used a large amount of training data per day (260 – 440 sentences). 207 
Retraining the decoder each day helps to adapt to neural changes that occur across days. We examined 208 
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offline if this much data per day was necessary, by re-processing the data with RNNs trained in the same 209 
way but with fewer sentences. We found that performance was good even without using any training data 210 
on the new day (Fig. 4c, word error rate = 30% with no retraining). Furthermore, we found that neural 211 
activity changed at a gradual rate over time, suggesting that unsupervised algorithms for updating 212 
decoders to neural changes should be feasible (Fig. 4d).  213 

 214 

Figure 4. Design considerations for speech BCIs. (a) Word error rate as a function of language model vocabulary size, obtained 215 
by re-processing the 50-word set RNN outputs with language models of increasingly large vocabulary sizes (shaded region = 216 
95% confidence interval). (b) Word error rate as a function of number of electrodes included in an offline decoding analysis 217 
(each filled circle shows the average word error rate of RNNs trained with that number of electrodes). There appears to be a log-218 
linear relationship between # of electrodes and performance, which was extrapolated (dashed line) to estimate how many 219 
electrodes would be needed to drive down error rates substantially further. (c) Evaluation data from the 5 vocalized speech 220 
evaluation days was re-processed offline using RNNs trained in the same way, but with fewer (or no) training sentences taken 221 
from the day on which performance is evaluated. Word error rates are reasonable even when no training sentences are used from 222 
the evaluation day (i.e., when training on prior days’ data only). The dashed line shows online performance for reference (23.8% 223 
WER). (d) The correlation (Pearson r) in neural activity patterns representing a diagnostic set of words is plotted for each pair of 224 
days, revealing high correlations for nearby days. 225 

Discussion 226 
 227 

People with neurological disorders such as brainstem stroke or amyotrophic lateral sclerosis (ALS) 228 
frequently face severe speech and motor impairment and, in some cases, completely lose the ability to 229 
speak (locked-in syndrome17). Recently, BCIs based on hand movement activity have enabled typing 230 
speeds of 8-18 words per minute in people with paralysis18,6. Speech BCIs have the potential to restore 231 
natural communication at a much faster rate, but have not yet achieved high accuracies on large 232 
vocabularies (i.e., unconstrained communication of any sentence the user may want to say)1–5. Here, we 233 
demonstrated a speech BCI that can decode unconstrained sentences from a large vocabulary at a speed of 234 
62 words per minute, the first time that a BCI has far exceeded the communication rates that alternative 235 
technologies can provide for people with paralysis (e.g., eye tracking19). We were able to decode at high 236 
speeds with 2.7 times fewer errors than the prior state of the art for speech BCIs when evaluated on a 237 
matching 50-word vocabulary2, made possible by using intracortical microelectrode arrays that record 238 
neural activity at single neuron resolution. 239 

Our demonstration is a proof of concept that decoding attempted speaking movements from intracortical 240 
recordings is a promising approach, but it is not yet a complete, clinically viable system. Work remains to 241 
be done to reduce the time needed to train the decoder and adapt to changes in neural activity that occur 242 
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across days without requiring the user to pause and recalibrate the BCI (see 20–22 for initial promising 243 
approaches). Perhaps most importantly, a 24% word error rate is likely not yet low enough for everyday 244 
use (e.g., compare to 4-5% word error rate for state of the art speech-to-text systems15,23). Nevertheless, 245 
we believe that our results show promise for decreasing the word error rates further. First, word error rate 246 
decreases as more channels are added, suggesting that intracortical technologies that record more 247 
channels should enable lower word error rates. Second, room still remains for optimizing the decoding 248 
algorithm; with further language model improvements and when mitigating the effect of within-day 249 
nonstationarities, we were able to reduce the word error rate to 11.8% in offline analyses. Finally, we 250 
showed that ventral premotor cortex (area 6v) contains a rich, intermixed representation of speech 251 
articulators even within a small area (3.2 x 3.2 mm), and that the details of how phonemes are articulated 252 
are still faithfully represented even years after paralysis in someone who can no longer speak intelligibly. 253 
Taken together, this suggests that a higher channel count system that records from only a small area of 6v 254 
is a feasible path forward towards a device that can restore communication at conversational speeds to 255 
people with paralysis.  256 
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Supplemental Video 1. In this video, participant T12 uses the speech BCI in real-time to copy sentences 325 
shown on the screen. When the square in the center of the screen is red, T12 reads the sentence above the 326 
square and prepares to speak it. When the square turns green, T12 attempts to speak that sentence while 327 
the real-time decoder output is shown below the square. Note that T12 produces unintelligible 328 
vocalizations when attempting to speak. When T12 is finished speaking, a text-to-speech program reads 329 
the final decoded text aloud. These sentences were recorded during a performance evaluation session 330 
reported in Figure 2 (post-implant day 136). 331 

Supplemental Video 2. The same as supplemental video 1, except T12 is silently speaking (i.e., 332 
mouthing the words) instead of attempting to produce vocalizations. These sentences were recorded on 333 
post-implant day 141. 334 
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 335 

Supplemental Figure 1. Example spike waveforms detected during a 10-s time window are plotted for 336 
each electrode (data were recorded on post-implant day 119). Each rectangular panel corresponds to a 337 
single electrode and each blue trace is a single spike waveform (2.1-ms duration). Neural activity was 338 
band-pass filtered (250-5000 Hz) with an acausal, 4th order Butterworth filter. Spiking events were 339 
detected using a −4.5 root mean square (RMS) threshold, thereby excluding almost all background 340 
activity. Electrodes with a mean threshold crossing rate of at least 2 Hz were considered to have ‘spiking 341 
activity’ and are outlined in red (note that this is a conservative estimate that is meant to include only 342 
spiking activity that could be from single neurons, as opposed to multiunit ‘hash’). The results show that 343 
many electrodes record large spiking waveforms that are well above the noise floor (the y axis of each 344 
panel spans 580 μV, whereas the background activity has an average RMS value of only 30.8 μV). On 345 
this day, 118 electrodes out of 128 had a threshold crossing rate of at least 2 Hz in area 6v (113 electrodes 346 
out of 128 in area 44). 347 

 348 
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 349 

Supplemental Figure 2. Amount of neural population activity generated by orofacial movements in area 350 
6v (a,b) and area 44 (c,d). The size of the neural modulation for each movement was quantified by 351 
comparison with a baseline “do nothing” condition where T12 was instructed to remained at rest. Each 352 
bar indicates the size (Euclidean norm) of the mean change in firing rate across the neural population 353 
(with a 95% CI), normalized by the square root of the number of electrodes (in this case, 64). While 354 
statistically significant modulation was observed for all movements in both arrays for area 6v (95% 355 
confidence intervals do not intersect zero), many movements failed to generate significant modulation in 356 
area 44.  357 
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 359 

Supplemental Figure 3. Confusion matrices from a cross-validated, Gaussian naïve Bayes classifier 360 
trained to classify amongst orofacial movements (a-b) or individual phonemes (c-d) using threshold 361 
crossing rates averaged in a window from 0 to 1000 ms after the go cue. Each entry (i, j) in the matrix is 362 
colored according to the percentage of trials where movement j was decoded (of all trials where 363 
movement i was cued). Matrices (a,c) show results from using only electrodes in area 6v, while matrices 364 
(b,d) show results from using electrodes in area 44. While good classification performance can be 365 
observed from area 6v, area 44 appears to contain little to no information about most movements and 366 
phonemes.  367 
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 369 

Supplemental Figure 4. Effect of RNN parameters and architecture choices, as determined by evaluating 370 
RNN performance in offline parameter sweeps. Black arrows denote the parameters used for real-time 371 
evaluation. Each blue open circle denotes the performance of a single RNN seed, and each thin blue bar 372 
denotes the mean across all seeds from that parameter configuration. (a) Rolling z-scoring improves 373 
performance substantially as compared to no feature adaptation (when testing on held-out blocks that are 374 
separated in time from the training data). (b) Training RNNs with unique (day-specific) input layers 375 
improves performance relative to using a shared layer that is the same across all days. (c) RNN 376 
performance using different neural features as input (SP=spike band power, TX=threshold crossing). 377 
Combining spike band power with threshold crossings performs better than either one alone, and it 378 
appears that performance could have been improved slightly by using a -3.5 RMS threshold instead of -379 
4.5. (d) RNN performance using audio mel frequency cepstral coefficients (audio MFCC) or neural 380 
features from the area 44 arrays (IFG). While poor but above-chance performance can be achieved using 381 
MFCCs, word error rates from IFG recordings appear to be at chance level (~100%). (e) RNN 382 
performance as a function of “kernel size” (i.e., the number of 20 ms bins stacked together as input and 383 
fed into the RNN at each time step). It appears that performance could have been improved by using 384 
larger kernel sizes. (f) RNN performance as a function of “stride” (a stride of N means the RNN steps 385 
forward only every N time bins). (g) RNN performance as a function of the number of stacked RNN 386 
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layers. (h) RNN performance as a function of the number of RNN units per layer. (i) RNN performance as 387 
a function of the number of prior days included as training data. Performance improves by adding prior 388 
days, but with diminishing returns. The blue line shows the average word error rate across 10 RNN seeds 389 
and 5 evaluation days.  390 
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 392 

 393 

Supplemental Figure 5. Phoneme substitution errors observed across all real-time evaluation sentences. 394 
Entry (i.j) in the matrix represents the substitution count observed for true phoneme i and decoded 395 
phoneme j. Substitutions were identified using an edit distance algorithm that determines the minimum 396 
number of insertions, deletions, and substitutions required to make the decoded phoneme sequence match 397 
the true phoneme sequence. Most substitutions appear to occur between phonemes that are articulated 398 
similarly.  399 
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1. Experimental procedures45

1.1. Study participant46

This study includes data from one participant (identified as T12) who gave informed consent and47

was enrolled in the BrainGate2 Neural Interface System clinical trial (ClinicalTrials.gov Identifier:48
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NCT00912041, registered June 3, 2009). This pilot clinical trial was approved under an Investigational49

Device Exemption (IDE) by the US Food and Drug Administration (Investigational Device Exemption50

#G090003). Permission was also granted by the Institutional Review Board of Stanford University51

(protocol #52060). T12 gave consent to publish photographs and videos containing her likeness. All52

research was performed in accordance with relevant guidelines/ regulations.53

T12 is a left-handed woman, 67 years old at the time of data collection, with slowly-progressive54

bulbar-onset Amyotrophic Lateral Sclerosis (ALS) diagnosed at age 59 (ALS-FRS score of 26 at the55

time of study enrollment). On March 30, 2022, four 64-channel, 1.5 mm-length silicon micro electrode56

arrays coated with sputtered iridium oxide (Blackrock Microsystems, Salt lake City, UT) were implanted57

in T12’s left hemisphere, based on preoperative anatomical and functional magnetic resonance imaging58

(MRI) and cortical parcellation (see sections 1.2 and 1.3 below for details). Two arrays were placed in59

area 6v (oral-facial motor cortex) of ventral precentral gyrus, and two were placed in area 44 of inferior60

frontal gyrus (considered part of Broca’s area). Data are reported from post-implant days 27-148. On61

average, 119.6 ± 5.0 (Mn ± sd) out of 128 electrodes recorded spike waveforms at a rate of at least 2 Hz62

when using a spike-detection threshold of -4.5 RMS, where RMS is the electrode-specific root mean63

square of the voltage time series recored on that electrode (see SFig 1 for example waveforms).64

T12 is severely dysarthric due to bulbar ALS and has been for nearly 8 years. She retains partial use65

of her limbs, and communicates primarily through use of a writing board or iPad tablet. She is able66

to vocalize while attempting to speak, and is able to produce some subjectively differentiable vowels67

sounds. However, we had difficulty discerning nearly all consonants produced in isolation (with the68

possible exception of the bilabial nasal consonant “M”), and could not reliably make out any consonants69

or vowels when T12 attempted to speak whole sentences at a fluent rate (SVideo 1 shows examples of70

attempted speaking).71

1.2. Functional MRI speech lateralization72

Prior to surgery, participant T12 underwent anatomic and functional brain imaging on a GE Discovery73

MR750 3T MRI scanner, using a routine clinical acquisition protocol, in order to determine whether74

she was right or left hemisphere dominant for language. BOLD fMRI images were acquired using T2*-75

weighted volumes collected with 4 mm slice thickness and 2x2 mm2 in-plane voxel resolution. BOLD76

images were acquired during performance of a suite of tasks including visually responsive naming,77

object naming, auditory responsive naming, repetitive movements of the right hand, left hand, right78

foot, left foot, and tongue. Tasks were performed in 4 minute blocks consisting of repeated sequences79

of 10 seconds of task performance followed by 10 seconds of rest. Task instructions were presented80

by the SensaVue presentation system with verbal instructions given by the MRI technologist. T-score81

thresholds for processing were chosen based on direct inspection of the preliminary fMRI output for82

each task produced by the scanner software and inspected by the interpreting radiologist at the scanner.83

Following scan completion, the complete data set was sent to and processed by DynaSuite. Fully84

processed fMRI statistical parametric maps for each task were registered to and overlaid on an anatomic85

3D gradient echo T1-weighted (BRAVO) image acquired with 1 mm isotropic voxels. Quality control86

steps including motion tracking and assessment of anatomic-functional registration fidelity. Language87

lateralization was assessed by visual inspection of lateralization of activation in Broca’s area, Wernicke’s88

area, speech supplemental motor area, and the basal temporal language area. Results indicated a clear89

left hemisphere lateralization of language in T12.90

1.3. Array placement targeting91

The surgical targets for array placement within areas 6v and 44 were selected based on gross anatomical92

structure (e.g., gyri and sulci), vasculature, and estimates of the boundaries of areas 44 and 6v obtained93

using a cortical parcellation method derived from multi-modal Human Connectome Project (HCP) data94

[1].95
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We acquired T1-weighted (T1w), T2-weighted (T2w), resting-state functional MRI (rsfMRI), single96

band fMRI, and spin echo fieldmap images to generate the HCP-based cortical parcellation. The97

participant was scanned in a 3T Ultra High Performance scanner (GE Healthcare) with a Nova 32-98

channel coil. Scan parameters were based on HCP Lifespan protocols and modified for the GE system99

(Table 1).100

Data were processed using the HCP pipelines as described on https://github.com/Washington-101

University/HCPpipelines (see Glasser et al. 2016 for further details). Briefly, T1w and T2w images102

were initially preprocessed using the FreeSurfer pipeline (version 7.1.1) to perform motion, distortion,103

and bias field corrections; brain extraction; white matter segmentation; cortical surface reconstruction,104

and spherical mapping (PreFreeSurferPipelineBatch.sh, FreeSurferPipelineBatch.sh). FreeSurfer out-105

puts were then aligned to the standard surface template using MSMSulc, as well as used to create myelin106

maps (PostFreeSurferPipelineBatch.sh).107

rsfMRI data were corrected for motion, bias field, and susceptibility distortions using the spin echo108

fieldmaps and single band reference fMRI images and non-linearly registered to MNI space (GenericfM-109

RIVolumeProcessingPipelineBatch.sh), followed by volume to surface mapping (GenericfMRISurface-110

ProcessingPipelineBatch.sh). Data then underwent spatial MELODIC ICA (IcaFixProcessingBatch.sh),111

manual classification of the components as signal or noise, and denoising.112

The MSMAll pipeline was then run to re-align the participant’s cortical surface to the standard sur-113

face template using areal features from the cortical folding map, myelin map, rsfMRI networks, and114

rsfMRI-based retinotopy. Lastly, the data underwent a dedrift and resample step (DeDriftAndResam-115

plePipelineBatch.sh). The 210P and 210V cortical parcellations (Glasser et al. 2016) were viewed on116

the participant’s native brain surface with Connectome Workbench to identify estimates of areas 6v and117

44 in T12.118

Image T1w T2w rsfMRI rsfMRI-single
band

Spin echo
fieldmap

Sequence 3D MPRAGE 3D CUBE 2D Gradient
Echo EPI

2D Gradient
Echo EPI

2D Spin Echo
EPI

TR (ms) 3000 2500 800 4200 8000
TE (ms) 3.5 60-78 37 30 min full
TI (ms) 1060 - - - - -
Parallel imaging 2 x 1.25 1.9 x 1.9 - - -
Fat suppression no no yes yes yes
Resolution (mm) 0.8 x 0.8 x 0.8 0.8 x 0.8 x 0.8 2 x 2 x 2 2 x 2 x 2 2 x 2 x 2
Matrix size 320 x 320 x

230
320 x 320 x
216

104 x 104 x 72 104 x 104 x 72 104 x 104 x 72

FOV (mm) 256 x 256 x
184

256 x 256 x
184

208 x 208 x
144

208 x 208 x
144

208 x 208 x
144

Flip angle 8 - 54 90 -
Slice orientation sagittal, AC-

PC
sagittal, AC-
PC

axial AC-PC axial AC-PC axial AC-PC

Phase encoding - - AP and PA
(separately)

AP and PA
(separately)

AP and PA
(separately)

Multiband factor - - 8 1 -
Table 1. MRI Scan Parameters for Cortical Parcellation.
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1.4. Neural signal processing119

Neural signals were recorded from the microelectrode arrays using the Neuroplex-E system (Blackrock120

Microsystems) and transmitted via a cable attached to a percutaneous connector. Signals were analog121

filtered (4th order Butterworth with corners at 0.3 Hz to 7.5 kHz), digitized at 30 kHz (250 nV resolution),122

and fed to custom software written in Simulink (Mathworks) for digital filtering and feature extraction.123

Digital filtering began with a highpass filter (300 Hz cutoff) that was applied non-causally to each124

electrode, using a 4 ms delay, in order to improve spike detection [2]. Linear regression referencing125

(LRR) was then applied to further reduce reduce ambient noise artifacts [3].126

After filtering, binned threshold crossing counts (20 ms bins) were computed by counting the127

number of times the filtered voltage time series crossed an amplitude threshold set at -4.5 times the128

standard deviation of the voltage signal. Electrode-specific thresholds and LRR filter coefficients were129

set using data recorded from an initial “diagnostic” block at the beginning of each session (see section130

1.7 for more details). Binned spike band power (20 ms bins) was computed by taking the sum of131

squared voltages observed during each time bin. Threshold crossing rates and spike band power are132

commonly used measurements of local spiking activity that have been shown to be comparable to133

sorted single unit activity in terms of decoding performance and neural population structure [4, 5, 6].134

For decoding, threshold crossing counts and spike band power from the 128 electrodes in area 6v were135

concatenated to yield a 256 x 1 feature vector per time step. For neural tuning analyses (e.g. Figure 1),136

only threshold-crossing counts were used.137

1.5. Data collection rig138

Digital signal processing and feature extraction was performed on a dedicated computer using Simulink139

Real-Time. Extracted features were then sent to a separate computer running Ubuntu for neural decoding140

and recording. Decoding and recording software was written in Python using TensorFlow 2 and Redis.141

The Ubuntu computer also ran the experimental task software that displayed cues to T12 on a computer142

monitor. The task software was implemented using MATLAB and the Psychophysics Toolbox [7]).143

Finally, a third computer running Windows was used to interface with the Neuroplex-E system and144

control the starting and stopping of experimental tasks.145

1.6. Overview of data collection sessions146

Neural data were recorded in 2-4 hour “sessions” on scheduled days, which typically occurred 2 times147

per week. During the sessions, T12 sat in either a wheelchair or power lift chair in an upright position,148

with a pillow placed to support her head and neck, and her hands resting on her lap. A computer monitor149

placed in front of T12 indicated which sentence to speak (or which movement to make) and when. Data150

were collected in a series of 5-10 minute “blocks” consisting of an uninterrupted series of trials. In151

between these blocks, T12 was encouraged to rest as needed. Table 2 below lists all 26 data collection152

sessions reported in this work.153

Table 2: Data Collection Sessions

Session Number Date (Post-Implant Day) Description Data
1 2022.04.21 (27) Phoneme and oro-

facial movement
sweeps

• 16 repetitions of each of the
39 English phonemes
• 20 repetitions each of
various orofacial movements
(tongue, lips, jaw, cheeks, lar-
ynx, forehead, eyelids)
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2 2022.04.28 (29) Initial training data
day #1 • 300 Open WebText training

sentences

3 2022.05.03 (35) Individual words
from the 50-word set
[8]

• 20 repetitions of each of
50 individual words from the
Moses et al 2021 vocabulary
[8]

4 2022.05.05 (36) Initial training data
day #2 • 380 Open WebText training

sentences

5 2022.05.17 (49) Initial training data
day #3 • 440 Open WebText training

sentences
• 50 Moses sentences used for
offline assessment (not train-
ing)

6 2022.05.19 (51) Initial training data
day #4 • 200 Open WebText training

sentences
• 50 Moses sentences used for
offline assessment (not train-
ing)

7 2022.05.24 (56) Real-time decoding
pilot day #1 • 480 Switchboard training

sentences
• 75 Moses evaluation sen-
tences

8 2022.05.26 (58) Real-time decoding
pilot day #2 • 480 Switchboard training

sentences
• 50 Moses evaluation sen-
tences

9 2022.06.02 (64) Real-time decoding
pilot day #3 • 520 Switchboard training

sentences
• 25 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

10 2022.06.07 (69) Real-time decoding
pilot day #4 • 480 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

11 2022.06.14 (76) Real-time decoding
pilot day #5 • 440 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences
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12 2022.06.16 (78) Real-time decoding
pilot day #6 • 440 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

13 2022.06.21 (83) Real-time decoding
pilot day #7 • 400 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

14 2022.06.23 (85) Real-time decoding
pilot day #8 (silent
speaking)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

15 2022.06.28 (90) Real-time decoding
pilot day #9 • 440 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

16 2022.07.05 (97) Real-time decoding
pilot day #10 • 400 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

17 2022.07.14 (106) Real-time decoding
pilot day #11 • 440 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

18 2022.07.21 (113) Real-time decoding
evaluation day (vocal
#1)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

19 2022.07.27 (119) Real-time decoding
evaluation day (vocal
#2)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences
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20 2022.07.29 (121) Real-time decoding
evaluation day cut
short due to equip-
ment failure (training
data only)

• 240 Switchboard training
sentences

21 2022.08.02 (125) Real-time decoding
evaluation day (vocal
#3)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

22 2022.08.11 (134) Real-time decoding
evaluation day (vocal
#4)

• 260 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

23 2022.08.13 (136) Real-time decoding
evaluation day (vocal
#5)

• 260 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

24 2022.08.18 (141) Real-time decoding
evaluation day (silent
#1)

• 400 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

25 2022.08.23 (146) Real-time decoding
evaluation day (silent
#2)

• 480 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

26 2022.08.25 (148) Real-time decoding
evaluation day (silent
#3)

• 480 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

1.7. Instructed delay tasks154

All tasks employed an instructed delay paradigm, with each trial consisting of an instructed delay phase155

followed by a go phase. For sentence speaking blocks, during the delay period the text of the sentence156

was displayed on the screen above a red square, providing T12 time to read it and prepare to speak. After157

the delay period, the red square cue then turned green, and the sentence remained on the screen while158

T12 attempted to speak it (either aloud or by silently mouthing it, depending on the session). When T12159

finished speaking the sentence, she pushed a button held in her lap, which triggered the system to move160

to the next sentence trial.161
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For the single phoneme task, each phoneme was cued during the delay period with both text and an162

audio sample of that phoneme being spoken. Vowels were spoken in isolation and cued with the text of163

a word containing that vowel, with the vowel capitalized (e.g., strUt for 2). Consonants were all paired164

with the vowel "ah" following the consonant (denoted "AA" in ARPAbet notation and "A" in IPA).165

Consonants were paired with a text cue evoking the sound of that consonant (e.g. "kah" or "wah"). For166

the single word task, where T12 spoke individual words from the 50-word Moses et al. word set [8],167

each word was cued with text only. For the orofacial movement sweep task, each movement was cued168

with a text description of that movement (e.g., "Tongue Up").169

We ran a single "diagnostic" block at the beginning of each speech decoding session. Data from the170

diagnostic block was used to set electrode thresholds and linear regression reference (LRR) coefficients,171

and was also used to examine the rate of change of neural tuning across days. In this block, T12 spoke172

individual words from a diagnostic set of 7 words designed to span the space of articulation (with 8173

repetitions per word). Words were cued with text only. The word set consisted of the following words:174

’bah’, ’choice’, ’day’, ’kite’, ’though’, ’veto’, ’were’.175

Task Delay
Low

Delay
Mean

Delay
High

Go Period Return
Period

Sentences 4.0 s 4.5 s 5.0 s Variable
(button-
controlled)

None

Phonemes 1.8 s 2.3 2.8 1.7 s None
Orofacial movements 2.0 s 2.5 3.0 1.0 s 1.0 s
Single words (50-
word set)

2.0 s 2.5 3.0 2.0 s None

Diagnostic block (7
words)

1.5 s 2.0 2.5 2.0 s None

Table 3. Task timing parameters.

Delay period durations were pseudorandomly drawn from an exponential distribution with a task-176

specific mean (see Table 3); values that fell outside of a specified task-specific range were re-drawn.177

Go period durations were set fixed to a task-specific value for non-sentences tasks (for the sentence178

production task, T12 advanced the trial by pressing a button). Finally, in the orofacial movement sweep179

task, the go period was followed by a short "return" phase where T12 relaxed back to a neutral posture180

before starting the next trial. In all other tasks, the next trial started immediately after the go period181

ended.182

1.8. Voiced vs. silent speaking behavior183

For most speaking sessions, T12 was instructed to attempt to produce voiced speech in a "typical"184

manner (i.e., by trying to move all of her articulators and modulate her larynx to pass sound as one185

would to attempt to speak normally). The acoustic output was largely unintelligible. During the course186

of the study, T12 reported that due to her reduced breath control abilities, attempting to produce voiced187

speech was fatiguing. We experimented with different speaking behavior paradigms and found that188

“mouthing” or silent speaking yielded similar decoding performance to voiced speech while being less189

fatiguing for T12. For silent speech sessions, we instructed T12 to pretend that she was mouthing the190

sentence to someone across the room. During this silent speaking behavior, T12 produced no audible191

sound, but visibly moved her lips, tongue and jaw. Sessions 14, 24, 25 and 26 were all performed with192

this silent speaking behavior.193
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1.9. Decoder evaluation sessions194

Real-time speech decoding was evaluated in sessions 18, 19, 21, 22 and 23 for voiced speaking behavior195

and sessions 24, 25 and 26 for silent speaking behavior. These were the evaluation sessions reported in196

Fig. 2 and were conducted with the final version of the real-time decoder and parameters. Previous real-197

time decoding sessions were pilot sessions used to explore different online approaches and parameters.198

Each evaluation session began with a “diagnostic” block as described previously (section 1.7). This199

block was used to calculate the threshold values and filters for online LRR that would be used for the200

rest of the session. Then, we collected "open-loop" blocks of sentences (~6 blocks with 40 sentences201

per block) during which no decoder was active. We trained the decoder using these blocks of data202

(combined with data from all past sessions) to obtain a "stage 1" RNN decoder. Next, we collected203

additional training blocks with real-time feedback, where the decoder output from the stage 1 RNN was204

displayed in real-time as T12 attempted to speak each sentence. Upon completion of each sentence, T12205

would push a button to indicate she was finished and the decoded text was read aloud using Google206

Cloud’s Text-To-Speech functionality. After the response was voiced by the computer, T12 pushed the207

button again to continue to the next sentence. Stage 1 real-time decoding was done for 3-6 blocks, with208

40 sentences per block. Finally, the RNN was retrained a second-time using all open-loop and stage 1209

data (combined with data from all past sessions) to yield a "stage 2" RNN. The stage 2 RNN was then210

evaluated on the 50 sentences from Moses et al 2021 [8] as well as 80 randomly-selected sentences from211

the Switchboard corpus, for which the final error rate and word per minute values were reported.212

1.10. Sentence selection213

For the first four initial training data collection sessions, sentences were randomly drawn from the Open-214

WebText2 corpus [9]. For all subsequent sessions, training sentences were drawn from the Switchboard215

corpus of telephone conversations between speakers of American English [10]. Sentences were selected216

by first generating lists of potential sentence segments by automatically splitting the transcription using217

provided punctuation marks. Sentence segments were then filtered to include only those that expressed218

a complete meaning, and superfluous starter words (e.g. “and”) were deleted. We also did not include219

sentences with confusing or distracting meaning, such as violent or offensive topics. Finally, we upsam-220

pled sentences with rare phonemes to ensure there was sufficient training data for the RNN to learn these221

rare phonemes. This resulted in a diverse sample of sentences from spoken conversational contexts.222

For each evaluation day, after the final "stage 2" RNN was trained, three evaluation blocks were223

run. These included one block of the 50 sentences used for evaluation in Moses et al 2021 [8] (these224

sentences were the same every session), and two blocks of 40 sentences each from Switchboard, selected225

in the same manner as the training data. The Switchboard sentences were different for each evaluation226

session. The RNN decoder was never evaluated on a sentence that it had been trained on, and every227

sentence was unique (except for the “direct comparison” blocks that always used the same 50 sentences228

from Moses et al 2021). When we retrained the decoder each day before performance evaluation, we229

retrained it using all previously collected data (from all prior days) except for these direct comparison230

blocks, in order to prevent the RNN from overfitting to these repeated sentences.231

2. Neural representation of orofacial movements and speech in orofacial cortex232

2.1. Tuning heat maps233

To generate the neural tuning heat maps shown in Figure 1, we first started with binned threshold234

crossing spike counts using a -4.5 RMS threshold (20 ms bins). To account for drifts in mean firing rates235

across the session, the binned threshold crossing rates were mean-subtracted within each block (i.e., for236

each electrode, its mean firing rate within each block was subtracted from each time step’s binned spike237

count).238
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Next, for each trial and electrode, threshold crossing counts were averaged in an 800 ms window239

(200 to 1000 ms after the go cue). Significance of tuning was then assessed via 1-way ANOVAs applied240

per electrode, where each ANOVA group corresponded to a different movement condition and each241

observation was a scalar average firing rate for a single trial. The movement conditions that were used242

to assess tuning to each movement type are shown in SFig 2. P-values from each ANOVA were used to243

define tuning significance (p<1e-5).244

The fraction of variance accounted for by movement tuning on a single electrode was defined as:

𝐹𝑉𝐴𝐹 = 1 − 𝑆𝑆𝐸𝑅𝑅

𝑆𝑆𝑇𝑂𝑇

SSTOT is the total sum of squared average firing rates over all trials. For computing SSTOT, squaring245

was performed after the grand mean across all trials was subtracted from each trial first, so that the246

overall mean firing rate did not contribute to the variance.247

SSERR is the sum of squared prediction errors across all trials. Prediction error was assessed with248

a cross-validated (5-fold) model which predicts the firing rate of each trial based only on the mean of249

the condition it belongs to. Condition-specific means were estimated on the training set by taking the250

sample means across training trials, and then applied to the held-out test set.251

If there are large differences in mean firing rate between movement conditions (i.e., strong movement252

tuning), then SSERR will be small relative to SSTOT. Cross-validation prevents overestimation of tuning253

due to spurious differences in mean firing rate between conditions that are not stable across folds.254

2.2. Neural population tuning bar plots255

The amount of neural population tuning for each movement condition in SFig 2 was computed using a256

cross-validated estimate of neural distance, following the methods as described in [11]. Specifically, we257

estimated the Euclidean distance between the average firing rate vector for a given movement condition258

and a baseline "do nothing" condition where T12 was instructed to remain at rest and make no movement.259

Threshold crossing firing rates were computed over a 800 ms time window (between 200 and 1000 ms260

after the go cue) using a -4.5 x RMS threshold. Distances were normalized by dividing by the square root261

of the number of electrodes per array (64), since neural population distances should grow, on average,262

with the square root of the number of channels. 95% confidence intervals were computed using the263

jackknife method [11].264

2.3. Naive Bayes classification265

Offline classification results (reported in SFig 3 and in the main text as classification accuracies) were266

generated using a cross-validated (leave-one-out) Gaussian naive Bayes classifier, following the methods267

described in [11], using threshold crossing rates computed in a window from 0 to 1000 ms after the268

go cue (-4.5 x RMS thresholds were used). 95% confidence intervals for classification accuracies were269

computed with bootstrap resampling (10,000 resamples). We chose to use a Gaussian naive Bayes270

classifier because it is a simple method that performed well enough to demonstrate the existence of271

strong neural tuning - it is likely that more advanced methods could improve classification accuracy272

further.273

2.4. Preserved articulatory representation of phonemes274

2.4.1. Electromagnetic articulography (EMA) representations275

Electromagentic articulography (EMA) and corresponding audio data was taken from the publicly276

available dataset "USC-Timit" [12], which contains phoneme labels (beginning and end of each phoneme277

in each sentence). In USC-Timit, EMA data was collected with 6 markers (lower lip, upper lip, jaw,278
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tongue tip, tongue blade, and tongue dorsum). We used only the X and Y positions of each (sagittal279

plane position), yielding a 12-dimensional signal.280

To compute an EMA representation of each phoneme, we averaged over all EMA marker position281

data recorded at time points that were labeled as belonging to that phoneme, yielding a single average282

articulator position vector for each phoneme. Finally, a binary voicing indicator variable was added to283

the EMA representation of each phoneme. This variable was set to 1 for voiced phonemes (e.g., ’z’)284

and 0 for unvoiced phonemes (e.g., ’s’). Since EMA does not measure voicing, this is a simple way to285

include some voicing information that would otherwise be omitted from the EMA representation.286

EMA data from USC-Timit subject ’M1’ was used for all Figure 3 analyses.287

2.4.2. Saliency vectors288

Saliency vectors, which quantify the neural vectors which maximally excite each of the decoder’s289

phoneme outputs, were generated by computing RNN logit gradients with respect to the input features.290

We used an RNN trained on all voiced speech days and then used the first 30 trials from each day’s test291

set to compute the gradients.292

For each day’s data, we run the RNN over each sample

𝑥 (𝑡) ∈ R256

for five time steps (first initializing the hidden state to zeros) - this allows the network some time to
integrate information about the specific feature vector. This yields a phoneme probability output for
each time step

𝑓𝑅𝑁𝑁 (𝑥 (𝑡) ) = 𝑦 (𝑡) ∈ R41

For each time step 𝑡, we then calculate the Jacobian matrix 𝐽, which contains entries corresponding to
first-order partial derivatives of each logit output with respect to each channel, i.e.

𝐽𝑖,: = ∇𝑦 (𝑡)
𝑖

|𝑥 (𝑡 )

This gradient records how small changes in each channel’s activity influences the probability of class 𝑖.
We can calculate the Jacobian for all phonemes and timesteps, resulting in a time x channels x phonemes
matrix M where

𝑀𝑡 ,:,:

contains the Jacobian at timestep 𝑡. We then average across the time dimension to obtain an integrated293

estimate of how each channel’s activity influences different phoneme class probabilities.294

To compute the gradients, we used SmoothGrad [13], a method for denoising saliency maps by
computing gradients over an input with multiple noise perturbations, i.e.

∇𝑦 (𝑡)
𝑖

|𝑥 (𝑡 ) + 𝑁 (0, 𝜎)

The resulting saliency map estimates are then averaged together. We use n = 20 perturbations and noise295

level = 10 (relative to the overall range of firing rates after capping outliers). This extra step contributed296

a small but consistent improvement in similarity matrix correlations with the EMA data.297

2.4.3. Similarity matrices298

Similarity matrices in Figure 3a and 3d were computed using cosine similarity. That is, for each pair
(𝑥, 𝑦) of RNN saliency or EMA vectors, similarity was defined as

𝑥 · 𝑦
| |𝑥 | | | |𝑦 | |
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This equation computes the cosine of the angle between 𝑥 and 𝑦. Before computing cosine similarity,299

the vectors were first centered by subtracting the mean across all consonant (Figure 3a) or all vowel300

vectors (Figure 3d).301

2.4.4. EMA-Neural correlation302

Figure 3b and 3e show the correlation between the neural and EMA phoneme representations, which303

was computed across all phonemes and dimensions after a cross-validated Procrustes alignment of the304

saliency vectors to the EMA vectors.305

First, saliency vectors were concatenated into a 256 x 39 matrix X (256 neural features x 39 phonemes)306

and EMA vectors were concatenated into a 13 x 39 matrix Y (13 EMA dimensions x 39 phonemes). X307

and Y were then reduced to 8 dimensions using PCA applied across the rows, yielding an 8 x 39 matrix308

X̃ and an 8 x 39 matrix Ỹ.309

X̃ was then aligned to Ỹ using a cross-validated orthogonal rotation (Procrustes analysis) using310

leave-one-out cross-validation. Specifically, for each vector 𝑥𝑖 in X̃, Procrustes analysis was applied to311

align all other vectors {𝑥1, ...𝑥𝑖−1, 𝑥𝑖+1, ...𝑥𝑛} to the matching vectors {𝑦1, ...𝑦𝑖−1, 𝑦𝑖+1, ...𝑦𝑛}, yielding312

an orthogonal rotation R. R was then applied to 𝑥𝑖 to yield 𝑥𝑖 . Orthogonality enforces that the rotation313

be rigid, so that the underlying structure in the data is preserved.314

Finally, all 𝑥𝑖 vectors were concatenated into an (8x39) x 1 vector 𝑥 and all �̃�𝑖 vectors were concate-315

nated into an (8x39) x 1 vector �̄�. The Pearson correlation coefficient was then calculated between 𝑥 and316

�̄� using consonant entries only (Figure 3b) or vowel entries (Figure 3e).317

As a control, this same procedure was repeated 10,000 times but with the columns of X shuffled into318

a random order, which allows estimation of what the correlation could be expected to be ’by chance’ if319

each phoneme’s vector was random but drawn from the same distribution. Note that the cross-validation320

procedure causes the chance distribution to be centered at 0 (otherwise it would be biased upwards as321

Procrustes would overfit and align noise). The true correlation is far greater than any of the 10,000322

shuffle results, indicating statistical significance (p<1e-4).323

2.4.5. Low-dimensional visualization of phoneme geometry324

To make the plots in Figure 3c and 3f, the neural saliency vectors were first aligned to the EMA vectors325

using cross-validated Procustes analysis, as described in the above section. After alignment, the top two326

dimensions were plotted; for vowels, these two dimensions were rotated and flipped within the plane in327

order to highlight the classic (front vs. back) and (high vs. low) structure.328

2.5. Neural correlation across days329

To compute how the neural representation of speech was correlated between pairs of days (Fig. 4d),330

we used data from a "diagnostic block" collected at the beginning of each day. During this block, T12331

completed an instructed delay task where she attempted to speak individual words from a set of 7332

words designed to span the space of articulation (8 repetitions per word). The word set consisted of333

the following words: ’bah’, ’choice’,’day’,’kite’,’though’,’veto’, and ’were’. We also included a condition334

where T12 was instructed to rest silently (’do nothing’).335

First, threshold crossing rates for each trial were averaged between a 100 to 600 ms window after the336

go cue to yield a single firing rate vector for each trial (of length 128). Then, "pseudo-trial" vectors were337

created by concatenating together a single firing rate vector from each condition, resulting in pseudo-338

trial vectors of length 128*8=1024. The result of this step is a set of eight vectors {𝑣1, 𝑣2, ..., 𝑣8}, one339

vector for each of the eight repetitions of all conditions. When assessing the similarity between any two340

days, we then have two sets of vectors to consider: {𝑣1, 𝑣2, . . . , 𝑣8} and {𝑢1, 𝑢2, . . . , 𝑢8}. Consider each341

of these vectors as a random draw from a day-specific distribution (let us denote the two distributions342

as 𝑉 and 𝑈). To quantify similarity, we estimated the correlation between the means of 𝑉 and 𝑈 (note343

that the means themselves are also vectors). The quantity of interest here is the mean because this344

represents the average firing rates observed for each condition (i.e., the neural representation of each345
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word). To estimate the correlation between the means of 𝑉 and 𝑈, we used a cross-validated measure346

of correlation that reduces the impact of noise. See our prior work [11] and accompanying code347

repository https://github.com/fwillett/cvVectorStats for more details about this method. Importantly,348

this cross-validated method is different from simply correlating 1
8
∑8

𝑖=1 𝑣𝑖 and 1
8
∑8

𝑖=1 𝑢𝑖 , which would349

underestimate the true correlation due to noise that causes the estimated means to appear more dissimilar350

than they really are. For example, even if𝑉 and𝑈 have identical means, noise in 𝑣𝑖 and 𝑢𝑖 would always351

cause the estimated correlation to be less than 1 when correlating 1
8
∑8

𝑖=1 𝑣𝑖 and 1
8
∑8

𝑖=1 𝑢𝑖 together.352

To make the plot in Fig. 4d, we included all pairings of the following 12 days on which a diagnostic353

block of attempted vocal speaking was collected: 2022.06.16, 2022.06.21, 2022.06.28, 2022.07.05,354

2022.07.07, 2022.07.14, 2022.07.21, 2022.07.27, 2022.07.29, 2022.08.02, 2022.08.11, 2022.08.13.355

3. Decoder performance metrics356

3.1. Phoneme transcription and labelling357

Each sentence prompt was transcribed into a sequence of phonemes using the CMU Pronouncing358

Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and the g2p software package [14]. The359

CMU Dictionary uses 39 phonemes, each denoted using the ARPAbet symbol set developed for speech360

recognition (see Table 4 for the correspondence between IPA notation and ARPAbet notation, and361

https://en.wikipedia.org/wiki/ARPABET). We added a “silent” phoneme at the end of each word in362

order to denote the separation between words. Note that we did not incorporate the stress labeling given363

by the CMU dictionary for vowels (i.e., we labeled each vowel in the same way regardless of how it is364

stressed in the word).365

3.2. Error rates and words per minute366

We evaluate both phoneme error rate and word error rate. Phoneme error rate was defined as the edit367

distance between the decoded sequence of phonemes and the prompt sentence phoneme transcription368

(i.e., the number of insertions, deletions or substitutions required to make the sequence of phonemes369

match exactly). Similarly, word error rate was the edit distance defined over sequences of words.370

Note that the reported error rates are the combined result of many independent sentences. To combine371

data across multiple sentences, we summed the number of errors across all sentences and divided this372

by the total number of phonemes/words across all sentences (as opposed to computing error rate373

percentages first for each sentences and then averaging the percentages). The helps prevent very short374

sentences from overly influencing the result.375

Words per minute was defined as the number of words spoken over the total amount of time. The time376

was based on the summations for each trial from which the cue turned green to when the participant377

pushed the button to signal she had completed saying the prompt sentence.378

Confidence intervals for word error rates and words per minute were computed via bootstrap resam-379

pling over individual trials and then re-computing error rates and speeds over the resampled distribution380

(10,000 resamples).381

4. RNN architecture382

We used a 5 layer, stacked gated recurrent unit RNN [15] to convert T12’s neural activity into a time383

series of phoneme probabilities. The RNN ran at a 4-bin frequency (20 ms bins), outputting a phoneme384

probability vector every 80 ms. A 14-bin window of neural activity was stacked together and fed as input385

to the RNN at each 80 ms cycle (in other words: kernel size = 14, stride = 4). See SFig4 for parameter386

sweeps that justify these and other architecture choices.387
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ARPAbet Notation IPA Notation Example
AA A bot
AE æ bat
AH 2 but
AO O caught
AW aU bout
AY aI bite
EH E bet
ER Ç bird
EY eI bait
IH I bit
IY i beat
OW oU boat
OY OI boy
UH U book
UW u boot
B b buy

CH Ù China
D d die

DH D thy
F f fight
G g guy

HH h high
JH Ã jive
K k kite
L l lie
M m my
N n nigh

NG N sing
P p pie
R ô rye
S s sigh

SH S ship
T t tie

TH T thigh
V v vie
W w wise
Y j yacht
Z z zoo

ZH Z pleasure
Table 4. ARPAbet and IPA correspondence.

4.1. Feature pre-processing and day-specific input layers388

Threshold crossing rates and spike band power features were pre-processed by binning into 20 ms389

time steps, "z-scoring" (mean-subtracted and divided by the standard deviation), causally smoothed by390

convolving with a Gaussian kernel (sd = 40ms) that was delayed by 160ms, concatenated into 256 x391

1 vector, and then transformed using a day-specific input layer. Z-scoring was performed using block-392

specific means and standard deviations (to account for non-stationarities in the features that accrue over393
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time across blocks). Using day-specific input layers outperformed the alternative of a shared input layer394

across all days (SFig 4B).395

The day-specific input layers consisted of an affine transformation applied to the feature vector396

followed by a softsign activation function:397

𝑥𝑡 = softsign(𝑊𝑥𝑡 + 𝑏) (1)

Here, 𝑥𝑡 is the day-transformed input vector at time step 𝑡, 𝑊𝑖 is a 256 x 256 matrix and 𝑏𝑖 is a 256 x398

1 bias vector for day 𝑖, and the softsign function is applied element-wise to the resultant vector (where399

softsign(𝑥) = 𝑥
|𝑥 |+1 ). 𝑊𝑖 and 𝑏𝑖 were optimized simultaneously along with all other RNN parameters.400

During training, dropout was applied both prior to and after the softsign.401

4.2. Rolling z-scoring402

During online evaluation, we used a rolling estimate of the mean and standard deviation of each feature403

to perform z-scoring. This helps account for neural non-stationarities that accrue across time, and404

substantially outperforms the alternative of using the prior block’s means and standard deviations (SFig405

4A).406

For the first ten sentences of a new block, we used a weighted average of the prior block’s mean
estimate and the mean of whatever sentences were collected so far in the current block:

𝑢𝑖 =
11 − 𝑖

10
∗ 𝑢𝑝𝑟𝑒𝑣 +

𝑖 − 1
10

∗ 𝑢𝑐𝑢𝑟𝑟 (2)

Here, 𝑢𝑖 is the mean used to z-score sentence 𝑖, 𝑢𝑝𝑟𝑒𝑣 is the prior block’s mean estimate, and 𝑢𝑐𝑢𝑟𝑟407

is the mean across all sentences collected so far in the current block. After ten sentences had been408

collected, we stopped incorporating the prior block’s mean and simply took the mean across the most409

recent min(20, 𝑁) sentences, where 𝑁 is the number of sentences collected so far in the current block.410

The standard deviation was updated in the same way as the mean.411

5. RNN training overview412

5.1. Connectionist temporal classification (CTC) loss413

Due to T12’s inability to produce intelligible speech, we had no ground truth labels of what phonemes414

were being spoken at each time step. The lack of ground truth labels makes it difficult to apply simple415

supervised training techniques to train the RNN. To get around this problem, we used the Connectionist416

Temporal Classification (CTC) loss function, which can train neural networks to output a sequence of417

symbols (in this case, phonemes) given unlabeled time series input [16]. Using the CTC loss function418

results in an RNN that is trained to output a time series of phoneme probabilities (with an extra "blank"419

token probability). A language model can then be used to infer a sequence of underlying words from these420

probabilities, or phonemes can be decoded from these probabilities simply by emitting the phoneme of421

maximum probability at each time step (while taking care to omit repeats and time steps where "blank"422

is the maximum probability).423

5.2. Artificial noise424

We added two types of artificial noise to the neural features to regularize the RNN. First, we added425

white noise directly to the input feature vectors at each time step. Adding white noise to the inputs426

asks the RNN to map clouds of similar inputs to the same output, improving generalization. We also427

added artificial constant offsets to the means of the neural features, to make the RNN more robust to428

non-stationarities in the neural data. Drifts in the baseline firing rates that accrue over time has been an429
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important problem for intracortical BCIs [17, 18, 19]. The constant offset values were randomly chosen430

on each minibatch and were constant across all time steps in the minibatch, but unique to each feature.431

The two above-mentioned types of noise (white noise and constant offset noise) were combined
together to transform the input vector in the following way:

𝑥 ′𝑡 = 𝑥𝑡 + 𝜖𝑡 + 𝜙 (3)

Here, 𝑥 ′𝑡 are the neural features with noise added, 𝑥𝑡 are the original neural features, 𝜖𝑡 is a white noise432

vector unique to each time step, and 𝜙 is a constant offset vector.433

5.3. Supervised training434

The RNN was implemented with TensorFlow 2 and trained using stochastic gradient descent (ADAM;435

𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 0.1) for 10,000 minibatches (batch size = 64). The learning rate was decayed436

linearly from 0.02 to 0.0 across the 10,000 minibatches. We applied dropout and L2 weight regularization437

during training to improve generalization. See Table 5 for a list of RNN hyperparameters.438

RNN Parameter Description Value
nUnits Number of units in each GRU layer 512
nLayers Number of GRU layers 5
Kernel Size Number of input feature time bins stacked

together as a single input for the RNN
14

Stride Describes how many time bins the RNN skips
forward every step

4

L2 L2 regularization cost 1e-0.5
Dropout Probability of dropout during training 0.4
WhiteNoiseSD Standard deviation of white noise added to

input data for regularization
1.0

constantOffsetSD Standard deviation of constant offset noise
added to input data to improve robustness
against non-stationary feature means

0.2

Batch Size Number of sentences included in each mini-
batch

64

Learning Rate Linearly decaying learning rate 0.02 to 0.0
𝛽1 ADAM stochastic gradient descent parameter 0.9
𝛽2 ADAM stochastic gradient descent parameter 0.999
𝜖 ADAM stochastic gradient descent parameter 0.1

Table 5. Architecture, training and regularization parameters for RNN Model.

6. Offline performance sweeps439

6.1. Overview440

To determine the effect of different design choices made for the RNN architecture, and to understand the441

impact of data quantity and channel count, we performed several performance sweeps offline (results442

from this are shown in SFig 4 and Fig 4). Unless otherwise specified, we trained 10 seeds of an RNN443

model for each variation of parameters and performed inference on a standardized set of held-out test444

data. To define the training/held-out set, we took 40 sentences at random from each day as the held-445

out set and used the remaining sentences as offline training data, drawing from all open-loop/stage 1446
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sentences on each day (but excluding stage 2 evaluation data). We used the original language model that447

was run online (as opposed to the improved version reported in Table 1).448

We ran parameter sweeps for the GRU-RNN architecture choices including number of units, number449

of layers, kernel size and stride (SFig 4e-h). A comparison between a shared input network and unique450

input network per session was also run (SFig 4b). Furthermore, performance when using different kinds451

of features was also compared in this manner (SFig 4c-d), including four different threshold crossing452

thresholds (-3.5,-4.5,-5.5,-6.5), spike band power, area 44 vs. area 6v features, and the mel-frequency453

cepstral coefficients (MFCCs) of the participants’ recorded audio during attempted speaking sessions.454

MFCCs were computed using 40 ms window (using MATLAB 2020a’s "mfcc" function).455

6.2. Effect of channel count on performance456

To determine the effect of channel count on decoding performance (Fig 4b), 100 seeds of each multiple457

of 10 number of channels up to the full 128 channels was run. For each of the 100 seeds for each channel458

count, channels were randomly selected without replacement. To predict performance for higher number459

of channels past 128, a least squares linear regression was fit to the log-log relationship of the number460

of channels vs. error rate.461

6.3. Amount of training data462

To plot the number of days of training data versus performance (SFig 4i), RNNs were trained for each463

of the 5 vocal speaking evaluation days separately, and for each number of training data days going464

consecutively in reverse until all previous days were used in training. Performance was assessed only465

on the given evaluation day. Word error rates were then averaged over all evaluation days to produce a466

single (# of days) vs. (word error rate) curve.467

We also tested whether or not it was necessary to retrain the RNN decoder on each new performance468

evaluation day using hundreds of new sentences collected on that day, or whether fewer (or no) new469

sentences might have also yielded good performance, which would be a more realistic use case (Fig470

4c). For this analysis, models were trained on the five attempted speech evaluation sessions (sessions471

18,19,21,22,23) using reduced subsets of sentences from the given evaluation day (while still using all472

historical data). The input layer for each given evaluation day was also tied to be the same as the most473

recent historical day, in order to prevent overfitting when using a small number of training sentences.474

Once trained, RNNs were evaluated on the same set of "stage 2" online evaluation sentences used to475

report performance in Figure 2.476

6.4. Language model vocabulary size sweep477

To test how the number of words in language model (LM) affects the decoding accuracy, we built different478

3-gram LMs with various vocabulary sizes. These LMs were built following the same procedure as479

in Section 7, but with vocabulary sizes varying from 50 to 140,000. We started with the 50 words480

from [8], and gradually added words until the vocabulary size reached 140,000. The added words were481

chosen from the LM training corpus. Words were added in the order of their frequencies in the training482

corpus. When the vocabulary size became greater then 4500, we pruned the LM with threshold 1𝑒 − 9.483

To measure the WER, we ran the LM decoders on the CTC probabilities output by RNN from the 8484

real-time speech decoding sessions (18, 19, 21, 22, 23, 24, 25, and 26).485
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7. Language model486

7.1. Overview487

We used a n-gram language model (LM) to decode word sequences from RNN outputs for real-time488

decoding and offline analyses. Here, we give an overview of the major steps involved. The n-gram LM489

was created with Kaldi [20] using OpenWebText2 corpus [9]. We first preprocessed the text corpus to490

only include English letters and limited punctuation marks. Then we used Kaldi to construct a n-gram491

LM, using either the CMU Pronunciation Dictionary 1 (125k words) or the 50 words from [8]. The LM492

was represented in the form of a weighted finite-state transducer [21] which can be used to translate the493

a sequence of CTC labels into candidate sentences.494

7.2. OpenWebText2 preprocessing495

Our n-gram LM was created using samples from OpenWebText2 [9]. OpenWebText2 is a text corpus496

covering all Reddit submissions from 2005 up until April 2020. We downloaded the entire corpus and497

randomly sampled 95% as a training corpus. We preprocessed the training corpus to include only English498

letters and 4 punctuation marks (period, comma, apostrophe, and question mark). The preprocessed499

corpus was then split into sentences and converted to upper case (yielding a total of 634M sentences500

with 99B words).501

7.3. Constructing the n-gram language model502

We used publicly available scripts2 as a starting point for constructing our n-gram LM. The script503

first uses SRILM [22] to count the frequencies of n-grams (unigram, bi-gram, and 3-gram, etc.) in the504

training corpus. We used the Good-Turing discounting method [23] to improve probability estimation505

of unseen or rare word combinations. For words that are not in the pronunciation dictionary, they are506

mapped to a special token <UNK>. When using the CMU Pronunciation Dictionary, the resutling LM507

is too large to fit into the main memory of the Ubuntu computer used for real-time inference. We pruned508

the resulting n-gram LM using SRILM, which removes n-grams that causes the perplexity of the LM509

to increase by less than a threshold. The LM built with the 50 words from [8] is not pruned. For online510

real-time decoding, we used a 3-gram LM pruned with threshold 1𝑒 − 9. For offline analyses, we used511

a 5-gram LM pruned with threshold 4𝑒 − 11.512

The n-gram LM was then converted to a weighted finite-state transducer (WFST) [21]. A WFST is
a finite-state acceptor in which each transition has an input symbol, an output symbol and a weight. A
path through the WFST takes a sequence of input symbols and emits a sequence of output symbols. We
followed the recipe in [24] to construct our WFST search graph:

𝑇 ◦ 𝐿 ◦ 𝐺 (4)

Here, ◦ denotes composition. G is the grammar WFST that encodes legal sequences of words and513

their probabilities based on the n-gram LM. L is the lexicon WFST that encodes what phonemes are514

contained in each legal word. A silence state is added to the beginning of the sentence and the end of515

each word to model the non-speaking state. We did an offline sweep of the silence state probability and516

found 0.9 to be optimal. Finally, T is the token WFST that maps a sequence of RNN output labels to a517

single phoneme. In our case, T contains all the individual phonemes plus the CTC blank symbol. For518

more details about how the three WFSTs were composed, refer to [24].519

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2https://github.com/thu-spmi/CAT/blob/v1/egs/libri
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7.4. Inference with the n-gram language model520

We used the LM decoder implementation in WeNet [25] for efficient real-time inference. WeNet is a521

wrapper around Kaldi to simplify the implementation of a real-time LM decoder. The LM decoder runs522

an approximate Viterbi search (beam search) algorithm on the WFST search graph to find the most523

likely sequences of words. The WFST search graph encodes the mapping from a sequence of CTC labels524

emitted by RNN to a sequence of words. During inference, the beam search combines information from525

the WFST (state transition probabilities) and information from the RNN decoder about which CTC526

labels are likely occurring at each moment in time. We do not normalize the CTC label probabilities as527

in [24].528

The decoding parameters for beam search in defined in Table 6. The beam search runs every 80ms,529

after the RNN emits CTC label probabilities. On average, each beam search step took less than 1ms to530

complete.531

7.5. Offline language model optimization532

After data collection was completed, we further optimized the LM and found that online decoding WER533

could have improved by 6.4% with an improved LM architecture (Table 1 in main text). To improve the534

LM, we used a 5-gram LM instead of 3-gram LM and employed a 2-pass decoding strategy. The first535

pass of the 2-pass decoder is the same as the 1-pass decoder described above. But instead of outputting536

a decoded sentence, it outputs a word lattice [26, 27]. A word lattice is a directed graph where each537

node is a word and the an edge between nodes encodes the transition probability between words. It is538

a efficient representation to encode possible word sequences. The second pass of the 2-pass decoder539

uses a unpruned n-gram LM to rescore the word lattice. Rescoring replaces the original LM score with540

a more accurate score from the unpruned LM. After rescoring, we pick the best path through the word541

lattice as decoding output.542

Finally, we found that using a transformer LM [28] to rescore the candidate sentences in an third543

pass could further improve decoding accuracy. Transformer LMs have been the state of the art in many544

natural language tasks in recent years [29, 30]. Compared to an n-gram LM which models a limited545

context (e.g., 3 words for a trigram model), a transformer LM can model much longer contexts (e.g.,546

1024 words). Training a transformer LM requires a significant amount of computation resources. We547

used the publicly available pre-trained OPT LM [31]. We used the largest OPT LM (6.7B parameters)548

that can fit into one NVIDIA A100 40GB GPU. The OPT LM was used to rescore the n-best outputs549

from a 2-pass decoder.550

The 2-pass decoder first outputs at most n sentences with the highest decoding scores. The decoding
score of a sentence was defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑠) = 𝛼 ∗ 𝑙𝑜𝑔(𝑃𝑅𝑁𝑁 (𝑠)) + 𝑙𝑜𝑔(𝑃𝑛𝑔𝑟𝑎𝑚(𝑠)) (5)

Here 𝑃𝑅𝑁𝑁 (𝑠) is the sentence 𝑠’s corresponding CTC label sequence probability output by the RNN.551

𝑃𝑛𝑔𝑟𝑎𝑚 is the sentence 𝑠’s probability estimated by the n-gram LM. 𝛼 is the acoustic scale defined in552

Table 6.553

We then used OPT to evaluate the probability of each sentence in the n-best list and linearly interpolate
with the n-gram LM’s probability. The new score function was defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑠) = 𝛼 ∗ 𝑙𝑜𝑔(𝑃𝑅𝑁𝑁 (𝑠)) + 𝛽 ∗ 𝑙𝑜𝑔(𝑃𝑛𝑔𝑟𝑎𝑚(𝑠)) + (1 − 𝛽) ∗ 𝑙𝑜𝑔(𝑃𝑜𝑝𝑡 (𝑠)) (6)

Here 𝑃𝑜𝑝𝑡 (𝑠) is sentence 𝑠’s probability estimation from OPT LM. 𝛽 is the lm weight defined in Table554

6. The top scored sentence is the final decoding output.555

Finally, we found that decoding accuracy was improved by dividing the CTC blank label probability556

by a constant value [32], which adds a cost for not outputting any labels.557

All LM decoding parameters are optimized via grid search on a validation data set (session 7-16).558
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LM Decoding Parameter Description Value
min active Beam search decoder’s minimum active states 200
max active Beam search decoder’s maximum active states 7000

beam Beam size 17
acoustic scale Scaling factor on RNN’s log probabilities 0.8

lm weight Interpolation weight between LMs 0.5
n-best Number of decoding hypotheses 100

blank penalty Penalty applied on blank labels log(7)
Table 6. LM decoding parameters .

References559

[1] Matthew F. Glasser, Timothy S. Coalson, Emma C. Robinson, Carl D. Hacker, John Harwell, Essa560

Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F. Beckmann, Mark Jenkinson, Stephen M.561

Smith, and David C. Van Essen. A multi-modal parcellation of human cerebral cortex. Nature,562

536(7615):171, August 2016. http://dx.doi.org/10.1038/nature18933. URL https://www.ncbi.563

nlm.nih.gov/pmc/articles/PMC4990127/.564

[2] Nicolas Y. Masse, Beata Jarosiewicz, John D. Simeral, Daniel Bacher, Sergey D. Stavisky, Syd-565

ney S. Cash, Erin M. Oakley, Etsub Berhanu, Emad Eskandar, Gerhard Friehs, Leigh R. Hochberg,566

and John P. Donoghue. Non-causal spike filtering improves decoding of movement intention for567

intracortical BCIs. Journal of Neuroscience Methods, 236:58–67, October 2014. ISSN 0165-568

0270. http://dx.doi.org/10.1016/j.jneumeth.2014.08.004. URL https://www.sciencedirect.com/569

science/article/pii/S016502701400288X.570

[3] D. Young, F. Willett, W. D. Memberg, B. Murphy, B. Walter, J. Sweet, J. Miller, L. R. Hochberg,571

R. F. Kirsch, and A. B. Ajiboye. Signal processing methods for reducing artifacts in microelectrode572

brain recordings caused by functional electrical stimulation. Journal of Neural Engineering, 15(2):573

026014, January 2018. ISSN 1741-2552. http://dx.doi.org/10.1088/1741-2552/aa9ee8. URL574

https://doi.org/10.1088%2F1741-2552%2Faa9ee8.575

[4] Eric M. Trautmann, Sergey D. Stavisky, Subhaneil Lahiri, Katherine C. Ames, Matthew T. Kauf-576

man, Daniel J. O’Shea, Saurabh Vyas, Xulu Sun, Stephen I. Ryu, Surya Ganguli, and Krishna V.577

Shenoy. Accurate Estimation of Neural Population Dynamics without Spike Sorting. Neuron, 103578

(2):292–308.e4, July 2019. ISSN 0896-6273. http://dx.doi.org/10.1016/j.neuron.2019.05.003.579

URL http://www.sciencedirect.com/science/article/pii/S0896627319304283.580

[5] Cynthia A. Chestek, Vikash Gilja, Paul Nuyujukian, Justin D. Foster, Joline M. Fan, Matthew T.581

Kaufman, Mark M. Churchland, Zuley Rivera-Alvidrez, John P. Cunningham, Stephen I. Ryu,582

and Krishna V. Shenoy. Long-term stability of neural prosthetic control signals from silicon583

cortical arrays in rhesus macaque motor cortex. Journal of Neural Engineering, 8(4):045005,584

August 2011. ISSN 1741-2552. http://dx.doi.org/10.1088/1741-2560/8/4/045005. URL http:585

//iopscience.iop.org/1741-2552/8/4/045005.586

[6] Breanne P. Christie, Derek M. Tat, Zachary T. Irwin, Vikash Gilja, Paul Nuyujukian, Justin D. Fos-587

ter, Stephen I. Ryu, Krishna V. Shenoy, David E. Thompson, and Cynthia A. Chestek. Comparison588

of spike sorting and thresholding of voltage waveforms for intracortical brain–machine interface589

performance. Journal of Neural Engineering, 12(1):016009, December 2014. ISSN 1741-2552.590

http://dx.doi.org/10.1088/1741-2560/12/1/016009.591

[7] D. H. Brainard. The Psychophysics Toolbox. Spatial Vision, 10(4):433–436, 1997. ISSN 0169-592

1015.593

[8] David A. Moses, Sean L. Metzger, Jessie R. Liu, Gopala K. Anumanchipalli, Joseph G. Makin,594

Pengfei F. Sun, Josh Chartier, Maximilian E. Dougherty, Patricia M. Liu, Gary M. Abrams,595

Adelyn Tu-Chan, Karunesh Ganguly, and Edward F. Chang. Neuroprosthesis for Decoding596

Speech in a Paralyzed Person with Anarthria. New England Journal of Medicine, 385(3):597

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.21.524489doi: bioRxiv preprint 

http://dx.doi.org/10.1038/nature18933
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990127/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990127/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990127/
http://dx.doi.org/10.1016/j.jneumeth.2014.08.004
https://www.sciencedirect.com/science/article/pii/S016502701400288X
https://www.sciencedirect.com/science/article/pii/S016502701400288X
https://www.sciencedirect.com/science/article/pii/S016502701400288X
http://dx.doi.org/10.1088/1741-2552/aa9ee8
https://doi.org/10.1088%2F1741-2552%2Faa9ee8
http://dx.doi.org/10.1016/j.neuron.2019.05.003
http://www.sciencedirect.com/science/article/pii/S0896627319304283
http://dx.doi.org/10.1088/1741-2560/8/4/045005
http://iopscience.iop.org/1741-2552/8/4/045005
http://iopscience.iop.org/1741-2552/8/4/045005
http://iopscience.iop.org/1741-2552/8/4/045005
http://dx.doi.org/10.1088/1741-2560/12/1/016009
https://doi.org/10.1101/2023.01.21.524489


Supplementary Methods 21

217–227, July 2021. ISSN 0028-4793. http://dx.doi.org/10.1056/NEJMoa2027540. URL598

https://doi.org/10.1056/NEJMoa2027540. Publisher: Massachusetts Medical Society _eprint:599

https://doi.org/10.1056/NEJMoa2027540.600

[9] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason601

Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An602

800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.603

[10] J. J. Godfrey, E. C. Holliman, and J. McDaniel. SWITCHBOARD: telephone speech corpus for604

research and development. pages 517–520. IEEE Computer Society, March 1992. ISBN 978-605

0-7803-0532-8. http://dx.doi.org/10.1109/ICASSP.1992.225858. URL https://www.computer.606

org/csdl/proceedings-article/icassp/1992/00225858/12OmNxGSmbC.607

[11] Francis R. Willett, Darrel R. Deo, Donald T. Avansino, Paymon Rezaii, Leigh R. Hochberg,608

Jaimie M. Henderson, and Krishna V. Shenoy. Hand Knob Area of Premotor Cortex Rep-609

resents the Whole Body in a Compositional Way. Cell, March 2020. ISSN 0092-8674.610

http://dx.doi.org/10.1016/j.cell.2020.02.043. URL http://www.sciencedirect.com/science/article/611

pii/S0092867420302208.612

[12] Shrikanth Narayanan, Asterios Toutios, Vikram Ramanarayanan, Adam Lammert, Jangwon Kim,613

Sungbok Lee, Krishna Nayak, Yoon-Chul Kim, Yinghua Zhu, Louis Goldstein, Dani Byrd, Erik614

Bresch, Prasanta Ghosh, Athanasios Katsamanis, and Michael Proctor. Real-time magnetic reso-615

nance imaging and electromagnetic articulography database for speech production research (TC).616

The Journal of the Acoustical Society of America, 136(3):1307–1311, September 2014. ISSN 0001-617

4966. http://dx.doi.org/10.1121/1.4890284. URL https://asa.scitation.org/doi/full/10.1121/1.618

4890284. Publisher: Acoustical Society of America.619

[13] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-620

Grad: removing noise by adding noise, June 2017. URL http://arxiv.org/abs/1706.03825.621

arXiv:1706.03825 [cs, stat].622

[14] Jongseok Park, Kyubyong Kim. g2pe. https://github.com/Kyubyong/g2p, 2019.623

[15] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation624

of Gated Recurrent Neural Networks on Sequence Modeling, December 2014. URL http://arxiv.625

org/abs/1412.3555. arXiv:1412.3555 [cs].626

[16] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist627

temporal classification: labelling unsegmented sequence data with recurrent neural networks. In628

Proceedings of the 23rd international conference on Machine learning, ICML ’06, pages 369–376,629

Pittsburgh, Pennsylvania, USA, June 2006. Association for Computing Machinery. ISBN 978-630

1-59593-383-6. http://dx.doi.org/10.1145/1143844.1143891. URL https://doi.org/10.1145/631

1143844.1143891.632

[17] Beata Jarosiewicz, Anish A. Sarma, Daniel Bacher, Nicolas Y. Masse, John D. Simeral, Brittany633

Sorice, Erin M. Oakley, Christine Blabe, Chethan Pandarinath, Vikash Gilja, Sydney S. Cash,634

Emad N. Eskandar, Gerhard Friehs, Jaimie M. Henderson, Krishna V. Shenoy, John P. Donoghue,635

and Leigh R. Hochberg. Virtual typing by people with tetraplegia using a self-calibrating intra-636

cortical brain-computer interface. Science Translational Medicine, 7(313):313ra179–313ra179,637

November 2015. ISSN 1946-6234, 1946-6242. http://dx.doi.org/10.1126/scitranslmed.aac7328.638

URL http://stm.sciencemag.org/content/7/313/313ra179.639

[18] David Sussillo, Paul Nuyujukian, Joline M. Fan, Jonathan C. Kao, Sergey D. Stavisky, Stephen640

Ryu, and Krishna Shenoy. A recurrent neural network for closed-loop intracortical brain–machine641

interface decoders. Journal of Neural Engineering, 9(2):026027, April 2012. ISSN 1741-2552.642

http://dx.doi.org/10.1088/1741-2560/9/2/026027. URL http://iopscience.iop.org/1741-2552/9/2/643

026027.644

[19] Alan D. Degenhart, William E. Bishop, Emily R. Oby, Elizabeth C. Tyler-Kabara, Steven M.645

Chase, Aaron P. Batista, and Byron M. Yu. Stabilization of a brain–computer interface via the646

alignment of low-dimensional spaces of neural activity. Nature Biomedical Engineering, 4(7):647

672–685, July 2020. ISSN 2157-846X. http://dx.doi.org/10.1038/s41551-020-0542-9. URL648

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.21.524489doi: bioRxiv preprint 

http://dx.doi.org/10.1056/NEJMoa2027540
https://doi.org/10.1056/NEJMoa2027540
http://dx.doi.org/10.1109/ICASSP.1992.225858
https://www.computer.org/csdl/proceedings-article/icassp/1992/00225858/12OmNxGSmbC
https://www.computer.org/csdl/proceedings-article/icassp/1992/00225858/12OmNxGSmbC
https://www.computer.org/csdl/proceedings-article/icassp/1992/00225858/12OmNxGSmbC
http://dx.doi.org/10.1016/j.cell.2020.02.043
http://www.sciencedirect.com/science/article/pii/S0092867420302208
http://www.sciencedirect.com/science/article/pii/S0092867420302208
http://www.sciencedirect.com/science/article/pii/S0092867420302208
http://dx.doi.org/10.1121/1.4890284
https://asa.scitation.org/doi/full/10.1121/1.4890284
https://asa.scitation.org/doi/full/10.1121/1.4890284
https://asa.scitation.org/doi/full/10.1121/1.4890284
http://arxiv.org/abs/1706.03825
https://github.com/Kyubyong/g2p
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.1126/scitranslmed.aac7328
http://stm.sciencemag.org/content/7/313/313ra179
http://dx.doi.org/10.1088/1741-2560/9/2/026027
http://iopscience.iop.org/1741-2552/9/2/026027
http://iopscience.iop.org/1741-2552/9/2/026027
http://iopscience.iop.org/1741-2552/9/2/026027
http://dx.doi.org/10.1038/s41551-020-0542-9
https://doi.org/10.1101/2023.01.21.524489


22 Supplementary Methods

https://www.nature.com/articles/s41551-020-0542-9. Number: 7 Publisher: Nature Publishing649

Group.650

[20] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel,651

Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, et al. The kaldi speech recognition652

toolkit. In IEEE 2011 workshop on automatic speech recognition and understanding, number653

CONF. IEEE Signal Processing Society, 2011.654

[21] Mehryar Mohri, Fernando Pereira, and Michael Riley. Speech recognition with weighted finite-state655

transducers. In Springer Handbook of Speech Processing, pages 559–584. Springer, 2008.656

[22] Andreas Stolcke, Jing Zheng, Wen Wang, and Victor Abrash. Srilm at sixteen: Update657

and outlook. In Proc. IEEE Automatic Speech Recognition and Understanding Work-658

shop. IEEE SPS, December 2011. URL https://www.microsoft.com/en-us/research/publication/659

srilm-at-sixteen-update-and-outlook/.660

[23] Irving J Good. The population frequencies of species and the estimation of population parameters.661

Biometrika, 40(3-4):237–264, 1953.662

[24] Yajie Miao, Mohammad Gowayyed, and Florian Metze. EESEN: End-to-End Speech Recognition663

Using Deep RNN Models and WFST-Based Decoding. 2015 IEEE Workshop on Automatic Speech664

Recognition and Understanding (ASRU), pages 167–174, 2015.665

[25] Zhuoyuan Yao, Di Wu, Xiong Wang, Binbin Zhang, Fan Yu, Chao Yang, Zhendong Peng, Xiaoyu666

Chen, Lei Xie, and Xin Lei. Wenet: Production oriented streaming and non-streaming end-to-end667

speech recognition toolkit. In Proc. Interspeech, Brno, Czech Republic, 2021. IEEE.668

[26] Hy Murveit, John Butzberger, Vassilios Digalakis, and Mitch Weintraub. Large-vocabulary dicta-669

tion using sri’s decipher speech recognition system: Progressive search techniques. In 1993 IEEE670

International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 319–322.671

IEEE, 1993.672

[27] Xavier Aubert and Hermann Ney. Large vocabulary continuous speech recognition using word673

graphs. In 1995 International Conference on Acoustics, Speech, and Signal Processing, volume 1,674

pages 49–52. IEEE, 1995.675

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,676

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information677

processing systems, 30, 2017.678

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep679

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.680

[30] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,681

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are682

few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.683

[31] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-684

pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer685

language models. arXiv preprint arXiv:2205.01068, 2022.686

[32] Hasim Sak, Andrew Senior, Kanishka Rao, Ozan Irsoy, Alex Graves, Françoise Beaufays, and Johan687

Schalkwyk. Learning Acoustic Frame Labeling for Speech Recognition with Recurrent Neural688

Networks. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing689

(ICASSP), pages 4280–4284, 2015.690

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 21, 2023. ; https://doi.org/10.1101/2023.01.21.524489doi: bioRxiv preprint 

https://www.nature.com/articles/s41551-020-0542-9
https://www.microsoft.com/en-us/research/publication/srilm-at-sixteen-update-and-outlook/
https://www.microsoft.com/en-us/research/publication/srilm-at-sixteen-update-and-outlook/
https://www.microsoft.com/en-us/research/publication/srilm-at-sixteen-update-and-outlook/
https://doi.org/10.1101/2023.01.21.524489

	Experimental procedures
	Study participant
	Functional MRI speech lateralization
	Array placement targeting
	Neural signal processing
	Data collection rig
	Overview of data collection sessions
	Instructed delay tasks
	Voiced vs. silent speaking behavior
	Decoder evaluation sessions
	Sentence selection

	Neural representation of orofacial movements and speech in orofacial cortex
	Tuning heat maps
	Neural population tuning bar plots
	Naive Bayes classification
	Preserved articulatory representation of phonemes
	Electromagnetic articulography (EMA) representations
	Saliency vectors
	Similarity matrices
	EMA-Neural correlation
	Low-dimensional visualization of phoneme geometry

	Neural correlation across days

	Decoder performance metrics
	Phoneme transcription and labelling
	Error rates and words per minute

	RNN architecture
	Feature pre-processing and day-specific input layers
	Rolling z-scoring

	RNN training overview
	Connectionist temporal classification (CTC) loss
	Artificial noise
	Supervised training

	Offline performance sweeps
	Overview
	Effect of channel count on performance
	Amount of training data
	Language model vocabulary size sweep

	Language model
	Overview
	OpenWebText2 preprocessing
	Constructing the n-gram language model
	Inference with the n-gram language model
	Offline language model optimization


