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Abstract 27 

Late maturity alpha-amylase (LMA) is a wheat genetic defect causing the synthesis of high 28 

isoelectric point (pI) alpha-amylase in the aleurone as a result of a temperature shock during 29 

mid-grain development or prolonged cold throughout grain development leading to an 30 

unacceptable low falling numbers (FN) at harvest or during storage. High pI alpha-amylase is 31 

normally not synthesized until after maturity in seeds when they may sprout in response to rain 32 

or germinate following sowing the next season’s crop. Whilst the physiology is well 33 

understood, the biochemical mechanisms involved in grain LMA response remain unclear. We 34 
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have employed high-throughput proteomics to analyse thousands of wheat flours displaying a 35 

range of LMA values. We have applied an array of statistical analyses to select LMA-36 

responsive biomarkers and we have mined them using a suite of tools applicable to wheat 37 

proteins. To our knowledge, this is not only the first proteomics study tackling the wheat LMA 38 

issue, but also the largest plant-based proteomics study published to date. Logistics, 39 

technicalities, requirements, and bottlenecks of such an ambitious large-scale high-throughput 40 

proteomics experiment along with the challenges associated with big data analyses are 41 

discussed. We observed that stored LMA-affected grains activated their primary metabolisms 42 

such as glycolysis and gluconeogenesis, TCA cycle, along with DNA- and RNA binding 43 

mechanisms, as well as protein translation. This logically transitioned to protein folding 44 

activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via 45 

dimerisation and complexing. The secondary metabolism was also mobilised with the up-46 

regulation of phytohormones, chemical and defense responses. LMA further invoked cellular 47 

structures among which ribosomes, microtubules, and chromatin. Finally, and unsurprisingly, 48 

LMA expression greatly impacted grain starch and other carbohydrates with the up-regulation 49 

of alpha-gliadins and starch metabolism, whereas LMW glutenin, stachyose, sucrose, UDP-50 

galactose and UDP-glucose were down-regulated. This work demonstrates that proteomics 51 

deserves to be part of the wheat LMA molecular toolkit and should be  adopted by LMA 52 

scientists and breeders in the future. 53 
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 58 

Introduction  59 

Common bread wheat (Triticum aestivum L.) is the dominant crop in temperate regions, 60 

currently covering more than 220 million hectares worldwide, exceeding 749 million tons in 61 

production annually (1) and predicted to reach 835 million tons by 2030 (2). From the most 62 

primitive form of wheat 10,000 years ago in the Fertile Crescent to the species currently grown 63 

all over the world, desirable characteristics have been selected and improved upon by human 64 

societies (3). Hexaploid T. aestivum (AABBDD; 2n = 6x = 42) originated from two 65 

polyploidization events. The first event associated diploid Triticum urartu (AA; 2n = 2x = 14) 66 

which provided the A genome with the other yet unknown species from the Sitopsis section of 67 

Triticum genus which provided the B genome to produce the allotetraploid wild emmer wheat 68 
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(Triticum turgidum; AABB; 2n = 4x = 28). The second event associated T. turgidum with 69 

Aegilops tauschii (DD) (4, 5). The chromosomes from each closely related progenitor are 70 

grouped into homeologous groups. Because of the shared ancestry, genes may be common to 71 

all members of a homeologous group, albeit exhibiting high allelic variation and differences in 72 

gene count due gene duplication or silencing (2). Millenia of domestication have accrued an 73 

enormous genetic diversity in this species, with potentially more than 50,000 T. aestivum 74 

cultivars (6). Wheat owes its success to adaptability to temperate, Mediterranean, and 75 

subtropical climates, high yields, storability, but above all to the unique properties of doughs, 76 

which can be processed into a vast range of foods (3, 5). Wheat grains are not only a major 77 

source of carbohydrate in the form of starch, but also a great source of protein. The endosperm 78 

prolamins proteins comprise gliadins and glutenins; they are the main components of gluten 79 

and together confer unique viscoelastic and rheological properties to flour mixed with water. 80 

Indeed, hydrated gliadins largely determine the viscosity and extensibility of the dough, while 81 

the cohesive properties of hydrated glutenins essentially govern the strength and elasticity of 82 

the dough (5). Wheat seeds also contribute essential amino acids, minerals, vitamins, beneficial 83 

phytochemicals and dietary fibre components to the human diet. Beside nutritional benefits, 84 

different parts of the wheat plant confer advantageous medicinal uses such as anticancer 85 

properties of wheat bran and antimicrobial activities of wheat sprouts (7).   86 

Current breeding programs mainly aim at sustaining wheat production and quality with reduced 87 

agrochemical inputs, as well as developing new disease-resistant and stress-tolerant varieties 88 

with enhanced quality for specific end-uses (8). Wheat research and breeding must accelerate 89 

genetic gain to keep augmenting crop yield while maintaining or improving grain quality traits 90 

if the demands of the growing human population are to be met (9). A critical element in the 91 

equation was the sequencing and functional annotation of the genome.  Sequencing the 92 

hexaploid bread wheat genome was a gigantic achievement proportionate to its large size, 93 

abundance of repetitive DNA and the immense difficulty of discerning homoeologs from 94 

subgenomes A, B and D. Whilst this required the commitment of 20 countries collaborating as 95 

a consortium (International Wheat Genome Sequencing Consortium IWGSC) and a lot of 96 

strategizing from 2005 onward, including sequencing diploid and tetraploid ancestors, it was 97 

the advent of next generation sequencing technologies producing long but error-prone or 98 

accurate yet short reads that made this massive endeavour successful (10). A 13-year effort 99 

ensued, drafting T. aestivum genome in 2014 based on key breakthrough short read 100 

technologies by NRGene (4), and culminating in 2018 with the release of the long-awaited 101 

fully assembled and annotated 14.5 Gb reference genome, cataloguing 107,891 high-102 
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confidence genes along 21 chromosome-like sequence assemblies (IWGSC RefSeq v1.0) (9). 103 

This helped bridge the gap on wheat research relative to other cereal model species such as 104 

rice, sorghum, corn and barley whose genomes had been sequenced years ago, and propelled 105 

wheat post-genomics studies forward with a continuous increase in publications since 2011. 106 

Both the numbers of high confidence protein-coding genes from subgenomes A, B, and D and 107 

their composition were largely similar (9). Transcriptomics analyses of genes present in all 108 

three subgenomes not only showed comparable expression levels for 72.5% of them, especially 109 

those located in syntenic regions, but also unveiled the lack of significant subgenome 110 

expression dominance (11, 12). As valuable such an asset was, it did not capture the extent of 111 

the wheat genomic diversity as only one cultivar, Chinese Spring, was chosen as a template. In 112 

fact, no single genome assembly can be sufficient to model the wheat proteome due to the high 113 

allelic and gene copy number variability (2). This shortfall was addressed in 2020 when 15 114 

hexaploid wheat lines from different regions, growth habits and breeding programs were 115 

sequenced and annotated against IWGSC reference genome (13). Such pan-genomic 116 

comparative analysis outlined extensive structural rearrangements, introgressions from wild 117 

relatives and differences in gene content arising from complex breeding events to boost 118 

resistance to biotic and abiotic stresses, as well as grain yield and quality. Unfortunately, fasta 119 

sequences of annotated proteins are not publicly available for these 15 assemblies. A refined 120 

version of the reference genome using optical mapping and long sequence reads was recently 121 

released (IWGSC RefSeq v2.1) (14). With such worthwhile genomic resources in store, wheat 122 

can now be instated as a model for plant genetic research and employed to tackle complex 123 

biological questions on evolution, domestication, polyploidization, as well as genetic and 124 

epigenetic interaction between homoeologous genes and genomes (10). Moreover, genome 125 

annotations paves the way to investigate pathways and biochemical attributes behind bread 126 

wheat quality using transcriptomics (15) or proteomics (2) approaches.  127 

The industry will equally benefit from these latest scientific developments since processing 128 

companies, markets and food industries demand not only high yielding and resistant varieties, 129 

but also those with specific end-use qualities (1, 3). Market requirements have influenced wheat 130 

breeding as not to neglect essential protein content and quality. Because wheat is generally 131 

traded according to grain protein content and hardness, standards must be abided to by 132 

producers and distributors. Intact starch polymers provide the gelatinization and retrogradation 133 

needed for an acceptable product. Failure to meet receival standards for milling grades due to 134 

starch degradation measured in the wheat industry using the Hagberg–Perten falling number 135 

(FN) method (16) leads to grain discount and downgrading to animal feed, which incurs a loss 136 
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of profit (17). The low FN values manifests as a loss of viscosity upon mixing starch-degraded 137 

flour with water can alter appearance and texture of end-products (18), however, it might not 138 

deteriorate baking functionality (19) and could be used instead in alternate preparations (20). 139 

There are multiple causes of low FN symptomatic of starch degradation including preharvest 140 

sprouting, late maturity alpha-amylase (LMA), and variation in kernel starch and protein (21). 141 

LMA is a wheat genetic defect causing the synthesis of high isoelectric point (pI) alpha-142 

amylase in the aleurone as a result of a temperature shock during mid-grain development or 143 

prolonged cold throughout grain development leading to an unacceptable low FN at harvest or 144 

during storage (22-24). High pI alpha-amylase is normally not synthesized until after maturity 145 

in seeds when they may sprout in response to rain or germinate following sowing the next 146 

season’s crop (25).  147 

Four alpha-amylase isoforms have been identified to date in wheat. Several α-amylase 1 148 

(TaAMY1) loci have been localized on the long arm of group 6 chromosomes (26). In LMA-149 

prone wheat genotypes and under given temperatures, Amy-1 genes are transcribed in isolated 150 

cells or cell islands distributed throughout the aleurone system of grains with a 50 -60% 151 

moisture content before they have reached physiological maturity (25). Appearance of high pI 152 

a-amylase protein is preceded by a short-lived transient period of mRNA synthesis leading to 153 

a stable enzyme and retained through to seed maturity (22, 27). Multiple alpha-amylase 2 154 

(TaAMY2) loci are positioned on the long arm of the group 7 chromosomes and produce a low 155 

pI alpha-amylase in the pericarp of the developing grain (28). A single locus encodes alpha-156 

amylase 3 (TaAMY3) on group 5 chromosomes and is transcribed throughout the grain 157 

development suggesting a role in grain development and maturation (29). Similar to TaAMY2, 158 

TaAMY3 enzyme mainly appears during grain development in the pericarp and would be the 159 

predominant alpha-amylase enzyme throughout grain development (30). Despite its shorter 160 

length and elevated pI, TaAMY3 displays equal numbers of calcium-binding and active sites 161 

relative to the other three isoforms; however, the distance between key AA residues and the 162 

last two active site residues is shortened (31). Overexpressing TaAMY3 in the endosperm of 163 

developing grain to levels of up to 100-fold higher than the wild-type results in low FN similar 164 

to those seen in LMA-affected grains, yet has no detrimental effect neither on starch structure, 165 

flour composition and baking quality of bread (32), nor on noodle colour or firmness (33). A 166 

fourth isoform alpha-amylase 4 (TaAMY4) is also encoded by a single locus on group 5 167 

chromosomes and is co-expressed with TaAMY1 in LMA-affected grains (31). Comparison of 168 

the four isoforms revealed that they contain 385-439 AAs, with a molecular mass between 169 

45.4-48.3 kD, and a pI ranging from 5.5 to 8.6. All isoforms differ slightly in their 3-D protein 170 
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structure including the presence of additional sugar binding domains hinting to various 171 

enzymatic properties (31, 34). 172 

Although LMA expression correlates with measurable changes in both hormone content and 173 

transcript profiles during grain maturation, there are no obvious visual effects on grain 174 

appearance, development, or morphology (24), hence the need to perform assays to test for its 175 

activity (16). ELISA (35) and RT-qPCR (36) assays were developed to specifically target 176 

TaAMY1, the main enzyme involved in LMA. One limitation to the RT-qPCR method relates 177 

to the apparent short life of the high pI a-amylase mRNA (22). Commonly employed is the 178 

colorimetric Ceralpha assay (37) whereby the alpha-amylase activity is expressed in terms of 179 

Ceralpha units per gram of flour (u/g). A single unit corresponds to the amount of enzyme 180 

required to release 1 µM p-nitrophenyl in the presence of excess quantities of alpha-glucosidase 181 

in 1 min at 40°C (38). Such measurements have revealed that LMA is more prevalent than 182 

originally thought, with reports arising from North America, Australia, Japan, Canada, South 183 

Africa, China, Mexico, Germany, and the United Kingdom (39). The presence of LMA in 184 

breeding populations could be attributed to unexplained positive effects on grain 185 

production/quality or alternately simply manifest the lack of significant selection pressure 186 

against this trait (24). Both a cool temperature shock near physiological maturity or continuous 187 

cool maximum temperatures during grain development can induce LMA synthesis in wheat 188 

(23). The prediction of LMA occurrence during LMA dedicated field trial is impeded by the 189 

stochastic nature of LMA expression resulting from specific genetics, climatic conditions, and 190 

developmental stages.  191 

LMA has a genetic (G) component (alpha-amylase gene required), yet it is only expressed and 192 

enzymatically active under particular environmental (E) conditions (temperature shock) at a 193 

given developmental stage making it the product of a GxE interaction, which lends itself to 194 

post-genomic quantitative studies to shed some lights into the biological mechanisms 195 

underpinning LMA expression. Yet, to date, only one LMA-related transcriptomics study has 196 

been published and no proteomics work has been attempted  despite the potential this 197 

technology offers to help improve bread wheat quality (2). Using microarray technology, 198 

Barrero and colleagues reported that LMA resulted from very narrow and transitory peak of 199 

expression of genes encoding high-pI alpha-amylase during grain development (22). 200 

Furthermore, the LMA phenotype triggered elevated levels of gibberellins such as GA19 and 201 

much lower levels of auxin in the de-embryonated fraction of grains sampled shortly after the 202 

initiation of LMA synthesis. A recent report questions this hormonal response since, unlike 203 

alpha-amylase synthesis by aleurone during germination or following treatment with 204 
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exogenous GA, alpha-amylase synthesis by wheat aleurone during grain development appears 205 

to be independent of gibberellin (40). Even though on one hand genomics can catalogue genes 206 

present in a sample and possibly the biological context of their expression and on the other 207 

hand transcriptomics can validate expression levels, only proteomics can measure the actual 208 

protein abundance, record post-translational modification (PTM), as well as identify interacting 209 

proteins (2). We have developed a high-throughput proteomics method to rapidly profile T. 210 

aestivum grains and data mine their proteome (41). In the present study, we have applied our 211 

optimised procedure to a collection of in excess of 4,000 wheat cultivars and germplasm whose 212 

LMA content ranged from 0 to 8 u/g of flour. We have applied an array of statistical analyses 213 

to our big data to select LMA-responsive biomarkers and we have mined them using a suite of 214 

tools applicable to wheat proteins, yet not necessarily embraced by grain scientists. To our 215 

knowledge, this is not only the first proteomics study tackling the wheat LMA issue but also 216 

the largest plant-based proteomics study published to date. Logistics, technicalities, 217 

requirements, and bottlenecks of such an ambitious large-scale high-throughput proteomics 218 

experiment along with the challenges associated with big data analyses are discussed. 219 

 220 

2. Materials and Methods 221 

2.1. Wheat Cultivation, Sampling, and Storage 222 

The wheat collection used in this study represents a diverse range of cultivars and germplasm 223 

sourced through the Australian Grains Genebank and representing global genetic diversity. The 224 

wheat was grown in field trials at Horsham Victoria and harvested using a mechanical small-225 

plot harvester. The threshed grain was stored in seal containers at 20°C. The environmental 226 

conditions (rain and temperature) at the trial site were monitored throughout the growing 227 

season. No preharvest rainfall was recorded and therefore any α-amylase activity was non-228 

germinative but associated with LMA. 229 

The list of wheat samples is supplied in Supplementary Table S1. 230 

2.2. LMA assay 231 

The alpha-amylase assay was performed using the Megazyme assay according to the procedure 232 

reported by McCleary and Sheehan (42) on 3,773 grain samples (Supplementary Table S1). 233 

The distribution of LMA values was plotted as a histogram in Microsoft Excel. Various 234 

transformations were performed to achieve a normal distribution such as standardisation, log 235 

natural, log 2, inverse and standardisation of inversed values (data not shown). The transformed 236 

values were also plotted as histograms to check for gaussian distribution. 237 

2.3. Wheat Grain Processing for proteomics analyses 238 
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Sample preparation was optimised and thoroughly described (41); it is schematised in Figure 239 

1. All sample packages were mixed together in a box for randomisation and assigned a unique 240 

number as they were processed. QR codes on sample bags and tubes were scanned and 241 

consigned to the Excel spreadsheet using a handheld barcode scanner (model 1902 GHD-2, 242 

Honeywell Australia, Matraville, NSW). All microtubes were pre-labelled with unique 243 

numbers and sample IDs, both also consigned to a QR code, using a handheld label maker (PT-244 

E550WVP, Brother, Australia) controlled by the P-touch editor software (Brother, Australia) 245 

fitted with 12mm white laminated tape.  246 

The grains were ground in 50 mL jars containing two 8 mm and two 3 mm metal grinding balls 247 

using an automated tissue homogeniser and cell lyser (Geno/Grinder® 2010, SPEX 248 

SamplePrep, Metuchen, NJ, USA) and pulverised into fine flour twice for 2 min at 1,500 rpm 249 

with a 15 s break in between. A total of 600 jars were employed in a rotation. Dirty jars and 250 

balls were rinsed to remove excess flour and soaked in 1% decon 90 surfactant (Decon, Hove, 251 

UK) for 2 hours followed by a thorough wash in a dishwasher with RO water and left to air dry 252 

prior to being used again. A wheat quality control (QC) sample was prepared by sampling 50 253 

mg (±0.05 mg) from each of the 96 flour samples described in (41) and mixing them all 254 

thoroughly.  255 

A 20 mg (±0.2 mg) aliquot of flour was weighed in a 1.5 mL microtube and resuspended in 0.5 256 

mL Gnd-HCl buffer (6 M Guanidine hydrochloride, 0.1 M Bis-Tris, 10 mM DTT, 5.37 mM 257 

sodium citrate tribasic dihydrate) using a MS 1.5 sonicator probe (Ultrasonic Homogeniser 258 

SONOPULS mini 20, Bandelin, Berlin, Germany) for 30 s with 90% amplitude. The tubes 259 

were briefly vortexed (5 sec each, RAVM1 Ratek Vortex Mixers, Ratek, Boronia, VIC, 260 

Australia) and incubated for 60 min in a thermoblock (Digital Dry Bath/Block Heater, Thermo 261 

Scientific, Scoresby, VIC, Australia) at 60°C. The tubes were left to cool to room temperature 262 

for 5 min and 10 µL of 1 M iodoacetamide was added to each tube. The tubes were thoroughly 263 

mixed for 30 s using a rack vortex mixer (MTV1 Multi Tube Vortex Mixer, Ratek, Boronia, 264 

VIC, Australia) at high speed and left to incubate at room temperature in the dark for 30 min. 265 

The tubes were centrifuged using a benchtop centrifuge (5415D Digital Microfuge, Eppendorf, 266 

Macquarie Park, NSW, Australia) at 13,000 rpm for 15 min at room temperature and the 267 

supernatant was transferred into a fresh 1.5 mL microtube pre-labelled with the QR code.  268 

Two vials of trypsin/Lys-C mix (100µg, V5078, Promega, Alexandria, NSW, Australia) were 269 

dissolved into 1 mL of the resuspension buffer (50mM acetic acid) supplied by the 270 

manufacturer and kept on ice until use to digest 192 wheat samples at a time. Aliquots of 10 271 

µL aliquot of protein extracts were transferred into two 96-well plates (Strata 96-well collection 272 
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plate, 350 µL conical polypropylene, Phenomenex, Lane Cove, NSW, Australia), diluted 6 273 

times with 50 mM ammonium bicarbonate and digested with 5 µL aliquots of the trypsin/Lys-274 

C solution prepared earlier. Plates were sealed with silicone covers (pierceable sealing mats, 275 

96-square well, Phenomenex, Lane Cove, NSW, Australia) and vortexed for 30 s using a rack 276 

vortex mixer (MTV1 Multi Tube Vortex Mixer, Ratek, Boronia, VIC, Australia) at high speed. 277 

Plates were incubated at 37°C for 17 hours. Aliquots of 7 µL 10% formic acid (FA)/water were 278 

added to stop the digestion. An internal standard (IS, [Glu1]-fibrinopeptide B human, F3261, 279 

Sigma, Port Melbourne, VIC, Australia) was added at a final concentration of 1 µg.  280 

Protein digests were cleaned using 96-wells solid phase extraction (SPE) plates (Strata C18-E 281 

100 mg P/N 8E-S001-EGB, Phenomenex, Lane Cove, NSW, Australia) and fully evaporated 282 

as described in (Vincent, Bui et al. 2022). Peptide digests were reconstituted by adding 70 µL 283 

of 0.1% FA/water to each well. The digests were dissolved by shaking the plates for 50 min at 284 

medium speed using a rack vortex mixer (MTV1 Multi Tube Vortex Mixer, Ratek, Boronia, 285 

VIC, Australia) at room temperature. The collection plates were sealed with a silicone lid and 286 

stored at −80 °C until LC-MS analysis.  287 

2.4. LC-MS analyses 288 

All 4,061 wheat and QC samples were processed using the LC-MS method listed below. 289 

Liquid chromatography (LC) was optimised (41). Our chosen LC method applied 0.2 mL/min 290 

flow rate, 38 min LC run duration, 6% B for 2.5 min, 6–36% B gradient for 30.5 min, increased 291 

up to 98% B gradient for 0.1 min, 98% B for 5 min, drop down to 3% B in 0.1 min, 6% B for 292 

5 min. The LC system used was a Vanquish Flex Binary UHPLC System (Vanquish UHPLC+ 293 

focused, ThermoFisher Scientific, Scoresby, VIC, Australia). Mobile phase A was 0.1% 294 

FA/water and mobile phase B was 0.1% FA/acetonitrile (ACN). The needle wash solution was 295 

80% isopropanol (IPA)/water, and the rear seal wash solution was 10% IPA/water. The needle 296 

wash solution was 10% IPA/water. The needle was washed after each injection. The rack types 297 

were specified as DeepWell96 in the LC-MS method and the SamplerModule tab of Xcalibur 298 

Direct Control software (version 3.0.63, ThermoFisher Scientific, Scoresby, VIC, Australia) 299 

with a 29,000 µm injection depth. Blanks (0.1% FA/water) and QC were injected from two 10 300 

mL vials. Peptides were separated using a RP–LC column (bioZen 1.7 um Peptide XB-C18, 301 

100 Å, LC column 150 × 2.1 mm, Phenomenex, Lane Cove, NSW, Australia) using a 60°C 302 

oven temperature. The blank, IS and QC samples were injected every 48 samples for 303 

normalisation purposes. The IS was used to check for mass accuracy (<50ppm). The LC 304 

separation column was changed with a new one when peak resolution degraded (every 1000 305 

samples or so). 306 
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The UHPLC was online with an Orbitrap Velos hybrid ion trap–Orbitrap mass spectrometer 307 

(ThermoFisher Scientific, Scoresby, VIC, Australia) fitted with a heated electrospray 308 

ionisation (HESI) source. Every three weeks, the instrument was mass calibrated, and the 309 

source sweeping cone and the heated capillary were cleaned. HESI parameters were: needle at 310 

3.9 kV, 100 µA, sheath gas flow 20, auxiliary gas flow 7, sweep gas flow 2, source heated to 311 

200°C, capillary heated to 275°C, and S-Lens RF level 55%. Spectra were acquired using the 312 

full MS scan mode of the Fourier transform (FT) orbitrap mass analyser (FTMS) in positive 313 

ion mode at a resolution of 15,000 along a 300–2000 m/z mass window in profile mode with 3 314 

microscans.  315 

The sequence lists were prepared in advance in Excel as .cvs files and imported into Xcalibur 316 

data acquisition software (version 3.0.63); five sequences were needed as Xcalibur only 317 

accommodated a maximum of 1000 lines. Because samples had been randomised, 96-well 318 

plates were analysed consecutively. Throughout the LC-MS run, the RAW files were 319 

individually visualised using Xcalibur Qual Browser (version 3.0.63,). Files that failed to pass 320 

our check (loss of peak resolution, incomplete run, no signal, mass accuracy > 50 ppm, etc…) 321 

were rerun concomitantly to when LC-MS was interrupted for maintenance. 322 

2.5. LC-MS/MS analyses 323 

For protein identification, 400 random samples (10% samples, 4 plates) were used following 324 

the LC-MS1 analysis. LC, HESI and full scan FTMS parameters were as indicated above. MS2 325 

data was acquired using ITMS in positive mode as centroid values and applied various methods 326 

summarised below. In an attempt to maximise the number of peptides sequenced, several 327 

passes were performed with inclusion and exclusion lists, and various parameters. 328 

Pass 1: FTMS parameters were as specified above. Using the Nth order double play method, 329 

MS/MS spectra were acquired in data-dependent mode. Singly charged peptides were ignored. 330 

In the linear ion trap, the 10 most abundant peaks with charge state >2 and a minimum signal 331 

threshold of 3,000 were fragmented using collision-induced dissociation (CID) with a 332 

normalised collision energy of 35%, 0.25 activation Q, and activation time of 10 ms. The 333 

precursor isolation width was 2 m/z. Dynamic exclusion was activated, and peptides selected 334 

for fragmentation more than once within 30 s were excluded from selection for 180 s. No 335 

inclusion or exclusion list was used; however, a list of MS2 event was produced by exporting 336 

the “Scan Filters” of the RAW file in Xcalibur Qual Browser (ThermoFisher Scientific, 337 

Scoresby, VIC, Australia) and to be used in Pass 2 as an exclusion list containing 2,000 unique 338 

m/z values (maximum number allowed in Xcalibur). This method was run in duplicate. 339 
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Pass 2: Same method as Pass 1, except that the list of MS2 events generated in Pass 1 was 340 

uploaded in the Data Dependent Settings as a Reject Mass List. Like in Pass 1, a list of MS2 341 

event was produced by exporting the “Scan Filters” of the RAW file and to be used in Pass 3  342 

as an exclusion list containing 1,997 unique m/z values. This method was run in triplicate. 343 

Pass 3: Same method as Pass 2, except that the list of MS2 events generated in Pass 2 was 344 

uploaded in the Data Dependent Settings as a Reject Mass List. Like in Pass 2, a list of MS2 345 

event was produced by exporting the “Scan Filters” of the RAW file and to be used in Pass 4 346 

as an exclusion list containing 1,998 unique m/z values. This method was run in duplicate. 347 

Pass 4: Same method as Pass 3, except that the list of MS2 events generated in Pass 3 was 348 

uploaded in the Data Dependent Settings as a Reject Mass List. This was the last exclusion list 349 

used in this study. This method was run in duplicate. 350 

Pass 5: Same method as Pass 1, except that the threshold was dropped from 3,000 down to 500 351 

to perform MS2 on peptides of low abundance. This method was run in duplicate. 352 

Pass 6: Same method as Pass 1, except with a Parent Mass List (i.e. an inclusion list) made out 353 

of the 2,000 most abundant peptides. This method was run in duplicate. 354 

For the following methods, LC-MS1 reproducible peptides for which intensity exceeded 355 

0.0001 (19,956 peptides in total) were randomised along retention time (RT) and divided into 356 

10 lists (inclusion lists 1 to 10 containing <2,000 m/z values each).  357 

Pass 7: FTMS parameters were as specified above. Using the global MS/MSn method, MS/MS 358 

spectra were acquired in non-data dependent mode. ITMS parameters were: CID with a 359 

normalised collision energy of 35%, 0.25 activation Q, isolation width of 1. and activation time 360 

of 10 ms. Inclusion list 1 was uploaded in the inclusion global MS/MS mass list tab of the 361 

Global Non-Data Dependent Settings. All remaining nine parent lists were loaded to individual 362 

pass 7 methods. 363 

Pass 8: FTMS parameters were as specified above. ITMS parameters were: CID with a 364 

normalised collision energy of 35%, 0.25 activation Q, and activation time of 10 ms. The 365 

precursor isolation width was 2 m/z. The signal threshold was 500. Inclusion list 1 was 366 

uploaded in the parent mass list of the data-dependent settings. All remaining nine parent lists 367 

were loaded to individual pass 8 methods. 368 

Pass 9: Same method as Pass 8, except that the precursor isolation width was 1 m/z to increase 369 

the mass accuracy the m/z values targeted in the parent mass list.  All remaining nine parent 370 

lists were loaded to individual pass 9 methods. 371 
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Pass 10: Same method as Pass 8, except that the precursor isolation width was 0.5 m/z to further 372 

increase the mass accuracy the m/z values targeted in the parent mass list.  All remaining nine 373 

parent lists were loaded to individual pass 10 methods. 374 

Pass 11: Same method as Pass 8, except that the precursor isolation width was 0.2 m/z to target 375 

the parent masses as accurately as possible. All remaining nine parent lists were loaded to 376 

individual pass 11 methods. 377 

All the Xcalibur parameters of the various MS/MS methods can be found in Supplementary 378 

File SF1. Exclusion and inclusion lists can be found in Supplementary File SF2. A total of 63 379 

LC-MS2 files were thus acquired; they are available from the MassIVE repository 380 

((https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp, MSV000090572). 381 

2.6. Proteomics data processing 382 

The LC–MS RAW files of the 4,061 wheat samples along with the 86 QC and IS replicates 383 

(injected once every 48 what samples) were processed in the Refiner MS module of Genedata 384 

Expressionist® 13.0 (Genedata AG, Basel, Switzerland. To process all files in one batch, a 385 

stepwise workflow was devised (Supplementary Figure S1A-B).  386 

In the first step, a repetition activity was used (processing one file at a time) in which the 387 

consecutive sub-activities were performed: 1/ Load from File, 2/ RT Structure Removal with a 388 

minimum of 4 scans and m/z Structure Removal with a minimum of 8 points, 3/ Chromatogram 389 

Smoothing using a 3 scan RT window and a Moving Average estimator, 4/ RT Structure 390 

Removal with a minimum of 5 scans, and 5/ Save Snapshot to export all the processed files 391 

individually. The files were individually checked for inconsistencies that would invalidate the 392 

subsequent quantitative analyses. Inadequate files were removed from the dataset leaving 3,990 393 

reproducible wheat files. In the second step (Supplementary Figure S1C), the activities applied 394 

were: 1/ Load from File on the left for all the samples and on the right for the QCs, 2/ Adaptative 395 

Grid with 10 m/z scan counts, 3/ Average across Experiments (files) using the arithmetic mean, 396 

4/ Reference Grid joining both sides, 5/ Chromatogram RT Alignment applying a maximum 397 

RT shift of 50 scans (30 s), 6/ Chromatogram Peak Detection using a 12 scan Summation 398 

Window, Minimum Peak Size of 8 scans, Maximum Merge Distance of 5 points  and 399 

Boundaries Merge Strategy, 10% Gap/Peak ratio for Peak RT Splitting, 3 points for m/z 400 

Smoothing, Ascent-based Peak Detection with 3 points Isolation Threshold, Local Maximum 401 

Centre Computation and Maximum Curvature Boundary Determination, 7/ Chromatogram 402 

Isotope Clustering with 0.1 min RT Tolerance and 20 ppm m/z Tolerance, the Peptide Isotope 403 

Shaping method with Protonation Ionisation, Minimum Charge of 2 and Maximum Charge of 404 

10, Maximum Log-Ratio Distance of 0.8, and Variable Charge Dependency for Cluster Size 405 
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Restriction, 8/ Singleton Filter, 9/ Metadata Import, 10/ Save Snapshot, and 11/ Export Analyst 406 

of the Clusters using the Integrated Maximum Intensity.  407 

LC-MS processed quantitative data and metadata (sample description, LMA measurements, 408 

sample preparation technical steps, LC-MS sequence, instrument maintenance, etc…) were 409 

exported into Genedata Analyst (version 13, Genedata AG, Basel, Switzerland) for 410 

normalisation purposes (Supplementary Figure S1D). Data file normalisation with three 411 

consecutive steps was reported (41). In brief, first the quantities were normalised using the 412 

flour weights (1% accuracy) to account for sample preparation variation, second the IS cluster 413 

was used to normalise peptide abundances in order to take into consideration post-digestion 414 

technical variation, and third QCs and injection order were taken into account to correct 415 

instrument variation over time. The normalised quantitative data was exported as a CSV file 416 

for further processing. The CSV file contained 44,444 rows (peptide clusters) and 3,990 417 

columns (wheat samples). 418 

The effects of technical biases on the LC-MS spectra were quantified using ANOVA 419 

simultaneous component analysis (ASCA), a generalisation of ANOVA which quantifies the 420 

variation induced by fixed experimental factors on complex multivariate datasets (43). Firstly, 421 

the normalised data were imported into R where clusters containing 100% missing values were 422 

removed (n = 12,108), leaving 32,336 peptide clusters. The resulting dataset was a 3,990 x 423 

32,336 matrix with each row being an individual sample, and each column an LC-MS cluster. 424 

All remaining missing values were then imputed to a value zero. A separate metadata matrix 425 

(3990 x 4) which contained information on the technical conditions in the LC-MS run for each 426 

sample was compiled. These metadata were 1/ LC separation column – Categorical variable 427 

with 4 levels, 2/ Mass Calibration – Categorical variable with 6 levels, and 3/ Source heated 428 

capillary – categorical variable with 2 levels. A total of 3,090 samples had complete data (LC-429 

MS spectra and corresponding metadata). This complete dataset was then analysed using 430 

ASCA in MatLab v.R2017b (Mathworks, Natick, WA, USA) utilising the PLS Toolbox v. 431 

8.5.2 (Eigenvector Research Inc., Manson, WA, USA) to see which, if any, of the fixed 432 

experimental effects had a significant impact on the LC-MS cluster data. The statistical 433 

significance of the impact of each fixed experimental effect was estimated by calculating a p-434 

value from permutation testing with 100 iterations.  435 

The impact of experimental factors with a significant effect on LC-MS cluster data was then 436 

accounted for by correcting the data using multiple linear regression in R (44) as described in 437 

(45). The linear model was fitted as follows: 438 

Y ijkl = u + Columni + MassCalj + Capk + eijkl 439 
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Where y is the signal intensity of a given cluster, u is the overall mean, Column is the i th LC 440 

column (4 levels), MassCal is the jth Mass calibration (6 levels), Cap is k th Source heated 441 

capillary (2 levels), and eijkl is the random error term. The “corrected data” was a matrix of 442 

the residuals of the above model, which was run iteratively for each of the 32,336 peptide 443 

clusters. PCA plots were produced using R (44) and the gg2plot package. 444 

2.7. Protein identification 445 

The 63 RAW LC-MS2 files were processed in the Refiner MS module of Genedata 446 

Expressionist® 13.0 using a stepwise workflow similar the one described for LC-MS1 data, 447 

with the exception of additional activities pertaining to protein database search (Supplementary 448 

Figure S2A-C). 449 

RAW files were searched using Mascot program (version: 2.6.1, Matrix Science Ltd, London, 450 

UK) within Genedata Refiner. The wheat database searched was retrieved from three 451 

independent sources. The first source was UniProtKB 452 

(https://www.uniprot.org/uniprot/?query=triticum%20aestivum&fil=organism%3A%22Tritic453 

um+aestivum+%28Wheat%29+%5B4565%5D%22&sort=score) with 142,969 T. aestivum 454 

protein sequences (accessed on 26 February 2020, (41)). The second source was the 455 

EnsemblPlants repository hosting the T. aestivum genome initially sequenced by the 456 

International Wheat Genome Sequencing Consortium (IWGSC (9)) and containing 143,241 457 

Traes AA sequences (http://ftp.ensemblgenomes.org/pub/plants/release-458 

52/fasta/triticum_aestivum/pep/). A contaminant database was also retrieved (common 459 

Repository of Adventitious Proteins (cRAP); ftp://ftp.thegpm.org/fasta/cRAP). All the FASTA 460 

files were combined and redundant sequences removed by following the GalaxyP tutorial 461 

“Protein FASTA Database Handling” (https://training.galaxyproject.org/training-462 

material/topics/proteomics/tutorials/database-handling/tutorial.html) (46, 47). The decoy 463 

database was created by reversing all the sequences and appending them using the GalaxyP 464 

tool “DecoyDatabase” (https://github.com/galaxyproteomics). Our Galaxy workflow is 465 

available in Supplementary File SF1. The final FASTA file was imported and indexed in 466 

Mascot. It contained 286,482 protein sequences and 1,647,476,761 AA residues; its longest 467 

sequence bore 5,359 residues.  468 

All MS2 files were searched in one batch using Mascot Daemon (version 2.6.1, Matrix Science 469 

Ltd, London, UK) and the following parameters: MS/MS ions search, Mascot generic data 470 

format, ESI-TRAP instrument, trypsin enzyme, 9 maximum missed cleavages, 471 

carbamidomethyl (C) as fixed modification, guanidyl (K) and oxidation (M) as variable 472 

modifications, quantitation none, monoisotopic mass, 2+, 3+ and 4+ peptide charge, 10 ppm 473 
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peptide tolerance, 0.5 Da MS/MS tolerance, and error tolerant search (Supplementary Figure 474 

S2D). Results were exported as .csv files into Excel. 475 

The 32,336 peptide clusters from the corrected dataset produced by the LC-MS analyses were 476 

matched in R (44) (version 4.1.0-foss-2021a) to the 29,908 peptide clusters generated by the 477 

LC-MS/MS analyses using their respective RT, m/z and mass values with ±0.1 accuracy, and 478 

then linked to the Mascot identification results. The identification results of the peptide clusters 479 

whose RT shifted by more than 1 min were not included. 480 

 481 

2.8. Statistical analyses of proteomics data 482 

Out of the 4,061 grains samples processed in this work, 3,990 yielded reproducible LC-MS 483 

data for 32,336 peptide clusters. The full quantitative data is available from the MassIVE 484 

repository ((https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp, MSV000090572). The 485 

corrected dataset with Mascot identification results were imported into Genedata Analyst 486 

(version 13, Genedata AG, Basel, Switzerland). LMA measurements were obtained on 3,773 487 

(out of 3,990) wheat samples. Whilst LMA trait characterised the wheat samples, we also 488 

wanted to analyse it along with the peptides to facilitate biomarker discovery. To this end, we 489 

used the inverse function to normally distribute the LMA values (Inv(LMA)) and transposed 490 

them as a row to incorporate them into the LC-MS dataset under the label “Cluster_AAA” 491 

along with all the other 32,336 peptides, thus bringing the total number of clusters to 32,337. 492 

This “Cluster_AAA” row was used in the subsequence statistical analyses to isolate peptides 493 

displaying profiles similar to that of LMA.  494 

2.8.1. Principal Component Analysis (PCA)  495 

A PCA was performed on the full dataset (3,990 samples x 32,336 peptides) in R using the 496 

prcomp() function of the stats package. The eigenvalues were plotted using the screeplot() 497 

function.  498 

2.8.2. Checking the distribution of LC-MS1 data  499 

To redistribute data normally, the corrected dataset rows (peptides and Cluster_AAA) were z-500 

transformed and plotted as a histogram in R. The hist() function was used to plot the corrected 501 

and z-transformed dataset as histograms in R (version 4.1.0-foss-2021a). One-sample 502 

Kolmogorov-Smirnov tests were applied to check the normality of the distribution of both 503 

corrected and z-transformed datasets using the ks.test() function and “pnorm” argument in R. 504 

All the subsequent statistical analyses were performed on the z-transformed dataset. 505 

2.8.3. Subsampling wheat samples to eliminate the bias towards low LMA values 506 
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LMA values spanned 0 to 8 u/g with the vast majority (95%) below 0.2 u/g (which corresponds 507 

to FN 300 s (18)); therefore, the LMA distribution was greatly skewed towards low LMA 508 

values. To eliminate this bias, a subset of wheat samples was selected as follows: all the 509 

samples bearing a LMA ≥ 0.17 were selected (467 samples in total) and an equivalent number 510 

of samples (467) with LMA < 0.17 were randomly selected among the 3,306 remaining wheat 511 

samples. This subset of 934 wheat samples was no longer skewed towards low LMA values 512 

and is referred as “unbiased samples” hereafter. 513 

2.8.4. Partial Least Squares (PLS) to subset LMA-responding peptides  514 

In Genedata Analyst, a PLS 2-D plot was created using the 934 unbiased samples and all the 515 

32,346 peptides resolved in this study. The parameters were: LMA as a response, 3 latent 516 

factors, 10% valid values, and row mean imputation. Both score and loading plots were 517 

exported along with the variable importance in projection (VIP) scores. The higher the score, 518 

the greater the contribution of the peptide to the PLS and the closer to LMA response. These 519 

VIP scores were used to select meaningful subsets of peptides for the subsequent statistical 520 

analyses. 521 

2.8.5. Univariate Partial Least Square (PLS) Regression to impute LMA missing values 522 

The missing LMA values were predicted using a univariate PLS regression model in Genedata 523 

Analyst. First a model was developed using the 934 unbiased samples and 2,996 peptides with 524 

PLS high VIP scores (> 1.5). Second, among the 934 wheat samples, 179 were randomly 525 

chosen so that LMA evenly spanned 0 to 5 and those LMA values were erased. Several PLSR 526 

models were tested to accurately predict erased LMA values. The most accurate model applied 527 

the following parameters: LMA as a response, 20% valid values, and 20 latent factors. The 528 

model was then applied to the 217 missing LMA values against the 934 unbiased wheat 529 

samples.  530 

2.8.6. Self-Organising Maps (SOM) Clustering 531 

In Genedata Analyst, a SOM was created using the 934 unbiased samples and 7,254 peptides 532 

with VIP scores above 1 (including Cluster_AAA) and the following parameters: 6 rows, 8 533 

columns, positive correlation distance, 50 maximum iterations, and 10% valid values.  534 

2.8.7. K-Means  535 

In Genedata Analyst, a k-means was performed using the 934 unbiased samples and 7,254 536 

peptides with VIP scores above 1 (including Cluster_AAA) and the following parameters: 537 

k=20, positive correlation distance, mean centroid calculation, 10% valid values, and 50 538 

maximum iterations. 539 

2.8.8. Divisive Hierarchical Clustering Analysis (HCA) and agglomerative HCA 540 
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An HCA was produced in Genedata Analyst a divisive HCA using the 934 unbiased samples 541 

and 7,254 peptides with VIP scores above 1 (including Cluster_AAA) and the following 542 

parameters: clustering peptides, tree with tile plot, positive correlation distance, Ward linkage, 543 

10% valid values, k-means cluster profile, and split by size. The outcome of this analysis 544 

enabled us to sort the peptides based on their accumulation patterns in wheat samples.  545 

Still in Genedata Analyst, we also performed an agglomerative HCA using the all the 934 546 

unbiased samples and 532 LMA-related biomarkers (including Cluster_AAA) and the 547 

following parameters: clustering samples, tree, positive correlation distance, Ward linkage, 548 

50% valid values. The outcome of this analysis allowed us to sort the grain samples according 549 

to their LC-MS molecular similarity which was then exploited in a heat map. 550 

2.8.9. Correlation  551 

An annotation correlation was performed in Genedata Analyst using the full dataset including 552 

Cluster_AAA (3,990 samples x 32,337 peptides) against standardised LMA values. This 553 

produced R squared (R2) values. 554 

2.8.10. Simple linear mixed regression  555 

The full dataset including Cluster_AAA (3,990 samples x 32,337 peptides) was used to run a 556 

linear regression in Genedata Analyst with one explanatory variable using the following model: 557 

y = Inv(LMA) + ε, in which Inv(LMA) is the normal inverse function of LMA measurements. 558 

The false discovery rates were computed according to the Benjamini-Hochberg estimates as q-559 

values.  560 

2.8.11. Peptide expression profiles along 2 or 8 LMA bins 561 

Our data matrix of 3,990 columns by 32,337 rows contained 129,024,630 quantities which 562 

posed representation challenges. We adopted a data reduction strategy involving binning the 563 

samples into 8 or 2 arbitrary bins based on their LMA values in order to produce simpler more 564 

legible graphs for individual peptide profiling. 565 

In the first instance, we sorted all 3,990 wheat samples based on an increasing order of LMA 566 

values, and then split them into 8 arbitrary bins of 499 samples each. The last bin 567 

(0.17132<LMA<7.95442) contained all the 266 unsound grains (LMA > 0.2). 568 

In the second instance and using the 934 unbiased wheat samples, we created 2 bins based on 569 

LMA value threshold of 0.17. The bin containing 467 samples with LMA < 0.17 only 570 

comprised sound grains. All the 266 unsound grains (LMA > 0.2) were comprised in the bin 571 

containing 467 samples with LMA ≥ 0.17.  572 

The peptide quantities were then averaged per bin to produce mean expression profiles along 573 

2 or 8 bins. 574 
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2.8.12. T test with effect size and volcano plot 575 

Using the unbiased biomarker dataset (934 samples x 532 peptides including Cluster_AAA), a 576 

t test was performed with the LMA threshold of 0.17 as a factor (see sections 2.8.3 and 2.9.1) 577 

and the following parameters: boostrap with 10 repeats and balanced permutations, effect size 578 

based on group means, and 90% valid values. This produced a volcano plot.  579 

 580 

2.9. Proteomics data mining 581 

The LC-MS2 experiments followed by Mascot search produced identification results for 5,414 582 

peptide clusters which matched 8,044 protein accessions. These identification results were 583 

mined using the databases and tools described below. Resulting outputs were consigned to 584 

Supplementary Tables S3. 585 

2.9.1. UniProt database and Gene Ontology (GO) 586 

The list of 8,044 UniProt accessions identified in this study was uploaded in the Retrieve/ID 587 

mapping tool of UniProt (https://www.uniprot.org/uploadlists/ accessed on May 2022) (48) to 588 

retrieve protein descriptions, FASTA sequences, GO terms, and TRAES accession IDs. Out of 589 

the 8,044 UniProt accessions, 5,960 UniProt accessions corresponded to 6,622 TRAES 590 

accessions. TRAES accessions were needed to interrogate ShinyGO and BreadwheatCyc 591 

databases (described below).  592 

2.9.2. Kyoto Encyclopedia of Genes and Genomes (KEGG) database and pathway maps 593 

The 8,044 FASTA sequences were uploaded into the Assign KO tool 594 

(https://www.kegg.jp/kegg/mapper/assign_ko.html accessed on May 2022) (49) by specifying 595 

the Poaceae family to retrieve KEGG ORTHOLOGY (KO) identifiers. KO identifiers were 596 

then mapped using the KEGG Mapper Reconstruct tool 597 

(https://www.genome.jp/kegg/mapper/reconstruct.html accessed on May 2022) to list 598 

pathways, Brites and modules involving identified proteins. 599 

2.9.3. ShinyGO, Functional Category enrichment and chromosomal positions 600 

The list of 6,622 TRAES accessions was uploaded into ShinyGO 601 

(http://bioinformatics.sdstate.edu/go/) (50) to generate Functional Category enrichments, dot 602 

plots, tree, networks, as well as retrieve chromosomal positions. Positions were obtained for 603 

4,571 TRAES accessions which were used in Circos plots (detailed below).  604 

2.9.4. Pathway Tools, BreadwheatCyc and perturbed pathways 605 

The list of 6,622 TRAES accessions along with quantitative data along 8 bins was uploaded 606 

into the Pathway Tools software (51) and run online via the BreadwheatCyc database 607 

(https://pmn.plantcyc.org/organism-summary?object=BREADWHEAT accessed on June 608 
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2022) via the Plant Metabolic Network server (52) using the Omics Dashboard 609 

(https://pmn.plantcyc.org/dashboard/dashboard-intro.shtml accessed on June 2022), the 610 

Cellular Overview tools 611 

(https://pmn.plantcyc.org/overviewsWeb/celOv.shtml?orgid=BREADWHEAT accessed on 612 

June 2022) to generate Pathway Perturbation Scores (PPS).  613 

The Chrome extension Veed.io was used to create a film capturing the Cellular Overview 614 

animation. 615 

2.9.5. Circos and chromosomal position 616 

The 4,571 TRAES accessions whose chromosomal positions were known from ShinyGO were 617 

charted along a Circos plot invented by Krzywinski and colleagues (53) and recently wrapped 618 

in the Galaxy platform by Rasche and colleagues  (https://usegalaxy.eu/?tool_id=circos) (46, 619 

54, 55). The details of the various layers are indicated in the figure’s legend.  620 

2.9.6. R and Power BI Desktop 621 

Most identified peptide matched several UniProt accessions which corresponded to several 622 

TRAES IDs, and GO terms. This produced wide tables. In R (version 4.1.0-foss-2021a) (44), 623 

wide tables were converted to long tables using the pivot_longer() function from tidyr package. 624 

Long tables were merged using the merge() function of the R base package using peptide 625 

Cluster IDs as unique references. 626 

Wheat sample metadata, peptide metadata and quantitative dataset and identities for the 627 

biomarkers were imported into Microsoft Power BI Desktop (Version: 2.106.883.0 64-bit June 628 

2022) and linked via the Clusters names to produce dashboards using multiple visuals (word 629 

clouds, tree maps, histograms, scatterplots, waterfall plots, pie charts, violin plots and ribbon 630 

charts). 631 

 632 

3. Results and Discussion 633 

3.1. Resources for scientific studies on wheat  634 

3.1.1. Wheat resources 635 

A total 858 wheat genotypes, sourced from all over the world, grown over 8 years since 2012 636 

and stored in optimal conditions amounting to 4,061 grain samples were analysed in this work 637 

(Supplementary Table S1). Because LMA measurements occurred simultaneously to the 638 

proteomics analyses in 2019, we did not consider storage time for the statistics. We also did 639 

not statistically test for varietal differences which was outside the focus of this study. 640 

 641 
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3.1.2. High-throughput proteomics workflow to efficiently process and analyse thousands of 642 

samples 643 

We have developed a high-throughput proteomics LC-MS method (41) that was applied to 644 

4,061 wheat grain samples following the workflow described in Figure 1. The technical aspects 645 

pertaining to sample preparation/tracking and data acquisition steps that ensured a high-646 

throughput workflow are available in Supplementary File SF1. Overall, the LC-MS continuous 647 

run lasted for 143 days (20.4 weeks or 4.5 months) and included regular system maintenance 648 

(mass calibration, source cleaning, HPLC column swapping). A total of 4,370 RAW files were 649 

acquired. A Gantt chart illustrates the timeline of the workflow steps along with data 650 

accumulation (Figure 2). 651 

The wet experiment bottlenecks were resolved where possible as explained in (41). Most time 652 

was spent grinding, transferring, weighing and extracting the samples as there was no option 653 

to greatly up-scale those steps (Figure 2). The workflow became much faster when 96-well 654 

plates were introduced (from digestion step onward) allowing for high throughput 655 

multipipetting and multidispensing activities, as well as minimising the footprint of sample 656 

freezer storage. Although steps were sequential, they could overlap with two experimenters 657 

operating in a staggered fashion from one lab workstation to the next.  658 

LC-MS1 acquisition started when enough plates were ready to ensure continuous instrument 659 

run while samples processing was still happening. Data acquisition was completed 18 days 660 

after the last wheat sample was fully processed, demonstrating minimum time loss (Figure 2). 661 

The Genedata Refiner workflow used to process LC-MS1 data was previously optimised (41) 662 

(Supplementary Figure S1 described in section 3.1.2); its first step was applied to batches of 663 

~200 LC-MS1 files. The time limiting factor was the server computing ability.  664 

Overall, all 4,061 wheat samples were processed and analysed (from receiving the samples to 665 

processing the LC-MS1 data) in 334 days (~11 months). Purchasing all required consumable 666 

ahead, keeping track of the samples, good logistics by setting up working stations for each wet 667 

lab step, as well as overlapping activities across experimenters guaranteed efficient time 668 

management. Stowing samples in the freezer in-between steps allowed to safely interrupt the 669 

sample preparation procedure to accommodate equipment/experimenter downtime without 670 

compromising the quality of the samples processed so far.  671 

The subsequent steps had to follow one another. LC-MS2 acquisition necessitated LC-MS1 672 

data processing to be finished in order to produce parent mass lists and consequently had to be 673 

performed post-hoc. Whilst LC-MS2 acquisition was rapid (2 weeks), its processing took 674 

longer (3 months) because it required another Genedata Refiner workflow (Supplementary 675 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.525108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

OFFICIAL 

OFFICIAL 

Figure S2 described in section 3.1.3), a more recent non redundant database with decoy 676 

sequences, testing several Mascot parameters (data not shown), and linking LC-MS2 clusters 677 

to LC-MS1 clusters (data not shown).  678 

The final bottleneck in the workflow pertained to statistical analyses and data mining (8 679 

months) which necessitated trying different statistical methods with multiple trial and error 680 

stages working out optimal parameters, testing and using different data mining tools which 681 

required training and a lot of strategising on how best to present big data. Running such large 682 

datasets proved computationally taxing, necessitated extensive dwell times; it often ran out of 683 

memory and triggered server crashes. 684 

One way to increase the throughput and therefore shrink the timeline would be to use an 685 

automated sample preparation station. A robot (Bravo Automated Liquid Handling Platform 686 

from Agilent) was used to automate peptide clean-up and phosphopeptide enrichment from 687 

wheat and maize vegetative samples (56). We could not find any other high throughput method 688 

in wheat or cereals. 689 

 690 

3.1.2. LC-MS1 quantitative data processing, normalisation, correction and standardisation to 691 

remove technical biases 692 

The Genedata Refiner workflow described in (41) was applied to 4,147 LC-MS1 files (4,061 693 

wheat + 86 QCs; Supplementary Figure S1). Step 1 covered noise subtraction nodes that could 694 

be run on individual data file. It was performed throughout LC-MS1 acquisition activity on 695 

weekly batches (~230 files) to optimise server dwell time. Step 1 helped assess data 696 

reproducibility and non-reproducible files (71 samples) were omitted from the remainder of 697 

the processing, leaving 3,990 wheat and 86 QC data files. Step 2 encapsulated all alignment, 698 

peak detection and quantitation, as well as isotope clustering and singleton filtering activities. 699 

This step had to be performed on all 4,076 reproducible data files simultaneously and therefore 700 

could only be attempted when the LC-MS1 run was finalised. The experiment metadata 701 

captured in Excel was associated to the quantitative data and exported to Genedata Analyst for 702 

data normalisation purpose. 703 

The data was normalised as described in (41) following three steps: using flour weights, IS 704 

cluster and QC replicates along with LC-MS injection order (Figure 3).  705 

Raw data displayed a clear sample grouping based on injection order during the LC-MS1 run 706 

(Figure 3A) and mirrored the instrument maintenance events (mass calibration, etc…). Two 707 

large groups appeared that could not be explained by any experimental steps. Normalising 708 

using flour weight accuracy of 1% helped creating tighter wheat sample groups with four 709 
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outliers, and isolated QCs (Figure 3B). The two larger groups of samples were less distinct. 710 

This first normalisation step did not significantly impact the peptide distribution as can be seen 711 

on the PCA loading plots (Figure S3G,H). Normalising against the IS shifted the sample groups 712 

around but did not combine or homogenise them (Figure 3C). The two larger sample groups 713 

observed in panels A-B became indistinguishable in panel C. This normalisation step also 714 

affected peptide distribution assuming a more oval shape on the loading plot (Figure S3I). The 715 

final normalisation step further scattered the samples more widely across the PCA plot and 716 

accentuated the technical variation gradually expanding overtime during the instrument run 717 

(Figure 3D). Yet at the peptide level, this last normalisation activity further shrunk the grouping 718 

assuming a more circular distribution with less outliers (Figure S3J). The benefits of 719 

normalisation were discussed before (41) with respect to precise sample weights mandated in 720 

metabolomics (57), spiking IS post-digestion to alleviate for sample to sample variations (58, 721 

59), and QCs to account for batch differences over time and minimise cross run effects (59-722 

61). In their ground-breaking study to assess and ameliorate the reproducibility of large-scale 723 

proteomics experiments, Poulos and colleagues have highlighted the decrease over time in 724 

mass analyser sensitivity in-between cleaning events and how technical replicates, such as 725 

QCs, help remove unwanted variation (62). Despite all the normalisation steps applied to our 726 

data, not all technical biases could be removed, thus necessitating further data correction. 727 

The fully normalised dataset of 3,990 wheat samples and 32,336 reproducible peptides was 728 

exported as a CSV file and imported into R to run a linear model fitting the technical factors 729 

that bore the greatest variance and were associated with LC-MS maintenance. The 730 

experimental variation was successfully eradicated as illustrated by PCA (Figure 3E,K). The 731 

results showed that while instrument mass calibration had a much bigger effect, all three 732 

technical factors had a significant effect (P < 0.05 based on permutation testing with 100 733 

iterations) on the spectral data (data not shown). This correction method was initially developed 734 

in a metabolomics study to account for uncontrollable environmental effects (45). Quantitative 735 

geneticists routinely exploit linear models to measure the influence of systematic 736 

environmental effects (fixed effects) which impact phenotypic variation and unscramble 737 

genetic from non-genetic factors (63). To our knowledge, this is the first time such correction 738 

method was applied to proteomics data.  739 

The final data transformation step involved a z-transformation (scaling and centring) to level 740 

out extreme quantities and facilitate the comparison and clustering of peptide profiles during 741 

statistical analyses. Finding linear combinations of predictors based on how much variation 742 

they explain is achieved by centring to a mean of 0 and scaling to a standard deviation of 1 743 
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(64). Such mathematical transformation is common practice in post-genomics expression 744 

studies, and MS-proteomics is no exception (65, 66). In our study, z-transformation radically 745 

modified the data from an homogenous plot to defined groups stretching in four main directions 746 

(Figure 3F,L), which could not be attributed to any of our metadata. Peptide quantities that 747 

originally ranged from 0 to 1 x 107 ultimately spanned a mere -22 to 63 scale.  748 

 749 

3.1.3. A non-redundant wheat database to annotate LC-MS2 results and identify post-750 

translational modifications (PTMs) 751 

A T. aestivum database was created by combining all the protein sequences publicly available 752 

from UniProt and IWGSC EnsemblPlants repositories. Because protein annotations from the 753 

IWGSC (hereafter called TRAES sequences) referred to UniProt, we used the latter as a 754 

template to eliminate AA sequence redundancy. This completely removed all IWGSC TRAES 755 

sequences (data not shown) from our merged data file indicating they were all included in the 756 

UniProt repository. The database was reversed to create a decoy database which was then 757 

concatenated to the latter. This way, not only a single file has to be interrogated in Mascot 758 

system, but also false positives are only recorded when a match from the decoy sequences 759 

exceeds any match from the target sequences (67, 68). All LC-MS2 files were processed in 760 

Genedata Refiner and searched using the Mascot algorithm with an error tolerant search to 761 

maximise PTM discovery. The search outputs were merged into a single file and exported to 762 

Excel (Supplementary Figure S2E).  763 

Our strategy to quickly identify as many peptides as possible was to multiply the number of 764 

data-dependent LC-MS2 methods rather than multiplying the number of samples analysed. We 765 

thus pooled 10% of the wheat samples randomly chosen into one tube and subjected this pooled 766 

sample to 11 methods (passes) with replicates, varied ITMS parameters and 10 unique parent 767 

lists of 2,000 ions each. Each method had a drastic impact of the selection of precursor ion, 768 

with some areas being thoroughly samples whilst others were ignored (Supplementary Figure 769 

S3).  770 

A total of 63 LC-MS2 files were thus obtained. The LC-MS2 methods varied in their 771 

efficiencies, identifying as few as 104 peptides (pass 7) up to 11,662 peptides (pass 8), 772 

irrespective of the number of MS2 events (Supplementary Figure S4). 773 

Passes 8-10 yielded by far the largest identity counts across all 10 parent lists, even though 774 

they did not feature the highest MS2 event counts (Supplementary Figure S4). Key MS 775 

parameters to maximise peptide identifications were the inclusion of the parent lists into the 776 

data-dependent settings (passes 8-11) albeit not the at the global level (pass 7) as well as 777 
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allowing for wider mass tolerance window during precursor selection. The widest tolerance (2 778 

m/z) achieved the greatest counts (pass 8, Supplementary Figure S4). Overall, a total of 779 

315,934 peptides were identified, comprising only 6,550 unique peptides which matched 780 

10,437 unique wheat proteins, 277 decoy accessions, and 3 contaminant proteins. The huge 781 

peptide redundancy was explained by the fact that a single pooled sample (from 400 individual 782 

samples) was repeatedly analysed using various LC-MS2 methods. Pooling digests erased 783 

sample-to-sample variation. More protein identities could have been realised with a diverse 784 

sample set subject to all the methods developed here but that would have extended the data 785 

acquisition, analysis and mining by many more months. A greater proteome coverage was 786 

achieved in our method optimisation study yielding 13,165 identified peptides even though far 787 

less samples were analysed because two extraction protocols and three orthogonal digestions 788 

were applied which produced more diverse LC-MS profiles (41). An array of strategies can be 789 

employed to increase the proteome coverage of plant seeds, including depletion and pre -790 

fractionation strategies as well as exploring different organs, developmental stages, and cell 791 

cultures (69, 70). However, these additional experimental steps are time-consuming, labour-792 

intensive, as well as costly thus unsuitable for large-scale high-throughput experiments like 793 

ours. Our strategy was first to rapidly and reproducibly quantify digested peptides from 794 

thousands of wheat samples using a label-free LC-MS approach and apply robust statistical 795 

analyses to detect potential trait-related biomarkers, and second to quickly identify as many 796 

peptides as possible using LC-MS2. Large-scale proteomics studies have been applied to 797 

human (71); to our knowledge, this is the largest plant proteomics study carried out to date.  798 

In this study, we opted for an error-tolerant search which accrued a plethora of modifications 799 

(Supplementary Table S2). A total of 21,486 carbamidomethylations of Cys residues were 800 

identified as fixed modifications. This was expected to occur during our denaturing protein 801 

extraction procedure. The most prevalent dynamic modifications were non-specific cleavages 802 

(5,480), followed by N-terminal ammonia losses (907), and conversion from N-terminal Gln 803 

to pyroGlu (815). During the digestion process involving trypsin, proteomics studies have often 804 

reported the formation of semi-tryptic and non-specific peptides besides cleavages after Arg or 805 

Lys residues (72). Therefore, some of our non-specific peptides could have resulted from the 806 

digestion step, but we cannot rule out that non-tryptic peptides were naturally present on our 807 

stored grains, resulting from residual enzymatic activities. Ammonia losses are neutral losses 808 

commonly triggered by CID upon creating b and y ions, and can be detected by high resolution 809 

mass analysers such as FTMS instruments (73). C-terminal Arg or Lys of tryptic peptides often 810 

leads to abundant y ions with ammonia loss (74) and as well as b ions specific enough to detect 811 
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the presence of Gln, Asn, His, Lys, and Arg residues (73). PyroGlu formation is a common 812 

cyclization side reaction of Glu and/or Gln residues in peptides and proteins that occurs when 813 

those residue are located at the N-terminus and under slightly acidic conditions (75), such as 814 

our experimental conditions therefore this PTM could also be a process artifact. Other frequent 815 

PTMs in our study were N-terminal ethylation (265 occurences), deamidation (147 816 

occurrences), guanidylation (141 occurrences), the latter of which could have been triggered 817 

during protein resuspension in Guanidine-HCl solution as discussed in (41), as well as 818 

oxidation of Met (100 occurrences) (Supplementary Table S2). Numerous PTMs have been 819 

identified in plants (69) and cereals in particular (76), including barley (77), and wheat (2, 78, 820 

79). Deamidations of glutamine residues in glutenins have been reported (5), along with C-821 

terminal loss of tyrosine potentially facilitating protein sorting during seed maturation (2). 822 

Starch content and starch-related proteins are prominent in wheat grain; PTMs involved in 823 

starch quality have been reviewed (80). Our study lists numerous potential PTMs; this warrants 824 

more experiments to validate them and decipher their role in LMA response. Future proteomics 825 

experiments should endeavour to explore the relationship between structure and functionality 826 

of gluten proteoforms arising from key PTMs in response to LMA phenotype. 827 

 828 

3.1.4. Linking LC-MS1 and LC-MS2 data to annotate quantities with identities 829 

LC-MS1 files resolved 32,336 reproducible clusters which had to be matched to 29,908 clusters 830 

from LC-MS2 data files. Using tolerances of 20 ppm for m/z and mass and 1 min for retention 831 

times, 16,874 (52%) peptide clusters were matched across both datasets, of which 5,414 bore 832 

peptide identification results. These identified peptides matched 8,044 T. aestivum protein 833 

accessions. Our experimental results are summarised in Table 1; number of identified peptide 834 

numbers aside, they compared well with our previous findings during method optimisation 835 

(41).  836 

  837 
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Table 1: Experiment summary. 838 

Items quantified Occurrences 

Number of wheat genotypes 858 

Number of wheat samples 4061 

Sampling years 8 (2012-2019) 

Trait (LMA) 1 

Digestion types 1 

Number of reproducible LC-MS1 files 3990 

Number of LC-MS1 peaks 137669 

Number of reproducible LC-MS1 clusters 32336 

Cluster size range 2 - 10 

Cluster charge range 2 - 7 

Cluster m/z range 300.13 - 1921.55 

Cluster mass range 598.26 - 6527.06 

Base peak range 120 - 520083 

Number of clusters with peptide identity 5414 

Number of identified accessions 8044 

Range of peptides/accession 1 - 64 

Range of accessions/peptide 1 - 212 

 839 

Our strategy was to consider all 8,044 protein hits identified from the 5,414 sequenced peptides 840 

irrespective of their homology. We thus turned the 5,414 x 212 wide table into a long table 841 

containing 32,347 rows of peptides and replicated the quantitative data accordingly for 842 

statistical analysis purposes. The list of all identities is captured in Supplementary Table S3. 843 

Up to 64 unique peptides matched a particular protein with an average of 4 peptides per hit 844 

(Supplementary Figure S5A-B).  845 

A given peptide matched to up to 212 protein accessions with an average of 6 hits per peptide 846 

(Cluster_29452, VLQQLNPCK, Supplementary Figure S5C-D). This mirrored the high 847 

frequency of homoeologous proteins in the hexaploid wheat samples expressed from three 848 

similar subgenomes, A, B and D (81). Another compounding factor was that wheat protein 849 

accessions were created from genomic sequences, resulting in multiple accessions bearing 850 

identical sequences but arising from different gene accessions (2). This created on one hand 851 

protein accessions labelled as “fragments” despite having a complete coding region and, on the 852 

other hand, other accessions lacking this tag despite having an incomplete coding region 853 

(Supplementary Table S3). Finally, the vast number of PTMs identified here also contributed 854 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.525108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

27 
 

OFFICIAL 

OFFICIAL 

to boosting hits against a particular peptide AA sequence. The most dominant wheat grain 855 

proteins are storage proteins such as gliadins and glutenins, which featured prominently in our 856 

proteome (Supplementary Figure S5E, Supplementary Table S3), despite the fact that their low 857 

Lys/Arg content makes them less prone to trypsin digestion (2). Other major proteins 858 

comprised histones, beta-D-glucosidases, and ubiquitin. This list of identified proteins 859 

compared well with our previous methodological work (41).Other recent studies on mature 860 

wheat seed proteome using gel-based or gel-free technologies also published comparable list 861 

of identities (82-84).  862 

 863 

3.2. Application to a wheat industry problem: Late maturity alpha-amylase (LMA) 864 

Wheat marketing for milling grades dictates that below a certain FN value, grains are no longer 865 

suitable for human diet and must then be discounted causing significant financial losses to the 866 

suppliers (17). FN assesses starch degradation resulting from LMA activity which can be 867 

assayed in flour samples using the Ceralpha method (37) for instance. Even though LMA trait 868 

is a genetic defect, it persists in wheat germplasm implying that it is either not selected against 869 

or alternatively imparts unbeknown beneficial attributes to LMA-prone varieties (24). By 870 

unravelling the genetic, biochemical, and physiological mechanisms that lead to LMA 871 

expression, scientists strive to understand and eliminate LMA from wheat breeding programs 872 

(39). Surprisingly, post-genomics is not one of the strategies adopted by researchers to close 873 

the biological knowledge gap, with only one transcriptomics study registered so far (22). Our 874 

study constitutes the first proteomics experiment performed to decipher the mechanisms 875 

involved. Machine learning was performed on the complete dataset to distinguish LMA-876 

susceptible from non-susceptible wheat genotypes without success (data not shown). Results 877 

from statistics and data mining are described and discussed below.  878 

3.2.1. Getting the quantitative data ready for statistical analyses 879 

3.2.1.1. Assessing the normality of LC-MS1 datasets 880 

To assess whether our LC-MS1 datasets following the correction and z-transformation steps 881 

was normally distributed, we plotted the data as histogram and boxplot. We further performed 882 

the nonparametric one-sample Kolmogorov-Smirnov (K-S) test (85) well suited to analysing 883 

big data (86). Both histogram and boxplot of the corrected data were asymmetrical with most 884 

values being on the low range (Supplementary Figure 6A-B), which revealed that this dataset 885 

was not normally distributed. This was confirmed by the high K-S statistics (D) of 0.41 and a 886 

very low p-value (< 2.2 e16). 887 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.525108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

28 
 

OFFICIAL 

OFFICIAL 

Using the z-transformed data, the histogram and boxplot were more symmetrical 888 

(Supplementary Figure 6C-D). Whilst the K-S statistics (D) was reduced to 0.27, it was still 889 

too high to conclude to normality. Even though we did not achieve a gaussian distribution by 890 

standardising the data, we managed to make it more even which improved statistical analyses 891 

for biomarker discovery.  892 

 893 

3.2.1.2. PLS of unbiased samples to select a meaningful set of LMA-responsive peptides  894 

Analysing such a large dataset (3,990 columns x 32,337 rows) was computationally taxing, 895 

necessitating extensive dwell times to finalise statistical analyses, and often triggering 896 

Genedata sever crashes due to out-of-memory failures despite recent upgrades. Consequently, 897 

we devised a strategy to select a subset of relevant peptides via the supervised cluster method 898 

PLS. Using the 934 unbiased samples and all 32,337 peptides (including Cluster_AAA), we 899 

executed a PLS analysis with LMA trait as a response. The score plot of the first two 900 

components showed that the PLS successfully pulled out the grain samples exhibiting high 901 

LMA activities (Supplementary Figure S7A).  902 

The corresponding loading plot allowed us to categorise peptides according to th eir 903 

contribution to the PLS model via their Variable Importance in Projection (VIP) scores. The 904 

most-contributing peptides (i.e. exhibiting the highest VIP score) were located in the plot area 905 

equivalent to that of high LMA samples (Supplementary Figure S7B).  906 

VIP scores indicated the importance of each variable (peptide) in the projection used in the 907 

PLS model. Peptide VIP scores were calculated as weighted sums of the squared correlations 908 

between the PLS components and the original peptides; weights were inferred from the 909 

percentage variation explained by the PLS component in the model (87). VIP scores greater 910 

than 0.5, 1.0, and 1.5 segregated 14,440 (45%), 7,252 (22%), and 2,996 (9%) peptides, 911 

respectively. By setting up three VIP score thresholds of increasing stringency, we thus created 912 

three subsets of peptides of decreasing sizes that could be used in more computationally 913 

demanding processes.  914 

 915 

3.2.1.3. Wheat subsampling to create an unbiased dataset and transforming LMA trait profile 916 

to achieve normal distribution 917 

In the 3,990 reproducible wheat samples, 3,773 featured LMA measurements that ranged from 918 

0.04 to 7.95 u/g (Supplementary Table S1), albeit mostly on the low scale with 88% of the 919 

values recording less than 0.2 u/g (Figure 4A), which corresponds to the receival threshold of 920 

FN 300 s (18, 23).  921 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.22.525108doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.22.525108
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 
 

OFFICIAL 

OFFICIAL 

Our range far exceeded those reported earlier, spanning either 0.08 to 0.67 u/g across 33 spring 922 

wheat cultivars grown across 18 field sites (88), 0.023 to 1.417 u/g over 39 varieties grown 923 

under controlled and triggering LMA-conditions (23), or 0.002 to 1.977 u/g among 196 924 

genotypes from three experimental locations (19). We chose a threshold of 0.17 as a tipping 925 

point to delineate between grain samples displaying either low (3,306 samples) or high (467 926 

samples) alpha-amylase activity. The LMA profiles below and above this arbitrary value 927 

showed a slow gradual increase of enzyme activity up to 3.2 units where datapoints became 928 

more scattered (Figure 4B-C). Because the LMA distribution was significantly skewed towards 929 

low values and to restore balance to the trait profile, we retained all the wheat samples with an 930 

LMA above 0.17 (467 samples) and randomly selected 467 samples (out of 3,306) for which 931 

LMA fell below this threshold. The LMA profile of this unbiased subset of 934 samples (Figure 932 

4D) was very similar to the complete distribution (Figure 4A).  933 

When LMA measurements were plotted as a histogram, it confirmed the skewness towards low 934 

activities and highlighted that most values fell between 0.068 and 0.203 u/g (Figure 4E). A 935 

natural logarithm transformation did not make the data gaussian (Figure 4F); nor did other 936 

logarithmic bases (data not shown). A binary logarithm function was used to transform LMA 937 

data to ascertain the significant negative correlation with Falling Numbers (FN) (19, 23). FNs 938 

inferior to 300 sec, which is the commercial trade cut-off manifesting significant alpha-amylase 939 

activity, corresponded to log2 LMA value of -3 (23). In our work, an inverse function normally 940 

distributed LMA values, albeit as a slightly asymmetrical bell curve (Figure 4G). This 941 

INV(LMA) data was further standardised (centred around zero and scaled down to comparable 942 

variance) when it was incorporated at the peptide level which did not compromise its gaussian 943 

distribution (Figure 4H). 944 

 945 

3.2.1.4. Predicting LMA missing values 946 

Out of the 3,990 reproducibly processed grain samples, 217 were not measured for LMA. We 947 

employed a univariate PLS regression strategy to impute them. Using our 2,996 peptide set 948 

with the highest VIP scores (see section 3.2.1.2), we tested various PLS regression models 949 

(data not shown) using a random selection of 179 samples out of the 934 unbiased sample set 950 

which ranged from 0.5 to 4.9. This testing set was analysed against the remainder of  the 951 

unbiased set (755 samples). The best regression model utilised 20% of the valid values and 20 952 

latent factors; it predicted the 179 tested values with 93% accuracy (Supplementary Figure 953 

S8A). 954 
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This model was not accurate for small LMA values with a R2 of 6%, even imputing negative 955 

values (Supplementary Figure S8B). Yet, it was 98% accurate for LMA measurements greater 956 

than 0.17 u/g (Supplementary Figure S8C). It was more critical to faithfully estimate high LMA 957 

values given that it was the criteria for grain soundness; our PLS regression (PLSR) model 958 

fulfilled this. We applied the model’s parameters to predict the 217 LMA missing values 959 

against the unbiased set of 934 samples; the imputations ranged from -0.29 to 0.63 u/g 960 

(Supplementary Figure S8D). The negative values were converted to zeros. LMA predictions 961 

are reported in Supplementary Table S1.  962 

The simplest method for imputing missing data relied on single value imputation, such as the 963 

mean (89), whist more complex methods were based on regression (90) or K-Nearest 964 

Neighbours (KNN) which estimates a missing data point using distances calculated from its 965 

most similar neighbours (91). Invented in 1966 (92), PLS regression has become very popular 966 

notably in the fields of bioinformatics (93) and spectroscopy (94). Nengsih and colleagues 967 

demonstrated that while computation times increased with the proportion of missing data, up 968 

to 30% missing values could be imputed using PLSR (95). In our study, LMA was the single 969 

trait provided to analyse LC-MS1 data. Not imputing missing LMA measurements meant that 970 

5.4% (217/3,990 samples) of our dataset would have been useless, therefore it was a 971 

worthwhile effort. Along with PLSR, we have also tested multivariate linear regression (MLR), 972 

univariate polynomial regression and KNN imputation by varying several parameters including 973 

valid value percentage, number of latent factors, number of parameters (for MLR), as well as 974 

distance computation and number of K (for KNN), albeit without success (data not shown).  975 

 976 

3.2.1.5. Incorporating LMA trait at the peptide level for biomarker discovery 977 

Because we only had a single trait to make biological sense of our big data, we introduced all 978 

3,990 LMA values (including the predicted values) which characterised wheat samples at the 979 

peptide level by transposing it and renaming “Cluster_AAA”. This added one extra row to our 980 

dataset of 32,336 peptides to make a final matrix of 3,990 columns (wheat samples) and 32,337 981 

rows. This way, we could apply statistical analyses that would group peptides that behaved 982 

similarly or conversely to our LMA trait thereby facilitating biomarker discovery. To permit 983 

the comparison between LMA and grain peptides, we first needed to normalise and standardise 984 

LMA values, as detailed above in section 3.2.1.3, prior to their transposition.  985 

Having LMA incorporated with wheat grain peptides (as Cluster_AAA) further helped us 986 

assess the relevance of the statistical tests carried out by validating anticipated results. For 987 

instance, when performing a correlation analysis with LMA, as expected Cluster_AAA 988 
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achieved a positive correlation of 1. In another instance, when executing a one factor linear 989 

model with LMA as a covariate, Cluster_AAA was confirmed to yield a q-value of 0. Finally, 990 

when performing multivariate clustering analyses (HCA, SOM, k-means), this strategy assisted 991 

us in finding peptides with profiles similar to that of Cluster_AAA. 992 

 993 

3.2.2. Statistical analyses to discover LMA-responsive biomarkers 994 

Big data produced by gene expression studies are too large to analyse by mere sorting in 995 

spreadsheets or plotting on few charts. Multivariate data analyses such as clustering and 996 

correlating methods are required to make sense of the data (96, 97). Yet, as helpful these 997 

multivariate analyses are, they are not as statistically robust as uni- or bivariate analyses (96) 998 

to test the relationship between peptides and LMA. We thus performed a few uni-, bi- and 999 

multivariate analyses to explore our large dataset against our single LMA trait. 1000 

3.2.2.1. Unsupervised multivariate clustering analyses (SOM, k-means, HCA) for pattern 1001 

recognition and peptide profiling of LMA phenotype 1002 

As multivariate analyses handle integral datasets and iteratively impute many statistics, they 1003 

incur heavy computational costs. Suffering multiple Genedata server crashes, we could only 1004 

apply such methods to a subset of our data. Using the unbiased set of 934 wheat samples and 1005 

the list of 7,254 peptides with LMA-responsive VIP scores above 1 (see section 3.2.1.2), we 1006 

have performed three unsupervised clustering analyses, SOM, k-means and divisive HCA. 1007 

Because we had incorporated the LMA trait at the peptide level as Cluster_AAA, we could 1008 

look for groups resulting from these analyses which assembled peptides behaving similarly to 1009 

Cluster_AAA. Clustering or cluster analysis corresponds to a set of learning methods grouping 1010 

observations that share similar characteristics. Within a set of related values of the variables 1011 

analysed, these methods find feature patterns which generate clusters that group similar 1012 

observations (98). Unsupervised clustering analyses are commonly employed in gene 1013 

expression studies (97). 1014 

In our experiment, the SOM model yielded 48 groups comprising 8 to 555 peptides with mean 1015 

distances from 0.09 to 0.80. The group including Cluster_AAA (4,3) contained 26 biomarker 1016 

peptides; its distance from the group centre ranged from 0.00-0.83 with a mean of 0.38 and a 1017 

SD of 0.31 (Supplementary Table S4). Cluster_AAA stood 0.70 from the group centre. While 1018 

SOM has been widely used in exploratory data analyses in diverse fields (99), it has only been 1019 

applied to proteomics in the context of animal cell culture (100), GPI anchor prediction (101), 1020 

transmembrane helix predictor (102) protein conformation (103) or protein-protein interaction 1021 

(104), never in plant grains.  1022 
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We tested different number of neighbours (k) and observed that the larger k the greater the 1023 

variance explained by the k-means model (data not shown). Applying the biggest k possible 1024 

(20) produced a model that overall explained 71.1% of the variance. Group 14 with a variance 1025 

of 35% contained 93 biomarker peptides spanning a distance of 0.12 to 0.94, including 1026 

Cluster_AAA whose distance was 0.79 (Supplementary Table S4). K-means clustering was 1027 

well adopted by the proteomics community to group gene products of similar profiles, notably 1028 

in plants such as bamboo (105), nightshade (106), or grape (107), but to our knowledge not in 1029 

wheat. In developing corn grains, coordinated protein expression associated with different 1030 

functional categories was revealed by a k-means clustering analysis (108). 1031 

We successfully applied an agglomerative 2-D HCA to cluster both samples and peptides (data 1032 

not shown) but failed to select individual groups to retain the one hosting Cluster_AAA. 1033 

Instead, we performed a divisive HCA which ordered the peptides into clusters that could then 1034 

be chosen individually. Cluster_AAA belonged to a group of 33 biomarker peptides (order 1035 

1915-1947, Supplementary Table S4). We could not find in the literature any proteomics study 1036 

which resorted to divisive HCA; conversely, classic (agglomerative) HCA created in 1998 1037 

(109) and its extension 2-D HCA (110) are widely used by the community, including wheat 1038 

scientists (111-115). Using agglomerative HCA on 2-DE-resolved proteins, Tasleem-Tahir 1039 

distinguished nine expression profiles throughout wheat grain growth , from anthesis to 1040 

maturity (115). In their gel-free iTRAQ analysis of early developing wheat endosperms (from 1041 

7-28 days post-anthesis (DPA)), Ma and colleagues employed HCA to delineate starch 1042 

processes (113). Similarly, five major protein expression patterns across developmental stages 1043 

4-12 DPA were outlined using HCA (116). HCA was also employed to explore the change in 1044 

expression of embryo and endorsperm proteomes during wheat seed germination (117). In their 1045 

comprehensive proteomics and proteogenomics study of key developmental stages of 24 wheat 1046 

organs and tissues, Duncan and colleagues showed that HCA faithfully assigned samples to 1047 

three main clusters corresponding to first photosynthetic tissues (leaves, bracts and other green 1048 

organs), second non-photosynthetic, developmental and reproductive organs (pollen, stem, 1049 

anther, coleoptiles, roots, immature spike), and third grain (developmental series, embryo, 1050 

pericarp, endosperm) (111). More recently, Cao and colleagues discriminated differentially 1051 

expressed proteins in two wheat lines using HCA (82). All these reports demonstrate that 1052 

genotype-, sample- and tissue-specificity of protein profiles can be highlighted using 1053 

unsupervised clustering tools. 1054 

3.2.2.2. Bivariate analyses (correlation and linear regression) to consider each individual 1055 

peptide against LMA  1056 
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As bivariate analyses handle only two variables at a time, they are not computationally taxing. 1057 

We were thus able to apply such methods on our complete dataset comprising 3,990 samples 1058 

and 32,337 peptides (including Cluster_AAA). Due to the quantitative nature of LMA trait, we 1059 

could not perform an analysis of variance (ANOVA). We have thus carried out two bivariates 1060 

analyses, a correlation and a linear model. Because we had incorporated the LMA trait at the 1061 

peptide level as Cluster_AAA, we could assess the validity of our analyses based on the outputs 1062 

produced by the latter.  1063 

In our experiment, correlation coefficients ranged from -0.07 to 0.3, except for Cluster_AAA 1064 

which as expected attained absolute positive correlation with a R2 of 1 (Supplementary Table 1065 

S4). Our coefficients do not show a strong relationship between peptide profiles and LMA. We 1066 

arbitrarily chose an absolute value of 0.15 to retain any LMA-associated peptide which 1067 

excluded all negatively-correlated features but included 28 positively-correlated biomarkers. 1068 

Correlation analyses are frequently employed in proteomics to unravel proteins underpinning 1069 

particular sample types, conditions or traits (118), and wheat is no exception (119-127). 1070 

Concordance of transcript and protein profiles in wheat grain were assessed via correlation 1071 

coefficients, which increased with seed maturity (120, 126). Grain yield and grain protein 1072 

content were observed to be negatively correlated, yet both also positively correlated to 1073 

nitrogen availability in a wheat genotype-specific manner (128). 1074 

The q-value for the linear regression slope indicates whether changes in the explanatory 1075 

variable are significantly linked with changes in the outcome. In our work, we looked for 1076 

significant relationships between the 32,337 peptides (including Cluster_AAA) and the inverse 1077 

function of LMA which assumed normality as a covariate factor. Q-values ranged from 6 x 10-1078 

8 to 1, with the exception of Cluster_AAA which exhibited a q-value of 0 as expected 1079 

(Supplementary Table S4). We arbitrarily applied a 5% q-value threshold to consider 494 1080 

biomarker peptides whose change in expression profiles were significantly linked to variation 1081 

in LMA measurements. Linear mixed models are regularly employed by the proteomics 1082 

community for biomarker discovery approaches (129-132), but as far as we know not on wheat 1083 

grains.  1084 

 1085 

3.2.2.3. Compiling all statistical analyses to generate a list of candidate peptides and binning 1086 

LMA values for biomarker profiling and t test 1087 

In this study, LMA-responsive biomarkers were selected based on the statistical analyses 1088 

presented above and had to fulfill at least one of the following criterium: belong to SOM group 1089 

(4,3), be included in k-means group 14, bear a divisive HCA order from 1915 to 194, exhibit a 1090 
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correlation R2 greater than 15%, or display a q-value inferior to 5%. This created a list of 531 1091 

biomarkers, most of which fulfilled several statistical criteria and all of them exhibiting a VIP 1092 

score for the LMA-responsive PLS greater than 1 (Supplementary Table S4).  1093 

When attempting to chart the biomarker profiles, we were faced with the challenge of plotting 1094 

3,990 datapoints per gene product which ruled out typical line graphs, scatter plots, histograms 1095 

or utilising oversized illegible heat maps to represent all data points simultaneously (data not 1096 

shown). We consequently adopted a data reduction strategy involving binning the samples into 1097 

8 or 2 arbitrary bins based on their LMA values.  1098 

The 8-bin profiling comprised all 3,990 samples sorted by increasing LMA measurements and 1099 

partitioned into 8 groups of equal sample size (~499 samples/bin, Supplementary Table S1). 1100 

Plotting the average of each bin as a line chart faithfully maintained the pattern of LMA 1101 

measurement observed in Figure 4A with a flat profile for the first 7 bins followed by a steep 1102 

increase in the last bin (Supplementary Figure S9A).  1103 

This profiling strategy was not used for statistical purpose but proved useful during data mining 1104 

of all identified 5,514 peptides upon using tools that offered quantitative charting such as 1105 

Pathway Tools and Circos (see below). 1106 

The 2-bin profiling only featured the 934 unbiased samples separated according to an arbitrary 1107 

0.17 u/g threshold (Supplementary Table S1). Plotting the average of each bin as a histogram 1108 

clearly displayed a marked quantitative increased from bin 1 to bin 2 (Supplementary Figure 1109 

S9B). This simple representation tool allowed us to categorise the 531 biomarkers as being 1110 

either up-regulated when bin 2 was taller than bin 1 denoting an accumulation in samples with 1111 

LMA>0.17 u/g or down-regulated when bin 1 was taller than bin 2 denoting an accumulation 1112 

in samples with LMA<0.17 u/g.  1113 

This oversimplified binning scheme allowed us to perform one last statistical analysis  on the 1114 

532 (including Cluster_AAA) biomarkers using the unbiased set of 934 samples, namely a 1115 

Student’s t test with an effect size. We generated a volcano plot based on the p-values and the 1116 

directed effect size (i.e. fold change) which clearly delineated the biomarkers according to their 1117 

accumulation in bin 1 or 2 (Figure 5A).  1118 

More LMA-related biomarkers were up-regulated (325) than down-regulated (206) according 1119 

to our 2-bin profiling. This was explained by the fact that all our statistical analyses, bar the 1120 

PLS and linear model, favoured peptides behaving similarly to Cluster_AAA a proxy to LMA 1121 

actual measurements. Some exemplary patterns are displayed as histograms with error bars and 1122 

compared to that of Cluster_AAA to expose the assortment of up- and down regulation profiles 1123 

(Figure 5B). Because the 2-bin representation was very reductive, we also present a heat map 1124 
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of all the intensities of the 532 biomarkers (including Cluster_AAA) sorted by directed effect 1125 

size (i.e. fold change) in each of 934 unbiased wheat samples organised by HCA cluster order 1126 

(Figure 5C). No strong differential expression trend appeared apart from a horizontal gradient 1127 

of colours from left to right denoting the change from up- to down-regulation of the biomarkers 1128 

and a swap in colour vertically suggesting that samples were efficiently classified by the HCA. 1129 

Despite merely featuring a small subset (934x532) of our global dataset (3,990x32,337), the 1130 

heat map looked noisy and remained very hard to interpret due to an excessive number of data 1131 

points (469,888 quantities) and the lack of visually striking pattern. This further reinforced the 1132 

need to devise simple representations tools such as a Volcano plot when reporting results on 1133 

big data.  1134 

To our knowledge, volcano plots have not been widely adopted by the proteomics community, 1135 

let alone wheat grain scientists with only one report so far (84), unlike heat maps which are 1136 

frequently reported in proteomics publications (133). In our work, we sorted the 531 biomarker 1137 

peptides according to their 2-bin fold changes and wheat sample based on their LC-MS 1138 

molecular similarity (Figure 5C). Zang and colleagues have adopted heat maps to profile the 1139 

proteins underpinning seed tissue organogenesis (134). 1140 

 1141 

3.2.3. Mining biomarkers to make biological sense of the data 1142 

Among the 531 biomarkers that exhibited significance levels in response to LMA 1143 

measurements, 390 were identified by LC-MS2 and matched 3,798 protein accessions 1144 

(Supplementary Table S5). This list included the most abundant and homoeologous proteins 1145 

such as the prominent storage and starch-related proteins, gliadins, glutenins, avenins, and 1146 

starch synthases as well as constitutive proteins such as histones, protein disulfide isomerases, 1147 

and tubulin, or else stress-related proteins such as heat shock and 14-3-3 proteins.  We did not 1148 

identify any peptides belonging to LMA in this study, likely because we did not target high 1149 

LMA samples. To visualise our peptides of interest in a biological context, we have undertaken 1150 

a series of data mining steps. We have also made use of our 8- or 2-bins profiling strategy when 1151 

using quantitative mapping tools. The 2-bin profiling is hereafter referred to it as up- or down-1152 

regulated gene products. The data mining tools presented below suited wheat proteins. Many 1153 

other in silico tools are freely available online which we encourage the community to employ; 1154 

however, we would not recommend using String or PlantReactome which in our hands yielded 1155 

very little results. 1156 

3.2.3.1 Protein descriptions and GO terms from UniProtKB 1157 
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Out of the 8,044 identities, 7,939 could be mapped in UniProtKB which flagged 6,457 GOMF 1158 

terms, 3,769 GOCC terms, 3,991 GOBP terms, as well as 1,385 unique protein names 1159 

(Supplementary Table S3). Power BI proved very useful to mine identified peptides and 1160 

simultaneously plot some of their features as histogram, scatterplot, pie chart, violin plot, tree 1161 

map and word cloud into a single dashboard (Supplementary Figure S10A) and then drill down 1162 

on some aspects, for instance inhibitor (Supplementary Figure S10B) or deamidation 1163 

(Supplementary Figure S10C). 1164 

The protein names were turned into word clouds and the most frequent GO terms for each 1165 

category were presented as tree maps. Standing out from the cloud were the words “protein”, 1166 

“containing”, “domain”, “subunit”, “glutenin”, “LMW”, “molecular”, and “weight”, 1167 

confirming the preponderance of LMW glutenin subunits and domain-containing proteins such 1168 

as AAI domain-containing protein homoeologous to alpha-amylase inhibitors (Supplementary 1169 

Figure S11B-D). Also predominant among identified proteins were the words “alpha” and 1170 

“gliadin”. Word cloud is a text processing method that offers an efficient and compact 1171 

visualization of the most frequent terms in a text (135), yet it seldom appears in the scientific 1172 

literature. It has been cleverly used to categorise moonlighting proteins (136) or depict the 1173 

history of GOMF terms (137), but not in the wheat proteome. Representing our 390 identified 1174 

LMA-responsive biomarkers as word clouds revealed that up-regulated peptides belonged 1175 

predominantly to alpha-gliadins whereas down-regulated peptides mostly matched LMW 1176 

glutenins (Figure 6A,F).  1177 

Rather than adopting a pie chart or histogram to plot the GO terms of all identified proteins as 1178 

commonly reported, we opted for tree maps which were initially implemented for microarray 1179 

data (138, 139) and later integrated into the web server REVIGO (140) used during our wheat 1180 

method optimisation (41). For all 8,044 identified proteins in the present study, we generated 1181 

the tree maps for all three GO classes using Power BI as it afforded more display options than 1182 

REVIGO. The most frequent biological processes (GOBP) were “polysaccharide catabolic 1183 

process” (5,643), “starch biosynthetic process” (3,688), “nucleosome assembly” (3,626), 1184 

“protein folding” (2,950) and “protein refolding” (2,499) (Supplementary Figure S11E). 1185 

“Cytoplasm” (11,888), “extracellular region” (9,964), and nucleus” (7,478)  were the most 1186 

common cellular components (GOCC); recording 3,687 entries, the amyloplast was listed in 1187 

6th position (Supplementary Figure S11F). With 37,308 occurrences, the “nutrient reservoir 1188 

activity” was by far the most recurrent molecular function (GOMF), followed by “ATP 1189 

binding” (7,012) and “serine-type endopeptidase inhibitor activity” (5,811) (Supplementary 1190 

Figure S11G). The list of dominant proteins and associated GO terms in this work pointed to a 1191 
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storage organ such as the wheat seed and confirmed what has previously been reported in wheat 1192 

grain (41, 126, 134, 141-143). All GO terms against the 390 identified LMA-related biomarkers 1193 

are listed in Supplementary Table S5. The 207 up-regulated biomarkers came mostly from 1194 

cytoplasmic and chloroplastic proteins involved in protein translation and folding, with ATP 1195 

binding activities (Figure 6B). The 183 down-regulated peptides predominantly belonged to 1196 

cytoplasmic and cytosolic proteins acting in protein folding and TCA cycle and bearing ATP 1197 

binding activity (Figure 6G).  1198 

 1199 

3.2.3.2. KEGG to retrieve Pathway, Brite and Module names 1200 

From the 8,044 fasta sequences, 677 unique KEGG Orthologs (KOs) could be retrieved which 1201 

mapped to 327 KEGG pathways, 41 brites and 117 modules and annotated 11,888 peptides 1202 

(Supplementary Table S3). Identified proteins belonged to 179 (26%) KEGG metabolic 1203 

pathways with 109 (16%) KOs involved in the biosynthesis of secondary metabolites 1204 

Supplementary Figure S12A), including sugar-related enzymes such as amylases, sucrose 1205 

synthases, hexokinases, fructokinase sand beta-glucosidases.  1206 

Half of KOs pointed to enzymes (336), then exosomes (71, 10%), ribosomes (62, 9%), and 1207 

chromosome-associated proteins (60, 9%) (Supplementary Figure S12B). Primary 1208 

metabolisms such as glycolysis, TCA cycle and gluconeogenesis were prominent KEGG 1209 

modules (Supplementary Figure S12C). Unexpectedly, 62 KOs (exclusively ribosomal 1210 

proteins) were associated with “Coronavirus disease – COVID 19” pathway. Similarly, many 1211 

proteins were linked with other human-related afflictions (e.g. sclerosis, neurodegeneration, 1212 

Parkinson, Huntington, Alzheimer and prion diseases; Supplementary Figure S12A). This 1213 

demonstrated the limitations of using generalist databases like KEGG that are mostly relevant 1214 

to human research to map plant proteins. While KEGG plant interface exists 1215 

(https://www.genome.jp/kegg/genome/plant.html) (144), plant-related datasets are dispersed 1216 

throughout the whole KEGG server so that one cannot exclusively mine plant-specific entries. 1217 

There is a need for future KEGG iterations to restrict searches to relevant taxa. Notwithstanding 1218 

non-plant hits, pathways symptomatic of grains were accurately captured in this experiment 1219 

such as the carbon metabolism (42, 6%), glycolysis/gluconeogenesis (25, 4%), as well as the 1220 

starch and sucrose metabolism (18, 3%) (Supplementary Figure S12D-F). Despite the 1221 

constraint raised above, KEGG remains a database widely employed to explore plant 1222 

proteomes, including wheat grain proteins (41, 145-147). Mapping our 390 LMA-associated 1223 

biomarkers (Supplementary Table S5) highlighted that many up-regulated peptides came from 1224 
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ribosomal proteins (Figure 6D) while several down-regulated peptides belonged to enzymes 1225 

acting in the biosynthesis of AAs (Figure 6I).  1226 

 1227 

3.2.3.3. ShinyGO to retrieve enriched functional categories and chromosomal positions 1228 

Multiple online tools exist to efficiently mine GO terms, however only a few cater for non-1229 

model species, let alone plants (148-150). When looking for relevant mining tools during our 1230 

method development stage, we resorted to AgriGO online program which specifically focused 1231 

on agricultural species and offered valuable illustrations to display enrichment sets (41). 1232 

Unfortunately, AgriGO server is no longer available. We have found instead ShinyGO (50), 1233 

recently developed, which surpassed AgriGO not only in terms of enrichment visualisations 1234 

but also provided wheat protein chromosomal positions, desirable for Circos plots. A downside 1235 

of ShinyGO was that it did not perform well with UniProt accession IDs, hence the prerequisite 1236 

to retrieve TRAES IDs from UniProtKB. A total of 6,622 TRAES accessions corresponding to 1237 

the 8,044 UniProt proteins were thus retrieved, of which 4,571 could be mapped by ShinyGO 1238 

(Supplementary Table S6). An enrichment analysis ensued and could be visualised as a chart, 1239 

tree, network and chromosomal map; density plots and histograms were also produced 1240 

(Supplementary Figure S13). 1241 

The most enriched category was the TCA cycle with a fold enrichment in excess of 12.5 and 1242 

the most significant GO classes were translation and peptide biosynthesis with an FDR inferior 1243 

to e-160 (Supplementary Figure S13A,E). Protein folding and ribonucleoprotein complex 1244 

biogenesis stood out as well among the proteins identified in this study (Supplementary Figure 1245 

S13B). Identities covered the whole genome with lower density around centromeres 1246 

(Supplementary Figure S13F). ShinyGO and other online data mining algorithms were 1247 

employed to predict genetic components systems implicated in the plant model species 1248 

Arabidopsis in response to high light from transcriptomics datasets publicly available (151). 1249 

Our results exemplify the relevance of ShinyGO for non-model plant species; we could not 1250 

find other cereal reports making use of it, probably due to its recent emergence (50). A fold 1251 

enrichment exceeding 200 was found among the 207 up-regulated peptides from gene products 1252 

involved in protein folding in endoplasmic reticulum (Figure 6C), followed by glycogen 1253 

metabolism, energy reserve and starch biosynthesis. ShinyGO enrichment analysis produced 1254 

very different results for our 183 down-regulated peptides, mostly invoking chromatin 1255 

assembly and remodeling, nucleosome assembly and organisation, DNA packaging and 1256 

conformation change, as well as protein-DNA complex assembly and organisation (Figure 6H). 1257 

 1258 
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3.2.3.4. Pathway Tools to retrieve differentially perturbed pathways based on 8-bin profiling 1259 

As useful as the program described above are, they yet do not accommodate quantitative data, 1260 

unlike Pathway Tools (51) made available online by the Plant Metabolic Network server and 1261 

curating the PlantCyc databases encapsulating 126 plant and algae species 1262 

(https://plantcyc.org/), including BreadwheatCyc (52). We could thus display protein 1263 

expression data on pathway diagrams in a dynamic and interactive way. Using the 6,622 1264 

TRAES accessions corresponding to the proteins identified in this study and the quantitative 1265 

data averaged along 8 bins, we mapped 1,432 proteins in the T. aestivum Pathway Tools 1266 

website (Supplementary Figure S14A).  1267 

The change in expression profiles along the 8 bins was recorded and showed that all peptide 1268 

quantities varied across sample groups with multiple trends throughout the whole cellular 1269 

overview (Supplementary Video SV1). As previously reported (41), the primary and secondary 1270 

metabolisms were well covered. Overall quantities of homoeologous wheat proteins involved 1271 

in TCA and glyoxylate cycles declined along 8 bin expression profiles (Supplementary Figure 1272 

S14B).  1273 

Also featured was plant hormone biosynthesis (Supplementary Figure S14C) which was 1274 

lacking in the other exploratory tools, thus demonstrating the superiority of T. aestivum 1275 

Pathway Tools over other databases (41). The 8 bin-profiling hinted an accumulation of 1276 

proteins related to auxin, cytokinin and gibberellin biosynthesis and a reduction of enzymes 1277 

participating in 5-deoxystrigol, brassinosteroid, and jasmonate synthesis in LMA-rich samples. 1278 

Hormonal response was flagged as one of the biochemical mechanisms of LMA expression, in 1279 

particular gibberellin and ABA signalling (22, 25, 152). Focussing on the ent-kaurene 1280 

biosynthesis, expression patterns accumulated in low LMA samples at the initial step of the 1281 

pathway and diminished in high LMA samples at the last step (Supplementary Figure S14D-1282 

E). The first biosynthetic step is controlled by ent-copalyl disphosphate synthase (TaCSP) 1283 

which was reported to be associated with LMA via a major locus on wheat chromosome 7B 1284 

accordingly renamed as LMA-1 (153). TaCSP (Cluster_22809 in Supplementary Figure S13F) 1285 

was one of our biomarkers. Even though databases such as Pathway Tools mapped TaCSP to 1286 

the gibberellin metabolism, its function with this phytohormone was recently contested and it 1287 

was suggested that high pI alpha-amylase synthesis in the aleurone of developing wheat grains 1288 

would be independent of gibberellins during LMA response (40). Other biomarkers matching 1289 

phytohormone-associated proteins included a cytokinin dehydrogenase whose decreasing 1290 

pattern picked up in the bin containing all the wheat sample registering high LMA 1291 

(Cluster_24683 in Supplementary Figure S14F), and a Responsive to ABA (Rab) protein 1292 
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whose expression profile closely resembled that of Cluster_AAA (Cluster_36748 in 1293 

Supplementary Figure S14F). Interestingly, Cluster_24621 with an increasing expression 1294 

profile belonged to an uncharacterised protein annotated with GO terms “Response to Auxin” 1295 

and “Response to ethylene” (Supplementary Figure S14F).  1296 

Because Pathway Tools handles quantitative data, it produced lists of differentially perturbed 1297 

pathways (DPPS) for each set of up- and down-regulated biomarkers. Pathways characterising 1298 

wheat grains with high LMA measurements were degradations of aminobutanoate, glutamate, 1299 

and stachyose, as well as biosynthesis of UDP-galactose, UDP-glucose and sucrose (Figure 1300 

6E). DPPS differentiating samples with low LMA activities were AA metabolisms (A, K, T, 1301 

and M) rubsico shunt, superoxide radical degradation, starch biosynthesis, gluconeogenesis, S-1302 

adenosyl-M cycle and glycolysis (Figure 6J). Our method study aside (41), we could not find 1303 

any other wheat gene expression study utilising this impressive PlantCyc database. However, 1304 

work on other plant species have amply demonstrated its value (154-159). 1305 

 1306 

3.2.3.5. Circos plot to visualise chromosomal positions, expression profile and statistics of 1307 

identified proteins and biomarkers 1308 

Invented over a decade ago (53), Circos plots have proven so valuable to efficiently represent 1309 

qualitative and quantitative information that a multitude of emulations have since arisen, 1310 

including its packaging within the Galaxy server (55) which we took advantage of here. When 1311 

the IWGSC released T. aestivum genome and published their findings, the genomic features 1312 

were elegantly and succinctly captured in a circular plot which highlighted homeologous genes 1313 

and translocated chromosomal regions (9). Being infinitely flexible, Circos plots can chart any 1314 

data as multiple concentric circular layers provided the correct file format is applied. We opted 1315 

to chart proteins encoded by genes we could locate on the genome (chromosomal positions 1316 

retrieved from ShinyGO analysis) and overlay their expression profiles, along with some 1317 

statistics of candidate LMA-responsive biomarkers (Figure 7).  1318 

Proteins identified in this experiment aligned with the full genome, densely covering each 1319 

chromosome albeit less so around centromeric regions (Figure 7B). Overall, expression profiles 1320 

along 8-bin accumulated in bins 1-6 corresponding to wheat samples with low LMA and 1321 

decreased in bins 7-8 characterised by high LMA samples (Figure 7C). LMA-related 1322 

biomarkers were evenly dispersed on all chromosomes (Figure 7D). Plotting their effect size 1323 

(fold changes, Figure 7E) outlined that most genome areas hosted both up- and down-regulated 1324 

biomarkers bar a few exceptions on chromosomes 4, 6 and 7 for all 3 genomes A, B, and D. 1325 

Only up-regulated biomarkers could be seen on chromosome 4A region 300-500 x 106 cM and 1326 
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chromosome 7A region 300-480 x 106 cM (replicated on genomes B and D). They matched 1327 

three uncharacterised proteins, a 60S ribosomal protein L18a, a glucose-1-phosphate 1328 

adenyltransferase, a polyadenylate-binding protein, a 14-3-3 protein and a protein disulfide 1329 

isomerase (Supplementary Table S5). Conversely, chromosome 6A region 300-410 x 106 cM 1330 

(replicated on genomes B and D) exclusively located down-regulated biomarkers matching a 1331 

glyceraldehyde-3-phosphate dehydrogenase, a glutathione peroxidase, a tripeptidyl-peptidase 1332 

II and an uncharacterised protein. Charting biomarker correlation values with LMA as links 1333 

failed to isolate stretches of genomic areas specific to LMA-responding proteins (Figure 7I). 1334 

This could be explained by the fact that LMA expression in our experiment elicited a complex 1335 

metabolic response involving many gene products independent of their genomic position.  LMA 1336 

is indeed a multigenic trait; associated quantitative trait loci (QTLs) have been located across 1337 

all three genomes and would contribute to the LMA phenotype in an independently effective 1338 

and additive fashion (39).  1339 

 1340 

Concluding remarks 1341 

For the first time, LMA phenotype was explored via proteomics. All the differentially regulated 1342 

biological processes highlighted in this study by the various data mining means have been 1343 

condensed into one summarising diagram and organised into broad functional categories 1344 

(Figure 8). 1345 

In this work, stored LMA-affected grains activated their primary metabolisms such as 1346 

glycolysis and gluconeogenesis, TCA cycle. It also including DNA- and RNA binding 1347 

mechanisms, as well as protein translation. This logically transitioned to protein folding 1348 

activities driven by chaperones and protein disulfide isomerase, as well as protein assembly via 1349 

dimerisation and complexing. The secondary metabolism was also flagged notably with the 1350 

up-regulation of phytohormones, chemical and defense responses. LMA further invoked 1351 

cellular structures among which ribosomes, microtubules, and chromatin. Finally, and 1352 

unsurprisingly, LMA expression greatly impacted grain starch and other carbohydrates with 1353 

the up-regulation of alpha-gliadins and starch metabolism, while LMW glutenin, stachyose, 1354 

sucrose, UDP-galactose and UDP-glucose were down-regulated. This work demonstrates that, 1355 

whilst we did not find the LMA needle in the proteome haystack, proteomics deserves to be 1356 

part of the wheat LMA molecular toolkit and should be adopted by LMA scientists and breeders 1357 

in the future. 1358 

 1359 
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Abbreviation Full name 

ABA abscisic acid 

ACN acetonitrile 

AA amino acid 

AMY amylase 

ANOVA analysis of variance 

ASCA ANOVA simultaneous component analysis 

BP biological process 

CC cellular component 

cM centimorgan 

CID collision-induced dissociation  

CSV comma separated value 

cRAP common Repository of Adventitious Proteins  

DPA day post anthesis 

DNA deoxyribonucleic acid 

DPPS differentially perturbed pathways  

TaCSP ent-copalyl disphosphate synthase from Triticum aestivum 

ELISA enzyme-linked immunosorbent assay 

FN falling number 

FA formic acid 

FTMS Fourier transform orbitrap mass analyser 

GO gene ontology 

GxE genetic by environment interaction 

GA gibberellic acid 

Gnd-HCl  guanidine hydrochloric acid 

HESI heated electrospray ionisation 

HCA hierarchical clustering analysis  

HMW high molecular weight 

HPLC high performance liquid chromatography 

ID identity 

IS internal standard 

IWGSC International Wheat Genome Sequencing Consortium  

ITMS ion trap orbitrap mass analyser 

pI isoelectric point  

IPA isopropanol 

KO KEGG orthology 

kD kiloDalton 

KNN K-Nearest Neighbours  

K-S Kolmogorov-Smirnov  
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KEGG Kyoto Encyclopedia of Genes and Genomes  

LMA late maturity alpha-amylase  

LC liquid chromatography 

LMW low molecular weight 

MS or MS1 mass spectrometry 

m/z mass to charge ratio 

mRNA messenger ribonucleic acid 

MF molecular function 

MLR multivariate linear regression  

ppm part per million 

PLS partial least squares  

PLSR partial least squares regression 

PTM post-translational modification  

PC principal component 

PCA principal componnet analysis 

QC quality control  

QTL quantitative trait locus 

QR code quick response code 

RT rentention time 

Rab Responsive to abscisic acid 

RO reverse osmosis 

RT-qPCR  reverse transcription quantitative real-time polymerase chain reaction 

SOM self-organising map 

SPE solid phase extraction  

MS/MS or MS2 tandem mass spectrometry 

3-D three-dimensional 

TCA trichloroacetic acid 

T. aestivum Tricticum aestivum (common bread wheat) 

TRAES Tricticum aestivum accession 

2-DE two-dimentional electrophoresis 

2-D two-dimentsional 

UTR untranslated region 

UDP uridine diphosphate 

VIP variable importance in projection 

 1361 
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Figure legends 1776 

Figure 1. High-throughput workflow used on the 4061 wheat samples. The snowflakes 1777 

indicate storage in -80°C freezers. 1778 

Figure 2. Gantt chart capturing the timeline for each step of the proteomics workflow 1779 

and file accumulation. 1780 

Figure 3: Normalisation, correction and standardisation of the raw data visualised using 1781 

PCA projection plots of the samples (A-F) and loading plots of the peptides (F-K). Samples 1782 

are coloured accordingly to LC-MS injection order from blue-green to yellow-orange-red. 1783 

(A,G) PC1 vs. PC2 plot based on unnormalised LC-MS1 quantitative data; (B,H) PC1 vs. PC2 1784 

plot based on data from panels A,G normalised using the sample weights;  QCs are all 1785 

condensed in a tight group (C,I) PC1 vs. PC2 plot based on data from panels B,H normalised 1786 

using the IS cluster; (D,J) PC1 vs. PC2 plot based using data from panels C,I normalised using 1787 

the injection order and the ‘intensity drift’ algorithm; (E,K) PC1 vs. PC2 plot using normalised 1788 

data from panels D,J corrected using a linear model and keeping the residuals; (F,L) PC1 vs. 1789 

PC2 plot using corrected data from panels E,L and z-transformed per row (peptides). 1790 

Figure 4: Profiles of LMA measurements for each wheat sample sorted by increasing 1791 

values illustrated as scatterplots (A-D) and histograms (E-H). (A) Scatterplot of LMA 1792 

values assayed in 3,773 wheat samples; (B) Scatterplot of LMA values less than 0.17 U/g in 1793 

3,306 wheat samples; (C) Scatterplot of LMA values equal to or greater than 0.17 U/g in 467 1794 

wheat samples; (D) Scatterplot of LMA values in unbiased set containing 934 samples (see 1795 

Section 2.8.2 for explanation); (E) Histogram of LMA values assayed in 3,773 wheat samples 1796 

along 30 bins; (F) Histogram of LMA values assayed in 3773 wheat samples and transformed 1797 

using a natural logarithm (LN) function along 30 bins; (G) Histogram of LMA values assayed 1798 

in 3,773 wheat samples and transformed using an inverse function (1/LMA=INV(LMA)) along 1799 

30 bins; (H) Histogram of LMA values assayed in 3,773 wheat samples and transformed 1800 

standardising the inversion function (STD(INV(LMA))) from panel G along 30 bins. 1801 

Figure 5: Volcano plot from t test and heat map of up- and down-regulated 531 1802 

biomarkers using the unbiased set of 934 wheat samples. (A) Volcano plot of the 325 up-1803 

regulated and 206 down-regulated biomarkers. Numbers position exemplary peptides plotted 1804 

in panel B. Cluster_AAA with coordinates (-1.2, -23.5) is an outlier in the upper left corner 1805 

and is not featured for display purpose; (B) Mean histograms along 2 bins of clusters illustrating 1806 

up- and down-regulation patterns and located with numbers on panel A. Standard errors are 1807 

depicted with the vertical bars. Bin 1 corresponds to 467 samples with LMA < 0.17 u/g and 1808 

bin 2 corresponds to 467 samples with LMA > 0.17 u/g; (C) Heat map corresponding to the 1809 
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Volcano plot in panel A with peptides sorted according to directed effect size and samples 1810 

sorted based on HCA cluster order. 1811 

Figure 6: Data mining of up- and down-regulated biomarkers. (A, F) word cloud of protein 1812 

names; (B, G) tree maps of GO terms for BP, CC and MF categories; (C, H) dot plots from 1813 

ShinyGO; (D, I) most significant KEGG pathways, ribosomes for up-regulated biomarkers and 1814 

AA biosynthesis for down-regulated biomarkers; (E, J) differentially perturbed pathways 1815 

(DPPS) from Pathway Tools. 1816 

Figure 7: Circos plot of identified proteins and LMA-responsive biomarkers with 1817 

expression patterns and statistics. (A) T. aestivum karyotype with chromosome length 1818 

marked each 106 cM and centromeres indicated by the change in shade. LMA is displayed as a 1819 

chromosome to portray the trait’s 8-bin colour pattern in trace C; (B) chromosomal positions 1820 

of all identified proteins as highlights; (C) profiling of all identified proteins along 8 bins as 1821 

heatmaps. LMA pattern is provided as a reference; (D) chromosomal positions of all identified 1822 

LMA-responsive biomarkers as highlights; (E) Volcano plot effect size of biomarkers as 1823 

scatterplot. Red denotes down-regulation and green denotes up-regulation; (F) profiling of 1824 

biomarkers along 2 bins as stacked histogram; (G) profiling of biomarkers along 8 bins as 1825 

stacked histogram; (H) biomarker accession IDs as text labels; (I) positive (green) and negative 1826 

(red) correlation with LMA as links. Green and red tags under chromosomes 4ABD, 6ABD, 1827 

and 7ABD denote genomic regions exclusive to biomarkers up- and down-regulated, 1828 

respectively. 1829 

Figure 8: Synopsis of mechanisms involved in LMA response.  1830 

 1831 

Supplementary Figure legends 1832 

Supplementary Figure S1: Genedata Refiner workflow to process all wheat, IS and QC 1833 

LCMS1 RAW files and export them to Genedata Analyst. A. Refiner Step 1; B. Refiner 1834 

Repetition node from Step 1; C. Refiner Step 2; D. Analyst setup. See Materials and Methods 1835 

for description. 1836 

Supplementary Figure S2: Genedata Refiner workflow to process all wheat LCMS2 1837 

RAW files and export them to Excel. A. Step 1; B. Repetition node from Step 1; C. Step 2; 1838 

D. Mascot parameters; E. Excel output.  See Materials and Methods for description. 1839 

Supplementary Figure S3: LC-MS2 RAW maps for each tandem pass. X-axis delineates 1840 

300-2000 m/z. Y-axis delineates 1-35 min Retention Time. White dots represent MS2 events. 1841 

(A) LC-MS1 map of pooled sample;  (B) LC-MS2 map of Pass 1 replicate 1 with 3000 1842 

threshold; (C) LC-MS2 map of Pass 2 replicate 1 with exclusion list of 2000 ions fragmented 1843 
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in Pass 1; (D) LC-MS2 map of Pass 3 replicate 1 with exclusion list of 2000 ions fragmented 1844 

in Pass 2; (E) LC-MS2 map of Pass 4 replicate 1 with exclusion list of 2000 ions fragmented 1845 

in Pass 3; (F) LC-MS2 map of Pass 5 replicate 1 (same as Pass 1 but with 500 threshold); (G) 1846 

LC-MS2 map of Pass 6 replicate 1 with inclusion list of 2000 most abundant ions from Pass 1; 1847 

(H) LC-MS2 map of Pass 7 with inclusion list 1 loaded Global mass tab and 2 m/z tolerance; 1848 

(I) LC-MS2 map of Pass 8 with inclusion list 1 loaded in data-dependent settings and 2 m/z 1849 

tolerance; (J) LC-MS2 map of Pass 9 with inclusion list 1 loaded in data-dependent settings 1850 

and 1 m/z tolerance; (K) LC-MS2 map of Pass 10 with inclusion list 1 loaded in data-dependent 1851 

settings and 0.5 m/z tolerance; (L) LC-MS2 map of Pass 11 with inclusion list 1 loaded in data-1852 

dependent settings and 0.2 m/z tolerance. Maps from other replicates in Passes 1 -6 or with 1853 

inclusion lists 2-10 for Passes 7-11 are not shown. 1854 

Supplementary Figure S4: Histogram of the number of peptides identified using Mascot 1855 

algorithm and number of MS2 events in each of the LC-MS2 file. Black bars represent 1856 

peptide counts (y axis on the left) and orange dots depict MS/MS event counts (y axis on the 1857 

right). 1858 

Supplementary Figure S5: Histograms (A, C, E) and box plots (B, D) of the number of 1859 

peptides per accession (A-B, E) and number of accessions per peptides (C-D). The orange 1860 

line in panels A and C represents cumulated counts in percent. Panel E displays the peptides 1861 

with the highest hit counts belonging either to low molecular weight glutenin subunit (LMW-1862 

GS), alpha-gliadin (GLIA), or gamma-gliadin (GLIG). 1863 

Supplementary Figure S6: Distribution of LC-MS1 data across 3,990 wheat samples and 1864 

32,336 quantified peptides. (A) Histogram of the corrected dataset using a linear model and 1865 

keeping the residuals; (B) Boxplot of corrected dataset log10 transformed for display purpose; 1866 

(C) Histogram of the corrected dataset z-transformed per row of peptides; (D) Boxplot of z-1867 

transformed dataset log10 transformed for display purpose. Insets in panels A-B indicate one-1868 

sample Kolmogorov-Smirnov (K-S) test results where D is the value of the K-S statistics. 1869 

Supplementary Figure S7: Partial Least Square (PLS) using LMA as a response on the 1870 

unbiased samples and the unbiased samples and all the quantified peptides. (A) Score plot 1871 

of Component 1 vs Component 2 of the 934 unbiased samples coloured based on LMA 1872 

measurements; samples with high LMA are circled; (B) Loading plot of Component 1 vs 1873 

Component 2 of the 32,337 peptides coloured based on PLS VIP scores; peptides with high 1874 

LMA are circled; Cluster_AAA resolves in the top right corner and contributes the most to the 1875 

PLS with a VIP score of 38.84. 1876 
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Supplementary Figure S8: Partial least square regression (PLSR) to impute LMA 1877 

missing values. (A) Full scatterplot of the measured vs. predicted LMA values of the testing 1878 

set containing 179 samples; (B) same as panel A but limiting LMA predicted values inferior to 1879 

0.17 u/g; (C) same as panel A but limiting LMA predicted values superior to 0.17 u/g; (D) Line 1880 

chart of the 217 LMA missing values and predicted by our PLSR model and sorted based on 1881 

increasing LMA. 1882 

Supplementary Figure S9: Binning strategies of wheat samples based on LMA 1883 

measurements. (A) all 3990 wheat samples were sorted by increasing order of LMA values 1884 

and then split into 8 arbitrary bins of 499 samples each; the line chart displays bin averages; 1885 

(B) the 934 unbiased wheat samples were sorted by increasing order of LMA values and then 1886 

split into 2 arbitrary bins of 467 samples each based on a LMA value threshold of 0.17 u/g; the 1887 

histogram displays bin averages. Bins are listed in Supplementary Table S1. 1888 

Supplementary Figure S10: Mining identified proteins using Power BI.  (A) all identified 1889 

peptides plotted as peptide mass against Mascot peptide scores (dot histogram), peptide missed 1890 

cleavages (pie chart), peptide PTMs (tree map), peptide lengths (violin plot), peptide charges 1891 

(vertical bar plot), protein score against sequence coverage (scatterplot) and protein description 1892 

(word cloud); (B) same charts but drilled down on the term “inhibitor” in the word cloud of 1893 

protein descriptions; (C) same charts but drilled down on “deamidated” peptides in the tree 1894 

map of  PTMs. 1895 

Supplementary Figure S11: Retrieval of protein descriptions and Gene Ontology (GO) 1896 

terms for Molecular Function (MF), Cellular Component (CC), and Biological Process 1897 

(BP) from UniProtKB using all 8,044 protein identities. (A) UniprotKB output viewed by 1898 

GO; (B) word cloud of all protein names; (C) word cloud of protein names filtered as 1899 

“glutenin”; (D) word cloud of protein names filtered as “domain-containing”; (E) tree map of 1900 

the most abundant terms for GOBP category; (F) tree map of the most abundant terms for  1901 

GOCC category; (E) tree map of the most abundant terms for GOMF category.  1902 

Supplementary Figure S12: KEGG output using all 8,044 identified proteins matching 1903 

677 KOs. (A) Histogram of the most frequent pathways; (B) Histogram of the most frequent 1904 

brite terms; (C) Histogram of the most frequent modules; (D) Carbon metabolism map; (E) 1905 

Glycolysis/gluconeogenesis map; (F) Starch and sucrose metabolism map. Proteins identified 1906 

in this study are highlighted in green in panels D-F. 1907 

Supplementary Figure S13: ShinyGO outputs using all 6,622 TRAES accessions 1908 

corresponding to the 8,044 UniProt proteins. (A) dot plot of the GO categories sorted by 1909 

fold enrichment; (B) network of nodes representing enriched GO terms. Related GO terms are 1910 
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connected by a line, whose thickness reflects percent of overlapping genes. Node size 1911 

represents the number of genes; (C-D) statistical analysis on the genomic features. Chi-squared 1912 

and Student's t-tests are run to compare the user’s genes to the T. aestivum genome. Results on 1913 

number of exons, transcript isoforms, GC content, untranslated region (UTR) length, and types 1914 

of genes (coding, non-coding, pseudogenes) are displayed as density scatterplots or histograms; 1915 

(E) hierarchical clustering tree of significant enriched pathways. Pathways that share many 1916 

genes are clustered together and dot size indicates q-values significance; (F) Plot of the 1917 

chromosomal positions of the genes encoding our identified proteins. 1918 

Supplementary Figure S14: Pathway Tools output using 6622 TRAES accessions and 1919 

quantitative data averaged along 8 bins. (A) OMICS dashboard general view; (B) cellular 1920 

view zoomed in on TCA cycle II and glyoxylate cycle. Each expression profile points to a 1921 

unique TRAES accession, most of them being homologous. The whole cellular view is  1922 

available in Supplementary Video SV1; (C) OMICS dashboard zoomed in on hormone 1923 

biosynthesis; (D) OMICS dashboard zoomed in on gibberellin and gibberellin precursor 1924 

biosynthesis; (E) Pathway view of ent-kaurene biosynthesis from the Gibberellin biosynthesis 1925 

pathway further illustrating high homology of wheat proteins; (F) 8-bin profiles of peptide 1926 

biomarkers belonging to proteins involved in phytohormone biosynthesis; Cluster_AAA is 1927 

displayed for comparison purpose. 1928 

 1929 
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