N-glycosylation engineering in chimeric antigen receptor T cells enhances anti-tumor activity

Elien De Bousser¹,²,⁴* & Nele Festjens¹,²,⁴*, Leander Meuris¹,²,⁴, Evelyn Plets¹,², Annelies Van Hecke¹,², Elise Wyseure¹,², Stijn De Munter³,⁴, Bart Vandekerckhove³,⁴, Nico Callewaert¹,²,⁴*

¹These authors contributed equally to this work

*Correspondence should be addressed to NC (Nico.Callewaert@vib-ugent.be) and EDB (Elien.DeBousser@vib-ugent.be)

¹VIB-UGent Center for Medical Biotechnology
²Department for Biochemistry and Microbiology, Ghent University
Technologypark-Zwijnaarde 75, B-9052 Gent, Belgium
³Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
⁴Cancer Research Institute Ghent (CRIG), Ghent, Belgium

Author contributions

EDB and NF were responsible for the experimental design and data analysis. EDB, NF, EP, AVH and EW acquired the data. LM performed the statistical analyses. SDM designed the CD70 nanoCAR and set up the assays for functional analysis under the supervision of BV. NC initiated and supervised the project and manuscript writing.
Abstract

Recently, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect T cells to specific antigens expressed on the surface of tumor cells. Despite impressive progress in the treatment of hematological malignancies with CAR T cells, scientific challenges still remain for use of CAR T cell therapy to treat solid tumors. This is mainly due to the hostile tumor microenvironment and CAR-related toxicities. As the glycans decorating the T cell surface are implicated in T cell activation, differentiation, proliferation, and in the interaction of human T cells with tumor cells, we studied the role of human T cell glycosylation in more depth by manipulating their glycome. In this context, there is in vitro evidence that β-galactoside binding lectins (Galectins) can have a strong impact on the functionality of tumor-infiltrating T cells. The high-affinity poly-LacNAc N-linked galectin ligands are mainly synthesized onto the β1,6-GlcNAc branch introduced by N-acetylglucosaminyltransferase V (GnTV, encoded by Mgat5). We showed that knocking out Mgat5 in CD70 targeting CAR T cells leads to lower densities of poly-LacNAc modifications on the CAR T cell surface. Most interestingly, our results indicate that MGAT5 KO CD70 CAR T cells show enhanced potency to control primary tumors and relapses.
Introduction

Immunotherapy with T cells that are genetically modified to express chimeric antigen receptors (CARs), which target tumor-associated molecules, has shown impressive efficacy in several malignancies. The advent of second-generation CAR T cells, in which activating and costimulatory signaling domains are combined, has led to encouraging results in patients with chemo-refractory B cell malignancies. However, the translation of this clinical success to the treatment of solid tumors requires overcoming multiple obstacles. In general, it is required to generate robust and stable populations of T cells that are able to infiltrate the tumor and escape the immunosuppressive effect of the tumor microenvironment (TME). Further issues in CAR T cell therapy include antigen escape, CAR T cell therapy-related toxicities and the relatively high occurrence of tumor relapse.

Cell surface glycosylation plays an important role in the interaction of human T cells with tumor cells and often contributes to escape mechanisms adopted by the tumor to evade T cell anti-tumor immunity. For example, the expression of immune checkpoint inhibitors such as PD-1 and CTLA-4 is tuned by glycosylation. Further, there is in vitro evidence that β-galactoside binding lectins (Galectins) can have a strong impact on the functionality of tumor-infiltrating T cells. Galectin-1 controls T cell effector function homeostasis by regulating activation, differentiation, survival and cytokine production. Galectin-9 is one of the ligands of Tim-3 and negatively regulates T cell immunity. Binding of Galectin-3 to glycoproteins has both pro- and anti-apoptotic effects on T cells, depending on its localization. Intracellular Galectin-3 blocks apoptosis by stabilizing the mitochondrial membrane and preventing cytochrome c release, while extracellular Galectin-3 binds to glycoproteins such as CTLA-4 and Lag3 on the T cell surface, leading to inhibition and cell death of activated T cells. Endogenous Galectin-3, produced by activated T cells, is recruited to the immunological synapse. There it negatively regulates T cell activation by destabilizing the immunological synapse through direct interactions with glycoproteins associated with the T cell receptor, and by promoting downregulation of the TCR. Another interesting finding is that binding of Galectin-3 to antigen-specific activated CD8+ T cells inhibits their effector function within the tumor microenvironment. It was shown that Galectin-3 prevents the formation of a functional secretory synapse by trapping LFA-1 in glycan-Galectin lattices, leading to reduced cytokine secretion. Ex vivo treatment of T cells with an anti-Galectin-3 antibody or a Galectin competitive binder such as N-acetyllactosamine (LacNAc) resulted in the detachment of surface Galectin-3 leading to increased cytotoxicity and ability to secrete cytokines such as IFN-γ.

The high-affinity poly-LacNAc N-linked galectin ligands are mainly synthesized onto the β1,6-GlcNAc branch introduced by N-acetylglucosaminyltransferase V (MGAT5) (Figure 1A). Knocking out Mgat5 should thus also strongly reduce the density of poly-LacNAc modifications on the cell surface.
MGAT5 deficiency was shown to markedly increase TCR clustering and signaling at the immune synapse, resulting in a lower T cell activation threshold and increased incidence of autoimmune disease in vivo and in human19.

To evaluate the impact of altered cell surface glycosylation on cytotoxic T cell functionality, specifically in a cancer immunotherapy setting, we used CD70 as the CAR target. Nanobodies targeting CD70 have been thoroughly evaluated as antigen-binding module in a CAR format (CD70 nanoCAR) in the lab of Prof. Dr. Bart Vandekerckhove (Department of Clinical Chemistry, Microbiology and Immunology, Ghent University)20. We specifically aimed to evaluate the impact of glyco-engineering via Mgat5 KO on the CAR T cell glycome and on their in vitro and in vivo activation, proliferation, differentiation and anti-tumor functionality.

We could demonstrate that MGAT5 KO CD70 nanoCAR T cells are functional and even perform better than CD70 nanoCAR T cells, both in vitro and in vivo. Both the average tumor volume and the tumor growth rate of primary and secondary tumors are significantly lower in the MGAT5 KO CD70 nanoCAR T cell treated group, as compared to the CD70 nanoCAR T cell treated mice. These results show that disrupting N-glycosylation modifications on CAR T cells enhances their capability to control primary tumors and subsequent relapses. Interestingly, MGAT5 KO CD70 nanoCAR T cells are present in higher numbers than CD70 nanoCAR T cells both in vitro and in peripheral blood and spleen upon specific antigen recognition.

Results

Engineering of MGAT5 KO CD70 nanoCAR T cells

We optimized a workflow for the combined CRISPR-Cas9 mediated glyco-gene editing and retroviral CAR delivery to purified, activated human CD3+ T cells. The presence of both CD4+ and CD8+ T cell subsets in the final CAR T cell product is indispensable for efficient anti-tumor immunity.

To efficiently combine CRISPR-Cas9-based glyco-gene editing and retroviral CAR delivery, various experimental steps were optimized. Optimal editing and transduction efficiencies were obtained when CD3+ T cells were stimulated with Immunocult for three days, after which activated T cells were first subjected to Cas9 RNP nucleofection, followed by a 1-hit retroviral transduction on the same day. Engineering efficiencies were assessed on day 10. The experimental timeline is depicted in Figure 1.B.

CRISPR editing efficiencies were determined by Sanger sequencing of the region of interest followed by ICE analysis, and the mean editing efficiency as percentage insertions and deletions (% indel) for the Mgat5 locus over multiple experiments was consistently high (exceeding 80% indel) as is depicted in Figure 1.C. Flow cytometry was used to measure both CD70 nanoCAR expression and GFP expression as read outs of the retroviral transduction efficiency. High CD70 nanoCAR transduction efficiencies were consistently
obtained over multiple experiments, irrespective of the simultaneous glyco-gene engineering as shown in Figure 1.D.

MGAT5 KO CD70 nanoCAR T cells show an altered glycocalyx

In order to be able to assess the extent of the intended glycosylation changes upon glyco-gene engineering, we developed a lectin-based flow cytometry assay. For the detection of poly-LacNAc structures, we used the lectin from *Datura stramonium* (DSL) (Figure 1.E). This lectin is reported to bind well to LacNAc and oligomers containing repeating LacNAc sequences next to its preferred N-acetylglucosamine oligomer ligand.

When comparing the DSL lectin stain intensity of mock engineered CD70 nanoCAR T cells with that of MGAT5 KO CD70 nanoCAR T cells, we observe a clear reduction in signal, indicating that we successfully eliminated N-glycan β1,6-branching and subsequent elongation of this branch with poly-LacNAc modifications.

As a complementary method to profile the CAR T cell surface glycosylation, we adapted the DSA-FACE method developed in our research group to enable the analysis of cell surface N-glycosylation. We aimed to directly release the N-glycans from the cell surface by applying the PNGaseF digest on living cells in suspension. We established an optimized protocol in which we incubate 1 x 10^6 cells per sample in the presence of 0.125 IU PNGaseF in PBS for 2 hours at 37°C. Subsequently, the cells are removed by centrifugation and the crude digest is labeled with APTS for 1 hour at 70°C. After two rounds of clean-up over Sephadex resin to remove excess label and salts, labeled N-glycans are resuspended in water and analyzed by DSA-FACE. The complete protocol is schematically depicted in Figure 1.F.

When CAR T cells are engineered for MGAT5, the N-glycan profile is clearly different from that of mock-engineered CAR T cells (Figure 1.F). The peaks in P6 disappear while the peaks in P4 show a higher intensity relative to P2 and P3. This shift in electrophoretic mobility is consistent with the removal of one LacNAc unit (two monosaccharide units) or a shift from a tetra-antennary to a tri-antennary N-glycan. These DSA-FACE results are also in agreement with the lectin-staining experiments, where we observed a reduction in DSL staining intensity upon MGAT5 engineering (Figure 1.E). When comparing to the annotated N-glycan profile of human plasma (data not shown), this observation indeed confirms that P6 corresponds to a tetra-antennary N-glycan, while peaks in P4 and P5 correspond to tri-antennary N-glycan structures.

Characterization of the CD70 expressing tumor cell lines

In order to study the anti-tumor functionality of the MGAT5 KO CD70 nanoCAR T cells, two tumor cell lines were used in our studies. THP-1 cells are a M4 subtype acute myeloid leukemia (AML) cell line and SKOV-3 cells are a serous adenocarcinoma cell line. We confirmed the cell surface CD70 expression on these cells...
by flow cytometry (Supplementary Figure 1.A). Jurkat cells (immortalized line of human T cells) were included as a negative control. Further, we performed the anti-CD70 cell surface staining on non-transduced (NTC) and CD70 nanoCAR transduced CD3⁺ T cells and did not identify auto-antigen expression.

Galectins exert a broad range of effects during different aspects of T cell-mediated immunity by the formation of lattices on the T cell surface⁵. In anti-tumor immunity, it has been shown that Galectin-1 and Galectin-3 in the TME lead to tolerogenic signaling and immune suppression. LacNAc is the ligand recognized by Galectins and the affinity of the interaction is proportional to the LacNAc content of the glycan structure. We hypothesized that by eliminating MGAT5 expression in order to reduce the poly-LacNAc content on cytotoxic T cells, the inhibitory effect of Galectins on T cell immunity can be reduced. To this end, we first verified that the tumor cell lines used in our study indeed express Galectin-1 and Galectin-3.

Secretion and subsequent cell surface binding of Galectin-1 and -3 was detected by performing a flow cytometry experiment with anti-Galectin-1 and -3 antibodies. The results are shown in Supplementary Figure 1.B. As positive control, cells were incubated with recombinant Galectin-1 or -3 before performing the cell surface staining. As a negative control, cell surface Galectin binding was abolished by the addition of the competitive inhibitor lactose. Jurkat cells were included as negative control cells. Galectin-1 expression is detected for both the THP-1 and SKOV-3 cell lines. Further, galectin-3 expression is clearly observed for the SKOV-3 cell line but only slightly for the THP-1 cell line. No secretion and cell surface binding of galectins is seen on primary CD3⁺ T cells and Jurkat cells. Binding of recombinant Galectin-3 to T cells leads to an increase in signal, while recombinant Galectin-1 does not seem to bind to the primary T cells.

Additionally, we confirmed the expression of Galectin-1 and -3 in tumor sections from tumor-bearing NSG mice (Supplementary Figure 1.C). The latter were obtained by ectopically inoculating human SKOV-3 cells. The SKOV-3 tumor model is used in the experiments described below.

MGAT5 KO CD70 nanoCAR T cells are functional in vitro

In a first set of experiments, we evaluated the viability and functionality of MGAT5 KO CD70 nanoCAR T cells in vitro. Viability is maintained for each condition as is depicted in Figure 2.A. After engineering and culturing, most of the cells in the total CD3⁺ T cell pool are CD4⁺ T cells. Even with the 4-1BB signal in the CAR construct, which is believed to support a moderate rise in the CD8⁺ T cell fraction, the CAR T cell groups show a decrease in the CD8⁺ population. Furthermore, this decrease is even more pronounced when CD70 nanoCAR T cells were CRISPR-Cas9 engineered (both mock Cas9 and MGAT5 KO), which suggests that the viral transduction and nucleofection procedures might affect the growth of CD8⁺ T cells more than that of CD4⁺ T cells (Figure 2.B)
The antitumor effects of CAR T cells depend on their capacity to secrete cytokines upon exposure to antigens. Therefore, we evaluated the cytokine production of the glyco-engineered CD70 nanoCAR T cells after challenging them with the THP-1 and SKOV-3 target cell lines (Figure 2C-E). Target cells were co-incubated for 16 hours with MGAT5 KO CD70 nanoCAR T cells. Unstimulated cells were included as negative control and Immunocult stimulation was included as positive control. Subsequently, T cells were labelled for intracellular TNF-α, IFN-γ and IL-2. The MGAT5 KO CD70 nanoCAR T cells are able to produce cytokines upon antigen stimulation and the proportion of cytokine-producing cells is similar to, or even higher than what is observed for mock nucleofected CD70 nanoCAR T cells. This cytokine expression is dependent on CD70 nanoCAR expression, given that non-transduced T cells (NTC) fail to express cytokines or express only very low levels in the presence of CD70 positive cells (but do show expression of cytokines after polyclonal Immunocult stimulation).

In order to evaluate the combined proliferative and cytotoxic potential of MGAT5 KO CD70 nanoCAR T cells, T cells were co-cultured with THP-1 target cells at different ratios for a period of 14 days. The number of THP-1 cells left in culture was determined by flow cytometry every three to four days. At day 7, a second challenge was performed by adding target THP-1 cells to the co-cultures. Results obtained with three independent T cell donors are depicted in Figure 2F-I.

Figure 2F and G shows the results corresponding to an effector/target (E/T) ratio of 0.15, that is 20,000 THP-1 target cells co-cultured with 3000 CD70 nanoCAR effector cells. At this ratio, all target cells get killed by day 4, in the wild-type, mock engineered and MGAT5 KO CD70 nanoCAR T cell conditions (Figure 2F). Even at a very low E/T ratio of 0.015 (20,000 target cells co-cultured with only 300 CD70 nanoCAR T cells), all target cells are eliminated by day 4, irrespective of the engineering condition (Figure 2H).

Most interestingly, from day 11 onwards, at both E/T ratios the number of CD70 nanoCAR T cells is higher for those that are knockout in Mgat5, indicating a higher expansion of these glyco-engineered CAR T cells over time Figure 2G and I. We found that, on day 11, the number of MGAT5 KO nanoCAR T cells is about 1.74 times higher (95% CI: 1.36 to 2.21) than the number of nanoCAR T cells starting from the same conditions. On day 14, the number of MGAT5 KO nanoCAR T similarly is about 1.70 times higher (95% CI: 1.33 to 2.18). All these estimates are averaged over the two E/T ratios and the three independent donors.

Treatment of tumor-bearing mice with MGAT5 KO CAR T cells leads to a better outcome in terms of tumor control. After validating the in vitro activity of MGAT5 KO CD70 nanoCAR T cells, we aimed to evaluate whether MGAT5 KO CD70 nanoCAR T cells are also capable of clearing a tumor upon adoptive transfer in vivo.
The NOD.SCID IL2γnull (NSG) mouse strain has been widely used in the pre-clinical evaluation of CAR T cell efficacy. Immune-deficient NSG mice lack functional mouse T cells, B cells, NK cells and are deficient in cytokine signaling through the common γC receptor. Human tumor xenograft models were established in NSG mice by subcutaneous injection of luciferase-expressing SKOV-3 cells in the flank. Ten days after tumor cell inoculation, the presence of a subcutaneous tumor was evaluated by measurement with a slide caliper and through bioluminescent imaging (BLI) performed using an in vivo imaging system (IVIS).

After establishment of a solid, palpable tumor, mice were treated with either mock Cas9-engineered or MGAT5 KO CD70 nanoCAR respectively. As control groups, mice were treated with PBS to evaluate tumor development, or with non-transduced T cells (NTC) to evaluate graft versus host disease (GvHD) and non-specific anti-tumor effects. Throughout the experiment, tumor burden was measured every two days with a caliper and every 4 days through IVIS. A schematic representation of the experimental timeline is depicted in Figure 3.A.

At day 34, after the first phase of the experiment, the presence and phenotype of CAR T cells was evaluated in the blood and spleen. Furthermore, mice were followed-up in time and challenged between day 87 and day 90 with a second tumor to evaluate long-term anti-tumor efficacy. Again, tumor burden was evaluated over time and the mice were sacrificed between day 118 and day 123 for end-point analyses.

In the following sections, we will describe the results obtained for two independent experiments (Experiment A and Experiment B), which were performed with T cells from different donors. For the analysis, the treatment groups were divided in three treatment groups of interest: The ‘No CAR’ group contains the data from all the mice that did not receive any CD70 nanoCAR T cells, and thus includes untreated mice and mice treated with PBS or NTC. The ‘CAR’ group contains the data from all the mice that received a CD70 nanoCAR T cell treatment, with or without mock Cas9 engineering. The ‘CD70 nanoCAR - MGAT5 KO’ group contains data from the mice that received MGAT5 knockout CD70 nanoCAR T cells.

The outcome of the treatment was defined by 4 subtypes for the primary tumor challenge. (1) Full control meaning the tumor becomes undetectable and no relapse follows. (2) Full control but occurrence of a relapse later on. (3) Partial control meaning a halt in tumor growth but the tumor remains detectable and all mice also experience a relapse after long-term follow-up. (4) No control of tumor growth throughout the duration of the experiment.

As is clear from Figure 3.B and the table in Figure 3.C, the primary tumor is not controlled by the mice that did not receive CAR T cells, meaning that they were all sacrificed at the humane end-point. When we compare CD70 nanoCAR treated groups with MGAT5 KO CD70 nanoCAR treated groups, we see that more mice control tumor growth when they were treated with MGAT5 KO CD70 nanoCAR T cells, and that all of
these mice show full control, with or without relapse, of primary tumor growth. Contrary to this, a considerable number of mice in the CAR treated group show only partial or even no control at all of the primary tumor.

As opposed to experiment A, in which we did not observe any relapse of the primary tumor over time, the tumor did regrow in some of the treated mice in experiment B. A survival analysis was performed to evaluate whether a difference could be observed in either the number of relapses and the time of their onset between CD70 nanoCAR and MGAT5 KO CD70 nanoCAR T cell treated mice in experiment B (Supplementary Figure 3). When we look at the Kaplan-Meier curves, we indeed observe a difference. The CD70 nanoCAR group seems to have more relapses with an earlier onset in time, leading to a shorter median tumor free survival time of 55 days as compared to the MGAT5 KO CD70 nanoCAR treated group in which the median tumor free survival time is 72 days.

For the secondary tumor, we defined three types of tumor control as no relapse of tumor growth was observed in any of the mice that cleared the secondary tumor. (1) Full control meaning the tumor never develops or becomes undetectable after an initial growth phase. (2) Partial control meaning the tumor stops growing but remains detectable. (3) No control of tumor growth throughout the duration of the experiment.

As is clear from Figure 3.B and the table in Figure 3.D, MGAT5 knockout CD70 nanoCAR T cell treatment also lead to better tumor control after a secondary challenge. While the majority of the mice show no or only partial control of the secondary tumor in the CAR treated groups (52.9% in total), this image is shifted in the MGAT5 KO CAR treated groups (35% in total). In the latter, the majority of the mice completely clear the tumor before the end of the experiment (64% of the mice in total). In the mice that did not clear the secondary tumor completely, the majority of mice treated with the MGAT5 knockout CD70 nanoCAR T cells experienced partial control (21%) while the majority of mice treated with wild type CD70 nanoCAR T cells showed no control at all (47%).

Treatment of tumor-bearing mice with MGAT5 KO CAR T cells leads to a better control of tumor growth rate

To evaluate differences in tumor growth or resolution between the treated mice, a piecewise linear mixed model (with interactions) was fitted (see Supplementary Figure 4 to Supplementary Figure 8) that allows to model the mean tumor volumes in each group. For these analyses, we made a distinction between Experiment A and Experiment B. The main reason for this is that the model would become unnecessarily complex because the timescales (design) of both experiments differ slightly as do the times at which the mice start to respond to the CAR T cell therapy. The latter is possibly due to inherent differences between the CAR T-cell batches (i.e. a donor effect).
In experiment A, we did not observe a difference in the speed of primary tumor resolution in mice treated with CD70 nanoCAR T cells and those treated with MGAT5 KO CD70 nanoCAR T cells (Supplementary Figure 4). As even non-glyco-engineered CAR T cells already cleared the primary tumor in a very short time span, there was not much scope for improvement. However, when we look at the response to treatment in the secondary tumor (Supplementary Figure 5), differences were observed. While the secondary tumor in the untreated mice grows at 12% (95% CI +9% to +16%) per day (which is consistent with the primary tumor growth), the average growth rate in the CD70 nanoCAR T cell treated group is slower, only 3% per day (95% CI: -15% to +26%). When we look at the MGAT5 KO CD70 nanoCAR T cell treated group, the secondary tumor actually decreases with 10% (95% CI: -24% to +7%) each day, indicating that MGAT5 KO CD70 nanoCAR T cells control tumor growth more efficiently in the secondary phase. However, due to the highly variable responses of individual mice in these groups, the difference in tumor growth rate between the MGAT5 KO CD70 nanoCAR T cell and nanoCAR T cell treated groups is therefore not statistically significant (ratio of growth rates: 95% CI = 0.67 to 1.13, adj. p-value = 0.505).

In experiment B, we do observe a difference in primary tumor clearance when we compare CD70 nanoCAR T cell treated mice with those that received MGAT5 KO CD70 nanoCAR T cells (Supplementary Figure 6). The primary tumor loses about half of its volume (49% with 95% CI: -53% to -45%) each day between day 22 and 33 compared to 29% (95% CI: -41% to -24%) each day for the CD70 nanoCAR T cell group. This difference is statistically significant (tumor shrinkage rate in CD70 nanoCAR T cell treated group is only 72% of shrinkage rate in MGAT5 KO CD70 nanoCAR T cell treated group with a 95% CI of 0.59 to 0.86, adj. p-value <0.001). Moreover, while the primary tumor completely disappears in all mice in the MGAT5 KO CD70 nanoCAR T cell treated group in the subsequent part of the experiment (day 33 to about day 84), this is not the case for the CD70 nanoCAR cell treated group, where the tumor volume remaining at day 60 is 5.07 mm3 (95% CI: 0.32 to 80.07) on average. The confidence interval is quite wide, probably due to the large spread in the CD70 nanoCAR T cell treated group, were some mice clear the tumor completely, some partially and some not at all. Unlike what was observed in experiment A, some of the primary tumors did regrow in the course of the experiment B. From the analysis of these relapsed primary tumors shown in Supplementary Figure 7, it is clear that, although the tumor growth rate is the same, the tumor volume is significantly lower in the MGAT5 KO CD70 nanoCAR T cell treated group, as compared to the CD70 nanoCAR T cell treated mice.

The response of CD70 nanoCAR T cell therapy on a secondary tumor challenge in experiment B is summarized in Supplementary Figure 8. From day 101 onwards, we see that the tumor size in the MGAT5 KO CD70 nanoCAR T cell treated group decreases with 10% each day (95% CI: -34% to +23%), while the tumor size in the untreated and CD70 nanoCAR T cell treated groups increases with 9% (95% CI: +1% to +19%) and 6% (95% CI: -10% to +25%) daily respectively, again indicating that MGAT5 KO CD70 nanoCAR
T cells lead to a better tumor control after a secondary challenge. However, the difference in growth rate between CD70 nanoCAR T cell treated mice and MGAT5 KO CD70 nanoCAR T cell treated mice is not statistically significant (growth speed in MGAT5 KO CD70 nanoCAR T treated mice is 0.85 times the growth rate in CD70 nanoCAR T cell treated mice, 95% CI 0.59 to 1.22). This is most probably due to the large variability and relatively few available mice within the treatment groups.

MGAT5 KO CD70 nanoCAR T cells are present in higher numbers than CD70 nanoCAR T in peripheral blood and spleen following tumor control

End-point analysis on day 34 was performed on peripheral blood (both experiments) and spleen (experiment A) by flow-cytometry (Figure 4-A,B,F). Human CD3+ T cells were detected in blood and spleen of mice treated with mock Cas9 or MGAT5 KO CD70 nanoCAR T cells and around 75% of these cells were found to be CD70 nanoCAR T cells (data not shown), based on GFP expression. The number of MGAT5 KO CD70 nanoCAR T cells in the spleen (Figure 4-B) and blood (Figure 4-F) is markedly increased as compared to mock Cas9 CD70 nanoCAR T cells. We did not analyze splenocytes on day 34 in experiment B, since we kept all mice for rechallenge, enabling statistics on larger groups. CAR T cells were still present in the blood at day 80 (Figure 4-C,G). We see a trend of higher numbers of MGAT5 KO CD70 nanoCAR T cells compared to CD70 nanoCAR T cells, mostly pronounced in experiment B, however, the difference is not statistically significant. End-point analysis between day 118 and day 123 was performed on peripheral blood and spleen (Figure 4-E,I). Similarly, in both experiments we measure higher numbers of MGAT5 KO CD70 nanoCAR T cells compared to CD70 nanoCAR T cells, however, the difference is not statistically significant.

Discussion

In this paper, we described the impact of cell surface glycosylation alterations on T cell fate and functions through MGAT5 KO induced in CD70 nanoCAR T cells. As the alteration of cellular glycosylation has an impact on multiple cell surface receptors and their signal transduction, we measured the integrated results of all of these alterations on cellular behavior, both in vitro and in vivo.

β1,6-N-acetylgalactosaminyltransferase-V (MGAT5) is the enzyme responsible for the initiation of GlcNAc-β-(1,6)-branching on N-glycans and is involved in multiple aspects of T cell activation. β-(1,6)-N-glycan branching leads to an increase in LacNAc modifications, the ligand of Galectins. It has been demonstrated that absence of Mgat5 and thus a decrease in LacNAc, lowers T cell activation thresholds in vitro by enhancing TCR clustering due to the absence of Galectin-glycoprotein lattice formation22,23. This Galectin-mediated lattice is responsible for holding CD45 and the TCR signaling complex in close proximity via their O- and N-linked glycans (respectively) to prevent low-avidity T cell activation24. Greco et al. recently demonstrated, by knockout of Mgat5 in pancreatic adenocarcinoma, that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional
activation, cytokine production and cytotoxicity. It is known MGAT5 is a primary target of the Golgi-resident intramembrane protease Signal peptide peptidase-like 3 (SPPL3). Along the same line as described by Greco et al., Heard and colleagues identified expression of SPPL3 in malignant B cells as a potent regulator of resistance to CAR therapy.

An increased incidence of autoimmune disease is seen in the absence of Mgat5 in vivo. Furthermore, negative regulation of TCR signaling by β1,6-GlcNAc-containing N-glycans promotes development of Th2 over Th1 responses, enhances Th2 polarization, and suggests a mechanism for the increased autoimmune disease susceptibility observed in Mgat5−/− mice. On the other hand, Mgat5 expression can be induced by the anti-inflammatory cytokine IL-10, decreasing antigen sensitivity of CD8+ T cells during chronic infection.

Our results indicate that MGAT5 KO CD70 nanoCAR T and CD70 nanoCAR T largely behave in the same way as control cells in vitro; MGAT5 elimination had no clear impact on T cell activation or viability. Furthermore, anti-tumor cell responses by MGAT5 KO CD70 nanoCAR T cells were maintained in vitro and very interestingly, our results indicate that MGAT5 KO nanoCAR T cells show enhanced anti-tumor potential and control upon a primary and secondary tumor challenge, as compared to mock engineered CAR T cells. In the case of very potent CAR T cells (cfr in experiment A), the improved protective effect of MGAT5 KO CD70 nanoCAR T cells over CD70 nanoCAR T cells seems to be more pronounced upon rechallenge, however, when CAR T cells are less potent (cfr in experiment B), enhanced capability seems to be more explicit in clearance of the primary tumor. Notably, increased numbers of MGAT5 KO CD70 nanoCAR T cells were observed upon specific antigen recognition, both in vitro and in vivo.

It was previously shown that the inhibition of binding to LacNAc glycans via competitive inhibition with carbohydrate analogs increased the number of infiltrating tumor-specific T cells. In a recent study by Ye et al., MGAT5 was discovered as one of the top hits in a CRISPR screen in murine CD8+ T cells in a syngeneic model of glioblastoma in immunocompetent mice. MGAT5 knockout enhanced the efficacy of adoptive T cell transfer against glioblastoma in mice with both immunocompetent and antigen-specific transgenic TCR models in terms of increased tumor infiltration and overall survival of tumor bearing mice.

A possible explanation for the higher numbers of MGAT5 KO CD70 nanoCAR T cells compared to control CD70 nanoCAR T cells, could be that MGAT5 KO CAR T cells are less susceptible to Galectin-3-mediated apoptosis. We already confirmed Galectin-3 overexpression by the tumor cell lines used in our models and we are currently evaluating whether Galectin-3 binding to MGAT5 KO (CAR) T cells is indeed reduced. To capture the transcriptional programs that are differentially regulated between glyco-engineered and wild type CAR T cells, we will perform transcriptome profiling by bulk mRNA sequencing on cells that are cultured in the absence and presence of antigen expressing cells. Gene set enrichment and pathway
analyses can then reveal a signature of gene upregulation or downregulation specific to knockout cell populations. Results of this experiment are expected soon. Taken together, it is clear from our data that disruption of N-glycosylation modifications on CAR T cells can have a major impact on their antitumor efficacy, and thus might have important implications for future design of cell-based immunotherapies.

Materials and methods

Ethical approval

All experiments were approved and performed according to the guidelines of the ethical committee Medical Ethics of Ghent University, Belgium. The breeding of NSG mice is covered by file E-726 and animal experiments are covered by file EC2020-009.

Cell lines

THP-1 cells were obtained from ATCC and cultured in RPMI medium (Gibco) supplemented with 10% fetal calf serum (FCS), 0.03% L-Gln, 0.4 mM sodium pyruvate and 50 μM β-mercaptoethanol. SKOV-3 cells expressing luciferase were kindly provided by Prof. De Wever (Ghent University, Faculty of Medicine and Health Sciences) and were cultured in DMEM medium (Gibco) supplemented with 10% FCS and 1% penicillin/streptomycin. Jurkat cells were obtained from ATCC and were cultured in RPMI medium (Gibco) supplemented with 10% FCS, 2mM L-Gln and 0.4 mM sodium pyruvate. All cell lines were maintained in a 37°C, 5% CO₂, fully humidified incubator and passaged twice weekly.

Human CD3+ T cell isolation and culturing

Leukocyte-enriched buffy coat samples were obtained from healthy donors attending the Red Cross center after informed consent and ethical committee approval (EC2019-1083). Peripheral blood lymphocytes were prepared by a Ficoll-Paque density centrifugation as described in the instruction manual for Leucosep™ (Greiner bio-one). CD3+ T cells were isolated by negative selection with antibodies against CD14, CD15, CD16, CD19, CD36, CD56, CD123 and CD235 (MojoSort™ Human CD3 T cell selection kit, Biolegend) according to the manufacturer’s protocol. Cells were cultured in IMDM + Glutamax medium (Gibco-BRL) supplemented with 10% heat-inactivated FCS and stimulated with Immunocult™ Human CD3/CD28 T cell Activator (Stemcell Technologies) (25 μL/ 10⁶ cells) for 3 days at 37°C in the presence of 10 ng/ mL IL-12 (Biolegend).

Prior to cell seeding, cells were washed twice with PBS before putting them in culture with rhIL-7 at 10ng/mL (Miltenyi) and rhIL-15 at 10 ng/mL (Miltenyi). Cytokines and medium were replaced every 2-3 days. Cell densities were maintained between 1 x 10⁶ and 3 x 10⁶ cells/ mL.
Guide RNA

We designed gRNAs using the Synthego design tool (https://www.synthego.com/products/bioinformatics/crispr-design-tool). Guides were ordered as chemically modified synthetic sgRNAs (with 2’O-Methyl at 3 first and 3 last bases and 3’ phosphorothioate bonds between first 3 and last 2 bases) and reconstituted at 100 µM in TE buffer. An overview of the guides used in this study can be consulted in Supplementary Figure 2.A.

RNP electroporation

Recombinant Cas9-GFP protein was purchased from the VIB protein core (https://vib.be/labs/vib-protein-core). Cas9 RNP was made by incubating Cas9 protein with sgRNA at a molar ratio of 1:2 at 37°C for 15 min immediately prior to electroporation in T cells. Electroporation was performed using the Lonza Amixa 4D Nucleofector X unit (Program EH-115) and the P3 primary cell kit with the following conditions: 1 x 10^6 cells/20 µL P3 buffer per cuvette (16-well strips) with 20 µM Cas9-RNP. Following nucleofection, 80 µL pre-warmed medium was added per well and cells were allowed to rest for 30 mins at 37°C, 5% CO₂.

Analysis of genome editing efficiency

0.1 x 10^6 cells were collected and lysed in QuickExtract™ (Lucigen Epicentre) according to the supplier’s instructions. The target site was amplified by PCR and Sanger Sequenced. Sequencing data was analyzed with the ICE tool (Inference of CRISPR Edits, Synthego) to infer the percentage of insertions and deletions (INDEL score) and the percentage of insertions and deletions that are out of frame (knock out (KO) score)\(^3\).

Production of retroviral vectors

Retroviral constructs encoding the nanoCAR sequences were previously cloned in the LZRS-IRES-eGFP vector and were obtained from Prof. Dr. Bart Vandekerckhove (Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium). Viral particles were produced using standard Ca\(_3\)(PO\(_4\))\(_2\) transfection of the Phoenix ampho packaging cell line. Retroviral supernatant was collected at day 14 after transfection and puromycin selection and kept at -80°C until use.

Generation of CD70 nanoCAR Expressing Human T cells

Immunocult-stimulated human CD3\(^+\) T cells were retrovirally transduced on Retronectin-coated plates (TaKaRa). 500 µL of cells per well at 0.5 x 10^6 cells/mL were supplemented with 0.5 mL retroviral supernatant and centrifuged for 90 minutes at 900 g at 32°C. Transduced cells were detected by eGFP expression or by an anti-VHH antibody (Genscript) directed against the nanobody constituting the extracellular domain of the CAR and analyzed by flow cytometry.
Lectin-based flow cytometry

For the evaluation of the poly-LacNAc content on the cell surface, we used the lectin from *Datura stramonium* at a staining concentration of 10 µg/mL (Biotinylated DSL, Vector laboratories, B-1185-2). 2 x 10^5 cells per condition were collected and rinsed three times with PBS. Cells were incubated with fixable viability dye eFl780 (eBioscience) and biotinylated lectin in lectin binding buffer (PBS with 0.1 mM CaCl₂) for 30 minutes at 4°C. After rinsing with lectin binding buffer, cells were incubated with PE-coupled neutravidin (Invitrogen, 5 µg/mL) for 30 minutes at 4°C. After rinsing the cells with PBS, samples were resuspended and analyzed by flow cytometry. A minimum of 50 000 events was recorded.

PNGaseF digest

In order to prepare cell surface N-glycans for DSA-FACE analysis, 1 x 10^6 cells were collected per condition and washed three times with PBS to reduce the presence of medium-derived glycans. Cell culture medium was collected for N-glycan labeling. PNGaseF digest (0.125 IU/ 1x10^6 cells, in-house production) was performed in 25 µL final volume in PBS for 2 hours at 37°C. Cells were removed by centrifugation (5 min at 300g) and the supernatant was subjected to another centrifugation step (15 min at 15 000 rpm) to remove cell debris. The remaining liquid portion of the sample was stored at -20°C until APTS labeling and DSA-FACE analysis.

N-glycan analysis using DSA-FACE

The remaining N-glycan samples were labelled by adding an equal volume (20 µL) of labeling mix consisting of a 1/1 v/v mix of 1M morpholine borane in 20% DMSO, 20% SDS and 4M Urea mixed with 350 mM APTS in 2.4M citric acid and 14% SDS immediately prior to labeling. The labeling reaction was incubated at 70°C for 1 hour and allowed to cool down at 4°C before purification. Size exclusion chromatography (Sephadex G-10 resin with an exclusion limit of 700 Da prepared in a 96-well setup in Multiscreen-Durapore plates) was performed twice to desalt the samples and to remove free unreacted APTS. The labeled glycans were then dried in a speedvac.

Purified labelled and dried N-glycans were resuspended in 10 µL ultrapure water and analyzed with capillary electrophoresis on an eight-capillary DNA sequencer (Applied Biosystems 3500 Genetic analyzer). A proprietary internal standard (GlyXera) was added to the samples to be able to align profiles from different samples. Samples were injected on a 50 cm capillary at 15 kV for 10 seconds, using POP7 polymer and 100 mM TAPS, pH 8.0, containing 1 mM EDTA as the running buffer. N-glycan profiles were analyzed through the Genemapper 6 software.
Flow cytometry analysis

Flow cytometry analysis was performed on 0.2 x 10^6 cells per sample collected in a 96-well V bottom plate. Cells were rinsed with FACS buffer (PBS containing 0.5% BSA and 2mM EDTA) for 3 min at 300g and incubated with Fc Receptor Blocking solution (Human TruStain FcX™, Biolegend) for 10 minutes prior to cell surface staining with fluorescently labeled antibodies in Brilliant Stain buffer (BD Biosciences) for 30 minutes at 4°C.

For human CD3+ T cell phenotyping, cells were labeled with fluorescent antibodies against human CD8, CD62L and CD45RA (BD Biosciences) and CD3, CD4, CD25, CD69, and CD279 (PD-1) (Biolegend). A Fixable dye eFluor™ 780 (eBioscience) was used to evaluate live/dead cells.

Flow cytometer calibration was performed using CS&T beads (BD Biosciences). The gating strategy was set based on fluorescence minus one (FMO) controls and retained for all samples. Jurkat, THP-1 and SKOV-3 cell lines and primary human T cells were labeled with fluorescent antibody against human CD70 or isotype control (Biolegend) to verify antigen expression as described before. Galectin expression by tumor cell lines was evaluated by cell surface staining with a fluorescent antibody against Galectin-3 and an antibody against Galectin-1. The latter was detected by a fluorescent anti-goat antibody. As a positive control, cells were incubated with 200 µg/mL recombinant Galectin-1 and Galectin-3 (Biolegend). Galectin binding was competitively inhibited by adding 50 mM lactose during the staining procedure.

In all analyses, following doublet exclusion, live cells were identified using a fixable viability dye (Molecular Probes, Life Technologies). Data were acquired on a BD Symphony A5 equipped with five lasers (355, 405, 488, 561, 640nm) (BD Biosciences) and analyzed using FlowJo software (Tree Star, Ashland, OR).

In vitro analysis of cytokine production

Glyco-engineered CD70 nanoCAR T cells were stimulated in vitro by co-incubation with THP-1 or SKOV-3 tumor cell lines expressing CD70 in a 96-well plate in duplicate. After 1 hour of co-incubation, BD GolgiPlug (BD Biosciences) was added and after an additional 15 hours of stimulation, the cells were harvested, labelled with fluorescent antibodies against CD3, CD4 and CD8, fixed and permeabilized (eBioscience) and labelled for intracellular expression cytokines with fluorescent antibodies against TNF-α (BD Biosciences), IFN-γ and IL-2 (Biolegend). Samples were analyzed by flow cytometry as described above.
In vitro analysis of tumor cell killing

Glyco-engineered CD70 nanoCAR T cells were incubated with 2×10^4 THP-1 cells at different effector/target ratios (0; 0.0015; 0.015 and 0.15) in IMDM medium with Glutamax (Gibco) containing 10% FCS and 1% penicillin/streptomycin. Cells were labelled with fluorescent antibodies against CD3, CD4 and CD8 for the analysis of T cells and CD33 for the analysis of THP-1 cells at the start of the co-culture (day 0) and at days 3, 7, 10 and 14. At day 7 of co-culture, 2×10^4 THP-1 cells were added to the remaining wells. Cell numbers were determined by flow cytometry.

In vivo analysis of glyco-engineered CD70 nanoCAR T cell efficacy

NSG mice (breeder pairs obtained from The Jackson Laboratory, breeding in house) between 8-12 weeks of age were subcutaneously (in the flank) injected with 2×10^6 SKOV-3 cells in 50 µL PBS. The cells were allowed to form a solid mass tumor and CD70 nanoCAR T cells were intravenously injected on day 13 (in 200 µL total volume in PBS). Body weight and tumor progression was followed up by caliper and bioluminescence imaging (BLI). A dose of 150 mg/kg D-luciferin potassium salt (Perkin Elmer) was injected intraperitoneally 10 minutes before BLI. Imaging data were analyzed using Living Image Software and reported as photons/second.

In experiment A, we started with 6 mice in the PBS and NTC group and 12 mice in the CD70 nanoCAR mock Cas9/MGAT5KO groups. At day 34, all control mice and 6 mice from the CD70 nanoCAR mock Cas9/MGAT5KO groups were sacrificed for analysis. The other 6 mice from the CD70 nanoCAR mock Cas9/MGAT5KO groups were kept for rechallenge. In experiment B, we started with 6 mice in the PBS and NTC group and 9 mice in the CD70 nanoCAR mock Cas9/MGAT5KO groups. All mice were kept for rechallenge, unless humane endpoint was reached (control mice). At the start of each experiment, we also kept a group of 8 (experiment A) or 6 (experiment B) mice to be used as a control (=PBS) group in the rechallenge phase of the experiment, to ensure age-matched controls.

End-point analysis on spleen and blood

At indicated time points, mice were euthanized. Peripheral blood was collected following severing of the right atrium of the heart and transferred to EDTA coated Microvetttes (Sarstedt). The volume of blood was determined and red blood cells were removed using ammonium-chloride-potassium (ACK) lysis buffer (Lonza) prior to antibody staining for flow cytometry analysis.

The spleen was collected and processed to a cell suspension through a 70 µM cell strainer. Erythrocytes were removed using ACK lysis buffer followed by washes. Cells were counted prior to antibody staining for flow cytometry analysis.

Tumors were isolated from non-treated controls and fixed in 4% PFA. Subsequently, tumor tissue was embedded in paraffin for downstream immunohistochemistry analysis.
Immunohistochemistry and microscopic analysis of galectin expression in tumor tissue

Immunofluorescent staining was performed on 4 μm thick formalin-fixed, paraffin embedded (FFPE) sections of tumor samples from untreated mice. After antigen retrieval using citrate buffer pH 6 (Vector, H-3300), sections were incubated with 1% goat serum in PBS + 0.5% BSA + 0.1% Tween20 for 30 minutes to block non-specific binding. Subsequently, monoclonal rabbit anti-galectin-1 (1:200, Cell Signaling, 13888S) or monoclonal rabbit anti-galectin-3 (1:200, Cell Signaling, 87985S) diluted in 1% w/v goat serum in PBS + 0.5% BSA + 0.1% Tween20 were incubated at overnight at 4°C. Alexa Fluor 568 labelled goat anti-rabbit (1:500, Thermofisher, A11036), was incubated at room temperature for two hours. Counterstaining was performed using DAPI (1:1000). Slides were mounted using 1% n-propyl gallate in glycerol (pH7).

Images of the galectin staining were acquired with a LSM880 confocal microscope (Zeiss) and analyzed through ZEN Microscopy Software (Zeiss).

Statistical analysis in vitro experiments assessing tumor cell killing

To analyze the data of the coculture experiment, we started from flow cytometry-based count data. Since the counts had been normalized using counting beads, they were not necessarily integers so we rounded all to the closest integer. We considered each setup with the same donor, E/T Ratio and type of CAR T cells (i.e. CD70 nanoCAR or CD70 nanoCAR MGAT5 KO) as a cluster. Since we had two measurements (repeats) at each day and the measurements were performed at day 0, 4, 7, 11 and 14, this means we had 10 measurements in each cluster. Furthermore, we observed a slight rise in the counts of the NTC cells over time in the control setups. We corrected the CAR T cell counts for this background (per cluster and at each timepoint) by subtracting the mean background count from the measurements.

We analyzed the background-corrected counts with a generalized linear mixed model (GLMM) to allow for modeling the within-cluster correlation over time. Since the data showed considerable overdispersion, we used a negative binomial model. The GLMMadaptive package allows to fit such a model in R using adaptive Gaussian quadrature (AGQ). We did not have enough data to fit a random slope model, so we settled for a random intercept model of the following form:

\[
\text{Count} \sim f(\text{Day} \ast (\text{Group} + \text{Donor} + \text{ETRatio}) + \text{Group} \ast \text{Donor} + (1|\text{cluster}))
\]

In this model, all fixed effects are coded as a factor. We chose to also model the time variable as a factor since the log-transformed counts are not linear with time. The model fit was evaluated using the DHARMa package and contrasts were estimated using the multcomp package.

Statistical analyses in vivo experiments

Multinomial logistic regression

We analyzed the distributions of outcomes for the primary and secondary tumors in the different groups of mice. To do so, we first had to define several possible outcomes. For the primary tumor, there are four...
possible outcomes: - Full control of the tumor, meaning that the tumor becomes undetectable both by
caliper measurement and on BLI, and also no relapse. - Full control of the tumor but with a relapse after a
period of the tumor being undetectable. - Partial control, meaning that the tumor stops growing but
remains detectable, all these mice also had a relapse. - No control of tumor meaning that the tumor
continually keeps growing. For the secondary tumor we only have full control, partial control or no control.
The follow up time was not long enough to also consider relapses. To analyze these data in R, we used
multinomial logistic regression (with a proportional odds assumption) as implemented in the polr function
of the MASS package. We analyzed the outcomes of experiments A and B together making experiment
an additional predictor apart from group. Using likelihood ratio testing, we tested for an interaction effect
between experiment and group and found that this was not significant in the primary nor secondary tumor.
We used the multcomp package to calculate contrast estimates with 95% confidence intervals. We also
used the ggpredict function from the ggeffects package to calculate experiment-wise predictions with
95% confidence intervals for the predicted outcomes.

Survival analysis (time to relapse)

To analyze the time to relapse, we first defined the start of follow up as the moment the primary tumor
was controlled or partially controlled. We define control as the first day the tumor became completely
undetectable on BLI and by caliper measurement. We define partial control as the first day a tumor (that
never fully disappears) stopped increasing in size according to caliper measurements. Next, we define a
relapse event as the moment a tumor starts growing again. We take the last day before the tumor has
increased in size again or became detectable again as the onset of relapse. The time to event is then the
time between start of follow up and a relapse event and the follow up time is the time between start of
follow up and either an event or the end of follow up in case of no relapse. We used R with the survival and
survminer packages to generate Kaplan-Meier plots with estimates of the median survival times and
a corresponding risk and events table. Since relapses were only observed in experiment B, we ran a
straightforward analysis with group as the only predictor (groups: CD70 nanoCAR or CD70 nanoCAR -
MGAT5 KO). We tested for the difference in survival probability in these groups with a logrank test as
implemented in the survival package.

Longitudinal analyses

Tumor volumes were measured by measuring the length and width of a tumor and using the length*
width*width/2 (this is a half cube or cuboid) approximation of the volume of a sphere. The smallest tumor
length/width that can be reliably measured with a caliper is about 0.5 cm. The minimal tumor volume that
can be calculated in this way is 0.5*0.5*0.5/2 = 0.0625 cm³ (which can be regarded as the limit of
quantification). We also cross-checked with BLI data for the small tumors, since this gives a better
indication on whether there actually is still a tumor present or not. Whenever a small tumor was measured
or a zero volume was registered, BLI was used to verify whether a tumor was actually present or not and
the caliper measurements were adapted accordingly: when no tumor was found on BLI, we set small caliper
measurements to zero and when a tumor was found on BLI but not measured by caliper, we set the tumor
volume to 0.5. Uncontrolled tumor growth is exponential so we log-transformed (with a base 2 log) all
tumor volume data to simplify the mean structures of the fitted models and to correct for the mean-
variance relationship we observed during data exploration. To avoid problems when the tumor volume is
zero, we first added 0.0625 (the detection limit) to all volumes before log-transforming. We then analyzed
the transformed data of each experiment (A and B) and each phase (primary tumor before and after
rechallenge and secondary tumor) separately by fitting a linear mixed model to each using the lme4
package45 and the nlminb fitting algorithm from the optimx package46 in R37. Where needed, we used piece-
wise linear models with up to two knots for the time variable to allow for changes in growth rate over time.
Random effects included a per-mouse random intercept and one or more random slopes for the time
variable to model within-mouse correlation over time. For each model, we started with mean and
covariance structures that were as saturated as possible based on the available data. Pruning the models
was done via likelihood ratio testing first using Residual maximum likelihood (REML) to test for the random
effects and then maximum likelihood (ML) to test for fixed effects. The final models were fitted using REML.
In all models, we observed residual heteroscedasticity, even with the log-transformed data, so we used
robust covariance estimators from the clubSandwich package47 (vcovCR, type ‘CR0’) in conjunction with
the multcomp package39 to calculate adjusted p-values and/or adjusted 95% confidence intervals for
parameters and contrasts.

\textbf{Acknowledgements}

NF and LM were staff scientists of VIB. EDB was a predoctoral fellow at FWO during the project and has
currently a doctor-assistant mandate at UGhent. EP was a research associate of VIB, AVH and EW are
research associates of UGhent. This work was supported by grants G050420N and G028220N of FWO
Vlaanderen and by a Young Investigator Proof of Concept (YIPOC) grant of the Cancer Research Institute
Ghent (CRIG). We are grateful to M. Goossens and L. De Pryck for help with the caliper/IVIS measurements,
splenocyte preparations and collecting SKOV3 cells. We thank Prof. Dr. Y. Chen (Parker Institute for Cancer
Immunotherapy Center at UCLA, Los Angeles, CA, USA) for intensive experimental training in the CAR T
field. We thank the VIB Bioimaging core Ghent (https://vib.be/labs/vib-bioimaging-core-ghent) and VIB
Flow Core (https://vib.be/labs/vib-flow-core-ghent) facilities for their services.
Declaration of interest statement

EDB, NF and NC are co-inventors on a PCT International Patent application (PCT/EP2022/086474) by the VIB and Ghent University, which incorporate discoveries and inventions described here. All the other authors declare no conflict of interest.

References

38. Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. [Internet]. Available from: https://CRAN.R-project.org/package=DHARMa

42. Therneau T. A Package for Survival Analysis in R [Internet]. 2022. Available from: https://CRAN.R-project.org/package=survival

47. Pustejovský J. ClubSandwich: Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections [Internet]. 2022. Available from: https://CRAN.R-project.org/package=clubSandwich
Tables

Table 1 | PCR primers to amplify the CRISPR target site. The forward primers were used for Sanger Sequencing

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer Sequence (5' → 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGAT5 Validation primer Fw</td>
<td>TCACAGCAGAATGGAAGT</td>
</tr>
<tr>
<td>MGAT5 Validation primer Rev</td>
<td>ACTGCTTATGAAGCAGTGG</td>
</tr>
</tbody>
</table>

Primer name: MGAT5 Validation primer Fw, MGAT5 Validation primer Rev

Primer Sequence (5' → 3'): TCACAGCAGAATGGAAGT, ACTGCTTATGAAGCAGTGG

License: CC-BY-NC-ND 4.0 International license
Figures

A

B

C

D

E

F

Retention time

Relative fluorescence units

P1 P2 P3 P4 P5 P6

Mock Cas9

MGAT5 KO

CAR

Mock Cas9

MGAT5 KO

PNGaseF digest

APTS labeling

Clean-up

DSA FACE
Figure 1 | MGAT5 glyco-gene editing and CD70 nanoCAR engineering. A. Pathway of N-glycan branching. N-glycan branching is achieved through a series of mannosidase (M) and mannosylglycoprotein-N-acetylglucosaminyltransferase (MGAT)-mediated reactions. The enzyme of interest to our project is marked in orange. This branching primarily occurs in the medial-Golgi compartment. In later compartments, branched glycans are acted upon by other enzymes including Gal-, GlcNAc-, sialyl- and fucosyltransferases to result in complex glycans. B. Experimental timeline. C. Mean editing efficiency as % insertions/deletions (indels) or proportion of indels that indicate a frameshift or are 21+ bp in length (assumes all edits are in a coding region) (KO) obtained for the Mgat5 locus. D. Mean transduction efficiency as % GFP expressing cells for the different engineering conditions. SEM: standard error of the mean. E and F. Profiling of alterations in cell surface glycosylation upon MGAT5 KO in CD70 nanoCAR T cells. E. Lectin staining. 2 x 10⁵ wild type, mock engineered (green) or MGAT5 KO (orange) CAR T cells were collected, stained with fixable viability dye eFl780 and biotinylated lectin followed by secondary staining with PE-coupled neutravidin. Analysis was done by flow cytometry and graphs show the reduction in lectin binding signal intensities as compared to wild type CAR T cells after gating on viable cells. Results are shown for engineered T cells from three independent blood donors. F. DSA-FACE profiling. Schematic representation of the sample preparation and DSA-FACE profiles of the cell-surface glycome of mock engineered and MGAT5 KO CAR T cells. Sialidase digest was performed on the samples prior to the analysis. The major pairs of peaks in the profile are annotated P1-P6.
Figure 2 | The impact of glyco-engineering in MGAT5 on in vitro CD70 nanoCAR efficacy. A. and B. Effect of MGAT5 KO on CD70 nanoCAR viability and subset distribution at day 13 of in vitro culturing. MGAT5 KO CD70 nanoCAR T cells were generated as described above. At day 13, the immunophenotype of the cells was evaluated prior to the initiation of the functional assays. Mean data is shown from experiments performed with three independent donors. Error bars represent the standard error of the mean (SEM). C-E. The impact of glyco-engineering of MGAT5 on in vitro CD70 nanoCAR cytokine production. Cytokine production of glyco-engineered CD70 nanoCAR T cells was evaluated by intracellular staining after co-c incubation with THP-1 and SKOV3 target cell lines for 16 hours. Unstimulated cells were included as control.
negative control (-) while Immunocult stimulation was included as positive control (+). Technical duplicates were analyzed. Mean percentages of TNF-α, IFN-γ and IL-2 positive CD3+ are shown. Mean data is shown from experiments performed with three independent donors. Error bars represent the standard error of the mean (SEM). F-I. The impact of glyco-engineering in MGAT5 on in vitro CD70 nanoCAR cytotoxic potential. Glyco-engineered CD70 nanoCAR T cells cultured in the presence of IL-7 and IL-15 were incubated at different effector to target THP-1 cell ratios in duplicate and cell numbers were analyzed over a time period of 14 days. A second challenge with THP-1 cells was added at day 7. Error bars represent the standard error of the mean cell number from data obtained with 3 different T cell donors. F and G. Results for E/T ratio of 0.15 corresponding to the co-culture of 20 000 THP-1 cells with 3 000 glyco-engineered CD70 nanoCAR T cells. H and I. Results for E/T ratio of 0.015 corresponding to the co-culture of 20 000 THP-1 cells with 300 CD70 nanoCAR T cells. The data from the right panels was modeled using a mixed negative binomial model with a random intercept for each cluster (a cluster being defined as the set of measurements sharing the same donor, E/T Ratio and type of CAR T cells). *** p<0.001.
Figure 3 | The impact of glyco-engineering on in vivo CD70 nanoCAR functionality. A. Schematic representation of the experimental timeline for the study of the in vivo efficacy of MGAT5 KO CD70 nanoCAR T cells. Timepoints that differ between Experiment A and Experiment B are indicated with a ‘/’. B. Tumor burden measured by caliper. Tumor volume is calculated as (tumor length x tumor width^2)/2. Group means are indicated with error bars representing the standard error of the mean (SEM). C. Overview of the response to primary tumor challenge in the different treatment groups for both experiments combined. D. Overview of the response to secondary tumor challenge in the different treatment groups for both experiments combined.
Figure 4 | Flow cytometry-based analysis of CART cells in blood and spleen. Immunophenotype of mock Cas9 or MGAT5 KO CD70 nanoCAR T cells in peripheral blood and spleen at day 34, day 80, and day 118 (Experiment A, B). Data is represented as proportion of CD3GFP+ cells. Each data point represents a single animal. Error bars represent the standard error of the mean (SEM). P-values were calculated by a one-way ANOVA.* P < 0.05. A, C, D, F, G, H. The number of CART T cells present in the blood is indicated as cells/μL blood. B, E, I. The number of CART T cells in the spleen is indicated as CD4+ or CD8+ T cells.
Supplementary information

A

Supplementary Figure 1 | Characterization of the THP-1 and SKOV-3 cell lines used as target cells. A, CD70 antigen expression on the THP-1 and SKOV-3 target cell lines was evaluated by flow cytometry. Jurkat cells were included as negative control. Non-transduced control (NTC) and CD70 nanoCAR expressing human T cells were included to check for auto-antigen expression. B, Evaluation of the secretion of Galectins by the tumor cell lines under study. Secretion and cell surface binding of Galectin-1 and Galectin-3 by different cell types was assessed by flow cytometry. Jurkat cells were included as negative controls. As a control,
lactose was used as competitive inhibitor to reduce cell surface galectin binding. Additionally, cells were incubated with recombinant galectins as positive control. The secretion and cell surface binding of Galectin-1 and Galectin-3 on THP-1 and SKOV-3 cells are summarized in the overlaid histograms. Results representative for two independent experiments are shown. C. Representative images of an FFPE tumor sample expressing Galectin-1 (left) and Galectin-3 (right) at a 25x magnification (red) with DAPI nuclear counterstain (blue).
Supplementary Figure 2

A. Overview of the gRNA used in this study to generate a knockout in MGAT5. **B.** Genome localization of the gRNA target site (green). **C.** Mutation patterns detected by Sanger sequencing and ICE analysis. sgRNA target sequence (orange) and PAM (blue) sequences are indicated above the corresponding traces. Red dashes denote deleted bases and red n indicate inserted nucleotides. The vertical black line corresponds to the predicted Cas9 cut site. The contribution shows the inferred fractions of each mutant sequence present in the edited population. Cutting and error-prone repair usually results in mixed sequencing bases after the cut. %INDEL: % insertions/deletions, %KO: proportion of indels that indicate a frameshift or are 21+ bp in length (assumes all edits are in a coding region), R2: model fit (how well the proposed indel distribution fits the Sanger sequence data of the edited sample). Representative results of three different donors are shown.
Supplementary Figure 3 | Time (in days) to relapse of the primary tumor (Experiment B). Time zero was set as the time that the primary tumor was controlled or partially controlled. An event is the time the tumor starts growing again. We take the last day before the tumor has increased in size again or became detectable again as the onset of relapse. A. Kaplan-Meier curve. This plot shows the probability of relapse-free survival in the two groups. The dotted lines indicate median survival times. B. Risk and event table corresponding to the Kaplan-Meier plot. The table shows the number of mice at risk and, between brackets, the cumulative number of relapses in each group and at each time.
Supplementary Figure 4 | Longitudinal analysis of the primary tumor (Experiment A). Using the longitudinal data of the primary tumors in Experiment A, a piecewise linear mixed model with the first timepoint at day 7 and knots at day 19 and 26 and with interactions between the group and the first and second time-segment was fitted, which allows to model the mean traces of each treatment group. A, Summary of the model output, listing all parameter estimates for the model logTumorVol ~ Time7 + (Time19 + Time26)*Group + (1 | ID). The table gives parameters and standard errors on the log scale together with test statistics and multiple testing adjusted p-values (null hypothesis: parameter equal to zero). B. Plot of the caliper measurements and model fit. The dots are mean log tumor volumes with S.E.M. for each group at each day they were measured. The lines are the model-based predictions for the mean log tumor volume for each group. C, Inference for different research questions. In this table, the estimates and confidence intervals are transformed back to the original scale so we can interpret them in a straightforward way. E.g. a growth rate of 1.06 means a multiplicative change in tumor volume of 1.06 each day, or a 6% increase each day, compared to the previous day. In this context, the adjusted p-values also relate to a transformed null hypothesis (i.e. estimate equals one). S.E.: Standard Error. CI: Confidence Interval.
Supplementary Figure 5 | Longitudinal analysis of the secondary tumor (Experiment A). A linear mixed model with interactions between the group and time was fitted to the longitudinal data of the secondary tumor in Experiment A, which start at day 89. A, Summary of the model output, listing all parameter estimates for the model logTumorVol ~ Time89*Group + (Time89 | ID). The table gives parameters and standard errors on the \(\log \) scale together with test statistics and multiple testing adjusted \(p \)-values (null hypothesis: parameter equal to zero). B, Plot of the caliper measurements and model fit. The dots are mean \(\log \) tumor volumes with S.E.M. for each group at each day they were measured. The lines are the model-based predictions for the mean \(\log \) tumor volume for each group. C, Inference for different research questions.

In this table, the estimates and confidence intervals are transformed back to the original scale so we can interpret them in a straightforward way. S.E.: Standard Error. CI: Confidence Interval.
Supplementary Figure 6 | Longitudinal analysis of the primary tumor (Experiment B). A piecewise linear mixed model with interactions between the group and the second- and third-time segment was fitted to the longitudinal data of the primary tumor in Experiment B. The data start at day 7 and knots are added at day 21 and 33. A. Summary of the model output, listing all parameter estimates for the model logTumorVol \sim \text{Time7} + \text{Time21} + \text{Time33} \times \text{Group} + (\text{Time7} | \text{ID}). The table gives parameters and standard errors on the log scale together with test statistics and multiple testing adjusted p-values (null hypothesis: parameter equal to zero). B. Plot of the caliper measurements and model fit. The dots are mean log tumor volumes with S.E.M. for each group at each day they were measured. The lines are the model-based predictions for the mean log tumor volume for each group. C. Inference for different research questions. In this table, the estimates and confidence intervals are transformed back to the original scale so we can interpret them in a straightforward way. S.E.: Standard Error. CI: Confidence Interval.
Supplementary Figure 7 | Longitudinal analysis of the relapse of the primary tumor (Experiment B). A linear mixed model was fitted to the longitudinal data of the relapsing mice in Experiment B. Only mice in the treated groups had cleared the tumors fully or partially, so the analysis is naturally restricted to the two CAR groups. To enable this analysis, we also had to change the timescale for each individual mouse such that the first day of the relapse became day 0. Had we not done this, the analysis would be moot since, on average, the CD70 nanoCAR group had relapses earlier than the CD70 nanoCAR – MGAT5 KO group. This would almost automatically result in larger tumors in the CD70 nanoCAR group compared to the CD70 nanoCAR – MGAT5 KO group. A. Summary of the model output, listing all parameter estimates for the model logTumorVol ~ Time+Group + (Time | ID). The table gives parameters and standard errors on the log scale together with test statistics and multiple testing adjusted p-values (null hypothesis: parameter equal to zero). B. Plot of the caliper measurements and model fit. The dots are individual log tumor volumes. Dots connected by a line are measurements from the same mouse (note that due to the time translation, mean values per day are not informative, since not all measurements were made on the same day on the new timescale). The two straight lines are the model-based predictions for the mean log tumor volume for each group. C. Inference for different research questions. In this table, the estimates and confidence intervals are transformed back to the original scale so we can interpret them in a straightforward way. Note that the interaction between Time and Group was not significant here so the growth rate is the same in each group but the tumors are smaller on average in the MGAT KO group. S.E.: Standard Error. CI: Confidence Interval.
Supplementary Figure 8 | Longitudinal analysis of the secondary tumor (Experiment B). A piecewise linear mixed model with interactions between the group and the second time segment was fitted to the longitudinal data of the secondary tumor in Experiment B. The data start at day 92 and a knot is added at day 101. A, Summary of the model output, listing all parameter estimates for the model logTumorVol ~ Time92 + Time101*Group + (Time92 | ID). The table gives parameters and standard errors on the log scale together with test statistics and multiple testing adjusted p-values (null hypothesis: parameter equal to zero). B, Plot of the caliper measurements and model fit. The dots are mean log tumor volumes with S.E.M. for each group at each day they were measured. The lines are the model-based predictions for the mean log tumor volume for each group. C, Inference for different research questions. In this table, the estimates and confidence intervals are transformed back to the original scale so we can interpret them in a straightforward way. S.E.: Standard Error. CI: Confidence Interval.