Supplementary Table I

Name	Description	Source
BY4741	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Dr. S. Michaelis
E3∆hrd1	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Open Biosystems
	hrd1∆::KanR	
E3∆hrd3	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Open Biosystems
	hrd3∆::KanR	
E3∆yos9	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Open Biosystems
	yos9∆::KanR	
E3∆der1	$MATa$ his3 $\Delta 1$ leu2 $\Delta 0$ met15 $\Delta 0$ ura3 $\Delta 0$	Open Biosystems
	der1∆::KanR	
KNY140	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	(1)
	<i>can1-100 pdr5∆::HPH pep4∆::LEU2</i>	
KNY220	MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112	(1)
	<i>can1-100 pdr5∆::HPH pep4∆::LEU2 HRD1-</i>	
	3FLAG- KAN ^R	

Yeast strains used in this study

Supplementary Table II

Plasmids used in this study

Name	Description	Source
pKN12-22	CPY*-3HA, CEN/ARS, URA3	(2)
	(CPY*: a soluble substrate due to the	
	presence of a missense mutation in an	
	otherwise vacuole-targeted protease)	
pSM70	KHN-3HA, CEN/ARS, URA3	(3)
	(KHN: a heterologously expressed simian	
	virus 5 hemagglutinin neuraminidase (HN)	
	that is fused with the cleavable signal	
	sequence from the yeast Kar2 (the ER luminal	
	Hsp70))	
pSM101	KWW-3HA, CEN/ARS, URA3	(4)
	(KWW: a chimeric protein comprising KHN	
	luminal domain/Wsc1 transmembrane	
	domain/Wsc1 cytosolic domain)	
pKN66	Ste6*-3HA, CEN/ARS, URA3	(5)
	(Ste6*: a C-terminal truncated version of the	
	a-factor transporter Ste6)	
pKN515	3HA-Pca1, CEN/ARS, URA3	(6)
	(Pca1: a cadmium transporting P-type ATPase	
	whose proteasome-dependent degradation is	
	exclusively dependent on Doa10)	
pKN541	3HA-Pdr5*, CEN/ARS, URA3	This study
	(Pdr5*: a 12 transmembrane protein that	
	harbors misfolded lesions near these domains)	
pKN562	6myc-Hmg2, CEN/ARS, URA3	This study
	(Hmg2: the yeast HMG-CoA reductase	
	isozyme)	
pJC104	4×UPRE (four copies of the unfolded protein	(7)
	response element)-lacZ, 2µ, URA3	

A plasmid encoding *3HA-PDR5** (pKN541) was constructed as follows. The PCR reaction was performed using a plasmid pKN44 (8), which encodes *1HA-PDR5**, as a template and using primers OKN2234 and OKN2235. The resulting linear fragment was transformed into Mach1 competent cell (Thermo Fisher Scientific). The circularized

plasmids were mini-prepped from the transformants and the DNA sequence was performed to verify that the single HA tag was replaced with triple HA tag.

A plasmid encoding 6myc-Hmg2 under the sequence of the *GPD* promoter (pKN562) was constructed as follows. The DNA fragment encoding the open reading frame of 6myc-Hmg2 was amplified by PCR from yeast strain expressing this protein (9) using primers OKN2273 and OKN2275. The resultant fragment was digested with *Xbal/XhoI* and inserted into the same sites of p416GPD (10).

Supplementary Table III

Oligonucleotide primers used in this study

Name	Sequence
OKN2234	CCTTATGATGTCCCAGATTACGCAGGTTCTTATCCTTACGA
	TGTACCAGACTACGCCGGTCCCGAGGCCAAGCTTAACAAT
	AACG
OKN2235	CCTGCGTAATCTGGGACATCATAAGGGTAACCAGCATAAT
	CAGGAACGTCATAAGGGTATGAACCCATTTTTGTCTAAAGT
	CTTTCG
OKN2273	ATATCCTCGAGCACCATGTAAACTACAAGAG
OKN2275	GCTGCTCTAGAATGTCACTTCCCTTAAAAACGATAG

Supplementary Table IV

Antibody	Company	Identifier or reference	
αHA	MEDICAL & BIOLOGICAL	#M180-3	
	LABORATORIES		
αPgk1	abcam	[22C5D8] (#ab113687)	
αHrd1	In house	(1)	
aCdc48	In house	(1)	
αYos9	In house	(1)	
aDer1	In house	(1)	
aHrd3	Gift from Dr. Thomas Sommer and Dr. Ernst Jarosch (Max-		
	Delbrück-Center for Molecular	Delbrück-Center for Molecular Medicine, Berlin, Germany)	
aSic1	Gift from Dr. Takumi Kamura (I	Gift from Dr. Takumi Kamura (Nagoya University, Aichi, Japan)	
aClb2	Gift from Dr. Takumi Kamura (I	Gift from Dr. Takumi Kamura (Nagoya University, Aichi, Japan)	
αmyc	Gift from Dr. Takumi Kamura (Nagoya University, Aichi, Japan)		

Antibodies used in this study

- Nakatsukasa, K., Brodsky, J. L., and Kamura, T. (2013) A stalled retrotranslocation complex reveals physical linkage between substrate recognition and proteasomal degradation during ER-associated degradation. *Mol Biol Cell* 24, 1765-1775, S1761-1768
- Bhamidipati, A., Denic, V., Quan, E. M., and Weissman, J. S. (2005) Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. *Molecular cell* 19, 741-751
- Vashist, S., Kim, W., Belden, W. J., Spear, E. D., Barlowe, C., and Ng, D. T. (2001) Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. *J Cell Biol* 155, 355-368
- 4. Vashist, S., and Ng, D. T. (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. *J Cell Biol* **165**, 41-52
- Nakatsukasa, K., and Kamura, T. (2016) Subcellular Fractionation Analysis of the Extraction of Ubiquitinated Polytopic Membrane Substrate during ER-Associated Degradation. *PloS one* 11, e0148327
- 6. Adle, D. J., Wei, W., Smith, N., Bies, J. J., and Lee, J. (2009) Cadmiummediated rescue from ER-associated degradation induces expression of its exporter. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 10189-10194
- 7. Cox, J. S., and Walter, P. (1996) A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. *Cell* **87**, 391-404
- Nakatsukasa, K., Wigge, S., Takano, Y., Kawarasaki, T., Kamura, T., and Brodsky, J. L. (2022) A positive genetic selection for transmembrane domain mutations in HRD1 underscores the importance of Hrd1 complex integrity during ERAD. *Curr Genet* 68, 227-242
- 9. Cronin, S. R., Khoury, A., Ferry, D. K., and Hampton, R. Y. (2000) Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. *J Cell Biol* **148**, 915-924
- Mumberg, D., Muller, R., and Funk, M. (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. *Gene* 156, 119-122