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Abstract 

High-throughput phenotypic screens leveraging biochemical perturbations, high-content readouts, and 

complex multicellular models could advance therapeutic discovery yet remain constrained by limitations 

of scale. To address this, we establish a method for compressing screens by pooling perturbations 

followed by computational deconvolution. Conducting controlled benchmarks with a highly bioactive 

small molecule library and a high-content imaging readout, we demonstrate increased efficiency for 

compressed experimental designs compared to conventional approaches. To prove generalizability, we 

apply compressed screening to examine transcriptional responses of patient-derived pancreatic 

cancer organoids to a library of tumor-microenvironment (TME)-nominated recombinant protein ligands. 

Using single-cell RNA-seq as a readout, we uncover reproducible phenotypic shifts induced by ligands 

that correlate with clinical features in larger datasets and are distinct from reference signatures available 

in public databases. In sum, our approach enables phenotypic screens that interrogate complex 

multicellular models with rich phenotypic readouts to advance translatable drug discovery as well as basic 

biology.  
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Introduction 

Phenotypic drug discovery is a powerful approach for identifying clinically relevant treatments1–5. To 

date, successful efforts have employed basic readouts (e.g. viability) in simple models of infectious or  

monogenic diseases where the underlying mechanisms are easy to faithfully recapitulate4. However, most 

human diseases arise in the setting of complex multigenic and multicellular ensembles that are not well-

captured by these approaches. While recent advances in phenotypic screening can now directly link 

genetic perturbation libraries to high-content readouts (e.g., Perturb-seq6), they still have several 

drawbacks. For example, genetic approaches are highly challenging to use with complex multicellular 

models and do not mirror the pleotropic manner in which intercellular signals act in vivo. Most critically 

though, any hit cannot be easily advanced as a therapeutic substrate since it provides a gene target rather 

than a therapeutic agent, disrupting the “chain of translatability”7. As a result, there remains a wide array 

of human maladies for which phenotypic drug discovery cannot be applied effectively. To advance drug 

discovery efforts, we require improved phenotypic screens that can leverage: 1) in vitro or ex vivo cellular 

models that maintain high-fidelity to in vivo disease contexts (e.g., cell type, epigenetic state, or tissue of 

residency); 2) high-content readouts, such as single-cell genomics or high-content imaging, that can 

comprehensively capture the complex cellular phenotypes associated with a disease state; and, 3) 

biochemical perturbation libraries built with small molecules or protein ligands that, unlike genetic 

perturbations, can be directly advanced as therapeutic substrates. 

 

At present, it remains challenging to conduct high-content phenotypic biochemical perturbation screens in 

complex, high-fidelity avatars due to two limitations of scale. First, high-content readouts, such as single-

cell transcriptomics (scRNA-seq), are orders of magnitude more expensive than simple functional assays 

like cell viability, growth, or secretion. While methods exist for increasing efficiency (e.g., compressed 

sensing8 and antibody or lipid based sample multiplexing9), they can still be costly to implement on a per-

compound basis and/or have fundamental throughput limitations. Second, high-fidelity models derived 

from clinical specimens are more challenging to generate at scale than less physiologically representative 

systems like cell lines. In the most representative cases (e.g., tissue explants or specific model organisms), 

bio-mass limitations practically restrict the number of perturbations that can be tested; in expandable 

models of intermediate complexity (e.g., organoids), expansion can be constrained by phenotypic changes 

over time, as evidenced by epigenetic drift in intestinal organoids10, clonal drift in glioblastoma 

organoids11, and altered RNA and genetic state in pancreatic cancer organoids12. As one approach to 

enhance scale, past studies have pooled perturbations together13. While this fundamental approach could 
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improve scale and reduce assay costs per-compound, previous efforts have been limited to simple 

readouts and libraries of mostly inactive small molecules, leaving unanswered questions about the 

efficacy of such approaches and how to effectively implement them13.  

 

Here, we introduce a generalizable, scalable method for compressing phenotypic screens with complex 

multicellular models and high-content readouts. Our method: 1) pools perturbations to reduce sample 

number requirements and 2) infers single perturbation effects with a regression-based framework. To 

validate our method and examine the bounds of compression, we conducted a series of phenotypic 

screening experiments, both compressed and conventional (ground truth), using a bioactive small 

molecule library and a high-content imaging readout (Cell Painting)14. Across a wide range of pool sizes, 

we consistently identify the compounds with the largest ground truth effects as hits in our compressed 

screens, thoroughly vetting the robustness of the approach. We also demonstrate the generalizability of 

the method to other models and readouts by performing a compressed screen of tumor-microenvironment 

(TME)-nominated recombinant protein ligands on patient-derived pancreatic ductal adenocarcinoma 

(PDAC) organoids with a scRNA-seq readout. We find that almost all of our top hits drive conserved 

transcriptional responses when screened individually. Moreover, we demonstrate the biological 

importance of these findings by showing that the axes of transcriptional variation we uncover better 

correlate with important clinical features in larger PDAC datasets whereas current signatures available in 

reference databases (e.g., MsigDB) do not. 

 

In summary, our method provides a means to conduct high-content phenotypic screening in complex, 

representative biological models, expanding our ability to connect experimental perturbations with 

clinical observation to strengthen the “chain of translatability” in drug discovery. 

 
Results 

Compressed screening: A scalable phenotypic screening framework for complex model systems and 

readouts 

We developed compressed screening to increase the throughput of phenotypic screens by pooling together 

perturbations. More specifically, to increase scalability, we combine N perturbations into pools of unique 

perturbations of size P where each perturbation is repeated in R distinct pools (Fig. 1a-b). Relative to a 

conventional screen where each replicate of each perturbation is screened individually, compressed 

screening reduces the sample number requirements by a factor of P, which we refer to as P-fold 

compression. To analyze the output of compressed screens, we developed an assay-independent 

computational framework for deconvoluting the effects of compounds based on regularized linear 
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regression and permutation testing, inspired by previous work inferring the effects of guide RNAs on 

genes in pooled CRISPR screens (Fig. 1c)6. By developing compressed screens, we aimed to unlock the 

use of higher complexity model systems and assays in phenotypic screening (Fig. 1d).  

 

Technology development in U2OS cells lines with a cell-painting readout 

To rigorously compare compressed screening with conventional approaches, we conducted a series of 

ground truth and compressed screens in the U2OS cell line with 316 small molecules from an FDA drug 

repurposing library using a Cell Painting readout (Fig. 2a, Table S1). We selected U2OS, a non-sample 

limited model system, and Cell Painting, a cost-effective high-content readout, so that we could test the 

limits of our method by conducting many screens at varying compression levels.  We chose an FDA drug 

repurposing library to test our ability to deconvolute a pooled experiment where highly bioactive 

perturbations with large effect sizes would frequently co-occur. 

 

First, to find optimal conditions for our compressed screen, we conventionally screened 9 

concentration/timepoint combinations. To analyze our Cell Painting dataset, we constructed an analysis 

pipeline to perform illumination correction, quality control, cell segmentation, morphological feature 

extraction, and highly variable feature selection (see Methods). For each sample well treated with a 

perturbation or a DMSO negative control, we obtained a vector of informative features that measure cell 

morphology. With this dataset, we quantified the magnitude of the effects of the perturbations relative to 

the negative controls by calculating the Mahalanobis distance (i.e., the multidimensional z-score) between 

each perturbation and the DMSO controls. From the 9 conventional screens, we chose the 24 hour 

timepoint and 1 mM concentration combination as our reference GT screen, and conducted subsequent 

compressed screens with these conditions, as these conditions yielded the largest variation in perturbation 

effect size relative to DMSO control (Extended Data Fig. 1a-b).  

 

In addition to identifying the magnitude of the GT drug effects (Mahalanobis distance), we characterized 

the phenotypes associated with drugs via an unbiased clustering approach. To do so, we first identified the 

cellular morphological phenotypes in our GT screen by clustering over morphological profiles (Fig. 2b). 

Then, for each drug and each morphological phenotype, we calculated an enrichment score that quantified 

how enriched the samples treated with a given drug were for a given morphological phenotypes 

(Extended Data Fig. 1d). Finally, we clustered drugs based on their enrichment scores define GT drug 

clusters (Fig. 2c, Extended Data Fig. 1e)15. This revealed 10 clusters of drugs that were distinctly 

enriched for the underlying cellular morphologies present in the data. 
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We next conducted an array of compressed screens with pool sizes varying from 3 to 80 perturbations in 

order to benchmark and test the limits of compression with a highly bio-active perturbation library (Fig. 

2a).  First, we benchmarked our approach for deconvoluting individual perturbations in a compressed 

screen. For each pooled perturbation, we summarized its effect by calculating the L1 norm (sum of the 

absolute values) of the permute test significant regression coefficients over all features and scaling by the 

max L1 norm value we measured. These scaled L1 norm values strongly correlated with the GT 

perturbation effects for pool sizes of up to 40 perturbations and were also strongly correlated between 

screens with the same perturbations and pool size but distinct random pooling (Fig. 2d). Across all pool 

sizes our approach identified a subset of significant perturbations (scaled L1 norm > 0) corresponding to 

the compounds with the largest GT effects, while lower compression (smaller pools) recovered lower 

effect perturbations (Fig. 2e). At lower compressions perturbations from 8 of the 10 GT drug clusters 

were identified as hits, and even at pool sizes as high of 40, perturbations from 4 of the 10 GT drug 

clusters were identified as hits. Thus, even at high compression values, our compressed screens identified 

drugs that drove multiple phenotypes and were not limited to identifying the effect of a single dominant 

phenotype. By varying the permutation testing significance threshold in our approach, we could tune 

deconvolution to either identify more hits that drive significant GT phenotypes with a higher false 

positive rate or to uncover fewer hits but with a lower false positive rate, with pool sizes up to 40 

perturbations having strong agreement to GT effect (Fig. 2f-g). In summary, our benchmarking results 

demonstrate that our approach to screening is efficient, accurate, reproducible, and tunable. 

 

Compressed tumor microenvironment ligand screening with PDAC organoids and scRNA-seq 

To evaluate the utility of our approach for additional perturbations, model systems, and readouts, we 

applied compressed screening to characterize biological ligand responses in patient-derived pancreatic 

ductal adenocarcinoma (PDAC) organoids using single-cell RNA-seq (scRNA-seq). PDAC tumor cells in 

vivo fall along the prognostically and therapeutically relevant basal-to-classical transcriptional state 

continuum16. scRNA-seq studies have demonstrated that tumors enriched for specific cancer cell states 

are associated with specific non-cancer cell populations that express genes encoding for biological 

ligands17. However, it is challenging to conduct conventional function screens of these ligand proteins 

due to the costs of organoid culture and scRNA-seq. Thus, this problem posed an ideal application for 

compressed screening. 

 

We applied compressed screening to perturb PDAC organoids with a library of 68 recombinant protein 

ligands nominated by the expression of their corresponding genes in immune and structural cells that are 

likely to be present in the PDAC tumor microenvironment (TME)17,18, and used a multiplexed scRNA-seq 
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readout to measure phenotypic ligands effects (Fig. 3a, Table S2)19. To test replicability, we conducted 

two runs with the same model, library, and compression scheme (replicates = 5, mean pool size = 4.75) 

but distinct randomly generated ligand pools. In addition to negative controls (wells containing only 

organoids and minimal media), we individually screened three ligands (TNF-α, TGF-β1, IFN-γ) with 

known activity in PDAC12,20 as positive controls (landmarks). After sample demultiplexing and quality 

control, we analyzed 5,662 cells and 10,881 cells from the two runs, with a mean ± standard deviation of 

cells per compressed pool of 59 ± 32 cells and 113 ± 65 respectively (Extended Data Fig. 2a-b). 

 

As PDAC cells in these screens were simultaneously exposed to multiple perturbations, it seemed likely 

that a given cell could concurrently express multiple gene expression programs in response to stimulation. 

Thus, we applied consensus non-negative matrix factorization (cNMF) to infer the predominate gene 

expression programs (GEPs) in our data as well as the activity of each GEP in each cell21. This revealed 

13 GEPs with highly variable activity across cells (Extended Data Fig. 2c, Table S3). We annotated 11 

of these GEPs by correlating their expression with module scores of existing gene sets from pancreatic 

cancer cell states, the MsigDB and PROGENy databases, cell cycle scores, and cell quality metrics (Fig. 

3b, Extended Data Fig. 2d-e)22 . These 11 gene sets were as follows: NF-κβ activation, TGF-β response, 

Type I IFN response, Moffitt et al. Classical, cell cycle S phase, cell cycle G2M, mitochondrial, 

ribosomal, and three GEPs primarily expressed in low complexity cells.  One of the remaining GEPs 

displayed negligible association (R < 0.03) with the Hallmark IFN-γ response in MsigDB, yet clearly 

correlated with the module score for genes differentially expressed in the IFN-γ positive control wells. 

The final GEP did not clearly correlate (R > 0.25) with any signature in MsigDB or PROGENY, and we 

annotated it as a “type 2 immunity” signature based on examining the deconvolution results presented 

below and discovering that the top ranked genes in the GEP can be induced by IL-4 and IL-1323–25.  

 

We next applied our deconvolution framework to infer which ligands drove the activity of each cNMF 

GEP in the compressed run (Fig. 3c-d, Extended Data Fig. 2f). As stated above, we annotated the type 2 

immunity GEP based on its association with IL-4 and IL-13, as well as ADIPOQ, in both compressed 

screens. Reassuringly, we found that IFN-γ was associated with the IFN-γ response GEP, IFN-ɑ2 was 

associated with the type I IFN signaling GEP, TGF-β and INHBB (a member of the TGF-β superfamily) 

with the TGF-β response GEP, IL-1A, IL-1B, and TNF-α (known activators of NF-κβ26) with the NF-κβ 

activation GEP, and the mitogens WNT7A and RSPO3 were associated with the ribosomal GEP27,28. 

Interestingly, we would not have been able to infer which ligands were most active in the organoids by 

examining cognate receptor expression, given our active ligands spanned the range of cognate receptor 

expression in negative control organoid cells (Extended Data Fig. 2g). Together, these findings reveal 
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major axes of phenotypic variation in PDAC organoids and nominate TME ligands that drive this 

variation. 

 

Validation of compressed hits with single-ligand perturbations 

To validate the results of our compressed screen, we individually tested the eleven ligands associated with 

the 5 aforementioned GEPs (NF-κβ, type 2 immunity, TGF-β, IFN- γ, and ribosomal). This subset of 

ligands consisted of IL-1A, IL-1B, TNF-α, IL-4, IL-13, ADIPOQ, TGF-β1, INHBB, IFN-γ, WNT7A, and 

RSPO3. We conducted two such validation screens on separate days (biological replicates), screening six 

replicates of all ligands, including a set of negative control organoids in each run. We then pooled these 

data with the negative controls and individual landmark ligand positive controls from the compressed 

screens to form a final single-ligand perturbation dataset (Fig. 4a, Extended Data Fig. 3a).  

 

Running cNMF on this dataset, we identified GEPs that highly correlated with each of the GEPs from the 

compressed screening dataset (Fig. 4b, Extended Data Fig. 3b-c). When analyzing the data, we observed 

a batch effect between screens conducted on different days (Extended Data Fig. 3d). Thus, to identify 

the effects associated with each single ligand independent of batch, we first ran cNMF over the single-

ligand dataset and then ran a linear model to predict the effect of each ligand on each cNMF GEP while 

including experimental batch as a covariate (Extended Data Fig. 3e, Table S4). This revealed that IL-

1A, IL-1B, TNF-α, IL-4, IL-13, TGF-β1, IFN-γ, and RSPO3 significantly increased the expression (adj. p 

value < 0.05) of the GEPs that they were mostly strongly associated with in the compressed screen (Fig. 

4c), validating 8 of the 11 ligand effects we tested and revealing ligands that modulated the expression of 

all 5 of the GEPs selected. These findings demonstrate that our compressed screening approach can 

successfully identify perturbations in complex cancer models that drive a variety of transcriptomic 

phenotypes.   

 

Type 2 immune cytokine GEP expression correlates with prognostic cancer cell state in publicly available 

transcriptomic datasets 

To understand the relevance of the phenotypic shifts we identified to therapeutic development, we 

examined the expression of the top genes from the GEPs we identified in publicly available PDAC tumor 

transcriptomic datasets. Doing so, we first calculated a module score for each GEP on bulk RNA-seq 

samples from PDAC tumors in the cancer genome atlas (TCGA)29. Additionally, we scored the TCGA 

samples on the survival-linked classical and basal states scores from Moffitt et al. Correlating GEP scores 

with basal/classical scores across the samples in TCGA, we found that, in line with past work, the TGF-β 

GEP score highly correlated with the Moffitt et al. basal score (Fig. 4d)17. Surprisingly, the type 2 
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immunity GEP score (driven by IL-4 and IL-13) strongly correlated with the Moffitt et al. classical score 

(R=0.72, adj. p value < 10-24). In contrast, gene signatures of IL-4 taken from MsigDB that were in 

different cell types displayed much lower correlations with the classical score (Reactome: r=-0.21, p 

value < 0.03, Biocarta: r =0.0062, p value < 0.94 Lu et al IL-4: R=-0.1, p value < 0.33) (Fig. 4f). We also 

observed minimal overlap between the type 2 immunity GEP and genes from corresponding signatures 

from MsigDB, suggesting that the type 2 immunity GEP may be context specific to PDAC and more 

relevant to the in vivo setting than existing MsigDB signatures (Extended Data Fig. 3f, Table S5).  

 

As these results may have been confounded by the bulk nature of TCGA samples, we next asked if the 

same associations held true in malignant cells from the publicly available Raghavan et al. PDAC scRNA-

seq dataset12. Repeating these analyses across the malignant single cells, we again observed a much 

stronger correlation (R=0.46), p value < 2.2 * 10-16) between the type 2 immunity GEP and the Moffitt et 

al classical score than we did between the MsigDB signatures and the Moffitt et al classical score 

(Reactome: r=-0.19, p value < 6.6 * 10-16, Biocarta: r =3.6 * 10-5, p value < 0.94 Lu et al IL-4: R=-0.04, p 

value < 9.0 * 10-5) (Fig. 4e,g). In line with this finding, we also found that SPP1+ macrophages (which 

were significantly overrepresented in classical tumors in Raghavan et al) highly expressed IL4I1, a 

downstream target gene directly induced by IL-4, further suggesting that IL-4 signaling may play a role in 

shaping the classical state-associated TME (Fig. 4h, Table S6). These findings suggest that modulating 

type 2 immune cytokine signaling may be a promising avenue for controlling the plasticity of the 

prognostic and drug relevant classical PDAC state. This in turn provides an example of the insights that 

may be gained by  a next generation of phenotypic screens that, with compression, effectively leverage 

complex multicellular models and high-content assays. 

 

Discussion 

Scalability presents a major obstacle to phenotypic screening in complex multicellular models with high-

content readouts. Here, to address this challenge, we developed compressed screening – an assay and 

model independent approach to increase phenotypic screen scalability by pooling perturbations and 

computationally inferring the effects of individual factors. We developed this method for chemical and 

biological ligand perturbations, which unlike genomic perturbations, recapitulate in vivo intercellular 

signaling dynamics, are readily advanced as therapeutic substrates, and can be easily used to perturb 

complex multicellular models. We validated this method in U2OS cells with a high-content imaging 

readout, demonstrating that the top hits across a wide range of compression corresponded to those 

perturbations with the largest effects when screened individually. Next, we applied this technology to 

identify the phenotypic effects of TME-associated ligands in primary PDAC organoids. Here, we 
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discovered multiple classes of ligands that drove conserved patterns of response and, importantly, that IL-

4 and IL-13 induced a transcriptional state in PDAC organoid models that not only differed from 

transcriptomic signatures of IL-4 obtained in other contexts but also may be associated with the clinically 

relevant classical transcriptional state. Our data suggested that cytokines associated with type 2 immunity 

may be a mechanism to control the plasticity of this prognostic and drug relevant phenotypic state. 

Combined, our results demonstrate the broad applicability of compressed screening across models and 

readouts, as well as the value of leveraging compressed screening to interrogate the phenotypic effects of 

biological perturbations in a high-throughput manner. 

 

When developing the compressed screening technology in U2OS cells, we found that a linear-model 

based deconvolution approach could accurately identify compounds with the greatest effects in a ground 

truth screen across a variety of compressions (3-40 small molecules in each pool). This suggests that non-

linear interactions do not confound interpretation until pool sizes are above 40 compounds per pool. This 

is in line with other work that used high-content imaging to investigate all pairwise interactions between 

bio-active small molecules and found that only 5% of all possible interactions were non-linear30.  

Nonetheless, in the highly bioactive library we tested, the effects we inferred began to deviate from the 

ground truth at compression levels above 40 perturbations per pool. This may be due to the fact that, as 

the pool size increases, the number of possible pairwise interactions between perturbations scales 

quadratically (𝑁	𝑐ℎ𝑜𝑜𝑠𝑒	2) = 	 !
"
𝑁(𝑁 − 1), suggesting that even if the fraction of interactions that are 

non-linear remains small, the absolute number of non-linear interactions will drive a large effect at a large 

enough pool size. While these findings provide an upper bound for compression with highly bioactive 

perturbation libraries, much greater compression should be feasible in libraries with fewer bioactive 

perturbations (e.g., design-of-synthesis (DOS) libraries or discovery compound decks), thereby enabling 

rapid evaluation of large compound sets in complex biological models. Also, the limit of compression 

may increase with the richness of the assay readout used in a screen. Additionally, these findings suggest 

a compelling regime in which to consider searches for combinatorial effects by 1) conducting a 

compressed screen to find significant individual perturbations and then 2) either screening all pairwise 

combinations of these significant perturbations or performing a screen in conjunction with one of the 

factors being held constant to find synergistic pairs.  

 

We further demonstrate that our compressed screening and deconvolution framework is tunable to the 

needs of the user. By altering the significance threshold for calling a hit in our screens, we show that it is 

possible to conduct more permissive screens (greater true hit identification along with more false 

positives) or less permissive screens (fewer true hits but with fewer false positives). This empowers users 
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to adjust their screening strategy based on the scope of planned follow-up validation experiments. While 

we conducted compressed screens in duplicate with distinct randomization to develop the technology, we 

observed reproducible top hits between replicates. This suggests that doing a single compressed screen 

may be sufficient for new lead discovery, albeit with a slightly higher false positive rate than with 

replicate screens. 

 

Contextualization of signatures identified from our compressed screen in PDAC organoids within 

clinically relevant datasets suggests that secretion of the type 2 immune cytokines IL4 and IL13 is 

associated with the PDAC classical transcriptional state. Our prior work demonstrates variation in the 

PDAC TME that correlates with malignant cell state, with evidence for enrichment of SPP1+ 

macrophages in more classical tumors12. Notably, SPP1+ macrophages expressed IL4 target genes, 

providing additional evidence to suggest increased exposure to IL4 in classical contexts. Taken together, 

these observations raise the hypothesis that IL4 may be a key state-specific modulator of both malignant 

cells and their local TME and an important signaling axis for new therapeutic development in PDAC. 

However, further mechanistic work is needed to dissect the causal relationships between type 2 immune 

cytokine secretion, classical state expression in malignant PDAC cells, and macrophage recruitment and 

differentiation within the TME. 

 

In sum, our approach to constructing and deconvoluting compressed screens is assay and model 

independent and is thus broadly applicable to a variety of model systems and readouts as we have 

demonstrated here. We anticipate that these compressed screening approaches can be extended to conduct 

phenotypic screens across a wide array of increasingly complex models (e.g., patient derived organoids, 

tissue explants, animal models) and readouts (e.g., single-cell genomics, spatial transcriptomics, highly-

multiplexed antibody staining (CODEX), multiplexed ion beam imaging (MIBI)) where scalability is a 

major challenge.  

Limitations of the Study  

As designed our technology is intended to serve as a “screening” method and not a “fingerprinting” 

method. While our technology can identify the perturbations with the largest effects in a library, it cannot 

perfectly characterize the phenotypic shifts driven by all perturbations in a library. Thus, screens 

following our approach should be designed with an initial screen to identify top hits, followed by a 

validation screen that examines the top hits individually. When developing our compressed screens, we 

only included one concentration for each perturbation; however, in many discovery-oriented applications, 

the best concentration to use may be unclear. As such, future iterations of this technology may benefit 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525189
http://creativecommons.org/licenses/by-nc-nd/4.0/


from exploring the feasibility of conducting compressed screens that include multiple doses of the same 

compound, and deconvolution methods to infer both the effects of, and dose responses to, individual 

compounds. Furthermore, due to the low frequency at which any two perturbations co-occur, our 

approach is not optimized to identify non-linear effects within the compressed screen. However, this 

limitation may not ultimately matter in clinical settings such as chemotherapy, where analysis suggests 

that the vast majority of combination therapies do not exploit additive or synergistic interactions between 

compounds, and rather are successful combinations because patient populations are heterogenous and 

thus the compounds in the combination are effective on distinct subsets of patients or cells within 

patients31.  

 

In summary, compressed screening unlocks complex models and assays which have previously been 

challenging to leverage for phenotypic screens due to a lack of scalability. This provides new avenues for 

conducting screens to both map the context specific phenotypic effects of perturbations and develop new 

therapeutics in systems that are highly relevant to human biology and thus connect in vitro discoveries 

with clinical implementation. 
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METHODS 
 
Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, peptides, and recombinant proteins 
See Table 1 for a list of small molecules used in U-2 OS 
screens 

  

See Table S2 for a list of recombinant protein ligands in 
PDAC organoid screens 

  

See Table S7 for a list of organoid culture reagents   
Critical commercial assays 
Honeycomb scRNA-seq kit Honeycomb  
Nextseq 500/550 High output v2.5 kit (75 cycles) Illumina Cat# 20024906 
High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592  
Qubit dsDNA High-Sensitivity kit Thermo Fisher Cat# Q32854 
BD hashing kit   
Deposited data 
Ground truth and compressed Cell Painting screens  This paper Image Data 

Resource 
Compressed and validation scRNA-seq data from PDAC 
organoid screens 

This paper https://singlecell.bro
adinstitute.org/single
_cell/study/SCP2020
/efficiently-
generating-bio-
chemical-
perturbation-
signatures-in-
complex-cellular-
systems-by-
compressed-
screening#study-
summary.  

single-cell transcriptomic data from PDAC patient 
samples 

Raghavan et al. 2021 https://singlecell.bro
adinstitute.org/ 
single_cell/study/SC
P1644 dbGaP: 
phs002712.v1.p1 

Primary PDAC genomic and transcriptomic data 
(TCGA, Pancreatic Ductal Adenocarcinoma) 

Cancer Genome Atlas 
Research Network, 
2017 

https://portal.gdc.can
cer.gov/projects/ 
TCGA-PAAD 
dbGaP: 

Experimental models: Cell lines 
U-2 OS ATCC CAT # HTB-96 
Human PDAC organoids Raghavan et al. 2021 N/A 
Oligonucleotides 
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BD-HC WTA Linker:  
5’ GTTGTCAAGATGCTACCGTTCAGAG 3’ 

Integrated DNA 
technologies 

N/A 

BD-HC Linker-UPS:  
5’GAGGAAGCAGTGGTATCAACGCACCGCAGAG
TTGTCAAGATGCTACCGTTCAGAG 3’ 
 

Integrated DNA 
technologies 

N/A 

Bead-specific WTA: 5’ 
CAGTGGTATCAACGCAGAGT*A*C 3’ 
 

Integrated DNA 
technologies 

N/A 

Software and algorithms 
GitHub Repository to reproduce the results  This paper https://github.com/S

halekLab/compresse
d_screening 

Distributed Cell Profiler Broad Institute https://github.com/D
istributedScience/Di
stributed-
CellProfiler 

STARsolo Kaminow et al 2021 https://dockstore.org
/workflows/github.c
om/lilab-
bcb/cumulus/STARs
olo:2.0.0?tab=info 

Citeseq-count https://hoohm.github.i
o/CITE-seq-Count/ 

https://portal.fireclou
d.org/?return=terra#
methods/bemead/CI
TEseq-count/7 

cNMF Kotliar et al 2019 https://portal.fireclou
d.org/?return=terra#
methods/cNMF_Ivy/
cNMF_gene_file/2 

 
 
RESOURCE AVAILABILITY  
 
Lead contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 
the lead contact, Alex K. Shalek (shalek@mit.edu). 

Materials availability 

This study did not generate new unique reagents. The cell lines, small molecules, and recombinant protein 
ligands used in this study are available commercially. The organoid model used in this study is available 
upon request with a materials transfer agreement.  

Data and code availability 

• Summarized and deidentified single-cell RNA-sequencing data is available via the Broad 
Institute’s Single Cell Portal: 
https://singlecell.broadinstitute.org/single_cell/study/SCP2020/efficiently-generating-bio-
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chemical-perturbation-signatures-in-complex-cellular-systems-by-compressed-screening#study-
summary. Raw sequencing data will be deposited at the NCBI Database of Genotypes and 
Phenotypes (dbGaP). Links and accession numbers for the publicly available data analyzed in this 
study are listed in the key resources table. 

• Cell Painting images will be deposited in the Image Data Resource. 
• Code is available on Github at https://github.com/ShalekLab/compressed_screening.  
• Any additional information required to reanalyze the data reported in this paper is available from 

the lead contact upon request 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell lines 
 
Culture condition details for U2-OS cells and PDAC organoids are detailed in the methods section 
describing the screens in which each model was used. 
 
METHOD DETAILS 
 
Compressed screen design principles 
 
To design a compressed screen, we utilize a set of user-specified design criteria to randomly assign 
perturbations to pools while satisfying the following: each pool contains a unique set of perturbations, 
each perturbation in the library (of size 𝑁 perturbations) occurs in 𝑅#$	replicate pools, and each pool is of 
average size 𝑃. The user specifies the library 𝑁, the compressed replicates 𝑅#$, the conventional 
replicates 𝑅#%&', and the desired fold-compression 𝐶. Fold sample savings of the pools relative to a 
conventional screen with 𝑆#%&' samples (𝑆#%&' = 𝑁 × 𝑅#%&' total samples) is 𝐶 compression (𝑃 =
𝑅#$𝐶 𝑅#%&'⁄ ). In each compressed screen, we include a set of negative controls (no perturbation added) 
and a set of landmark positive controls (treated with individual perturbations known to have large effects). 
To build the plates for the compressed screen, we transferred perturbations from the source library plates 
to the pool plates using an Echo 650 Acoustic liquid handler. 
 
Cell painting experiments 
 
For our cell painting experiments, we plated U20S cells in 96-well black, clear bottom, TC-tread plates 
(Corning, 3712BC) at 2000 cells per well in 50 µL per well of DMEM (ATCC) + 10% FBS + Pen-Strep 
media. Cells were then incubated overnight at 37C/5% CO2 to allow cell adhesion and equilibrium. For 
conventional screening, compounds (316 FDA-approved small molecules, see Table S1) were arrayed in 
384-well format as stocks that were 1000X the final concentration in DMSO. We then pin transferred (V 
& P scientific mounted onto an MCA96 head of Tecan Freedom Evo 150) 50 nL of compound into the 50 
µL of media per well of the assay plate. Cells were then incubated for 6, 24, or 48 hours at 37C/5% CO2. 
For compressed screening with the same compound library, we designed screens with the following 
compression schemes: C=6, Rcs=3; C=6, Rcs=5; C=6, Rcs=7; C=12, Rcs=3; C=12, Rcs=5; C=12, Rcs=7; 
C=24, Rcs=3; C=24, Rcs=5; C=24, Rcs=7; C=48, Rcs=5; C=96, Rcs=5. Respectively, these designs contained 
3, 5, 7, 6, 10, 14, 12, 20, 28, 40, and 80 drugs per pool. Furthermore, for each compression scheme, we 
designed two screens with differing random assignment of drugs to pool. Each plate design was then 
dispensed via Echo 650 Acoustic liquid handler into 50 µL of media in the 384-well format, where 
DMSO concentration in negative controls was held constant relative to total compound dispensed for that 
assay plate. Assay plates were incubated for 24 hours prior to Cell Painting assay. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525189
http://creativecommons.org/licenses/by-nc-nd/4.0/


Following compound treatment, cells were stained for the mitochondria (500 nM MitoTracker Deep Red 
ThermoFisher #M22425 in DMSO, 7.5 µL stock per assay plate) and for the Golgi apparatus and plasma 
membrane (60 ug / ml Wheat Germ Agglutinin – AlexaFluor 594, ThermoFisher #W11262 in water, 900 
µL stock per assay plate) in 30 µL of media per well and incubated at 37C for 30 minutes. We then fixed 
the cells by adding 10 µL of 16% methanol-free paraformaldehyde (PFA, ThermoFisher #28908) per well 
and incubated at room temperature for 20 minutes. Next, we aspirated the solution, washed cells with 70 
µL per well of 1X HBSS (Invitrogen, #14065-56), and permeabilized cells with 30 µL per well of 0.1% 
Triton X-100 in 1X HBSS at room temperature for 20 minutes. We then again washed cells with 70 µL 
per well of 1X HBSS and stained for the nucleus, endoplasmic reticulum, nucleoli, and F-actin by adding 
to each plate 1.5 mL of 100 ug/ml ConcanavalinA-AlexaFluor 488 (ThermoFisher, #C11252) in 0.1M 
sodium bicarbonate, 375 µL Phalloidin-AlexaFluor 594 (ThermoFisher #A12381) in methanol, 7.5 µL of 
5 µg/ml Hoeschst33342 (ThermoFisher #H3570) in water, 15 mL of 3 µM SYTO14 (ThermoFisher 
#S7576), and 15 mL of 1X HBSS in 1% BSA. Cells were then incubated at room temperature for 30 
minutes. We then aspirated the solution and washed cells three times with 70 µL of 1X HBSS, and then 
filled the wells with 70 µL of HBSS, sealed the plate, and stored plates at 4C until ready for imaging. 
Cells were imaged on an ArrayScan VTI with a 20X objective, using the Hoescht channel to autofocus 
and set the Z, and autoexposure set for each channel. 9 fields were captured in the middle of each well.  
 
PDAC organoid culture 
 
Patient-derived pancreatic cancer organoids12 were seeded in Growth factor Reduced Matrigel (Corning), 
fed with human complete organoid medium containing Advanced DMEM/F12 (GIBCO), 10 mM HEPES 
(GIBCO), 1x GlutaMAX (GIBCO), 500 nM A83-01 (Tocris), 50 ng/mL mEGF (Peprotech), 100 ng/mL 
mNoggin (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM N-
acetylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (GIBCO), RSPONDIN-1 
conditioned media 10% final, WNT3A conditioned media 50% final, 100 U/mL penicillin/streptomycin 
(GIBCO), and 1x Primocin (Invivogen), and maintained at 37°C in 5% CO2. Media was changed every 6-
7 days. Established organoid models were then passaged by dissociation with TrypLE Express (Thermo 
Fisher) for 30 minutes and reseeded into Matrigel droplets and fresh culture medium. 
 
11 candidate ligands were tested for their effects on cell state: 50ng/mL rHu WNT-7A, 500ng/mL rHu R-
spondin 3, 10ng/mL rHu TNF-a, 10ng/mL rHu IL-13, 10ng/mL rHu IL-4, 10ng/mL rHu IFNg, 10ng/mL 
rHu IL-1A, 10ng/mL rHu IL-1B, 10ng/mL rHu TGFb1, 25ng/mL rHu Adiponectin, and 10ng/mL rHu 
Activin A (Peprotech). The same batch of organoids used in the original screen (PANFR0562) were used 
for the validation experiment all of which were cultured and maintained in “OWRNA” media: complete 
organoid medium without WNT3A, RSPONDIN-1, NOGGIN, and A-8301 consisting of Advanced 
DMEM/F12 (Thermo Fisher), 10 mM HEPES (Thermo Fisher), 1x GlutaMAX (Thermo Fisher), 50 
ng/mL mEGF (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM N-ace-
tylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Thermo Fisher), 100 U/mL 
penicillin/streptomycin (Thermo Fisher), and 1x Primocin (Invivogen). Organoids were dissociated to 
single cells using 1X TrypLE Express (Thermo Fisher) for 30 minutes, counted and seeded in suspension 
(10% Matrigel, 90% media) at a density of 40,000 viable cells/well in a 96-well plate at a volume of 
50uL/well. Ligands were added after 24 hours at 2x the desired final concentration in 50uL to bring the 
total volume per well to 100uL at 1x ligand concentration. Organoids were collected after 7 days for 
single-cell RNA sequencing. Treated organoids were tested in duplicate while control organoids (treated 
with 0.1% BSA in 1X PBS as vehicle control) were assessed in quadruplicate. Candidate ligands and their 
concentrations can be found in Table S1.  
 
Ligand library selection 
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To generate a library of relevant, effective ligands, we compiled multiple ligand-receptor datasets 18,32,33. 
We first prioritized ligands expressed by structural cell types in a variety of organs targeting myeloid cells 
or ligands expressed by human monocyte-derived macrophages or human macrophages in vivo. These 
200+ ligands were then filtered based on their overall expression and applicability in vitro as a secreted, 
independent effector molecule. Additional non-genetically encoded molecules were added based on well-
established effects, such as LPS-EK, LTB4, ox-LDL, and Pam3CSK4. Manual curation and extensive 
literature research established the final library and concentrations based on previously reported 
concentrations and results.  
 
Ligand screening 
 
To perform compressed ligand screening on PDAC organoids, cells were expanded as described, 
resuspended in OWRNA media with 10% v/v Matrigel, and seeded at 20,000 single cells in 35 µL / well 
into a flat bottom ultra-low attachment 96-well assay plate (Corning #3474) one day prior to dispensing 
ligands. A compressed screen was designed by randomly assigning ligands to 68 ligands (Table S2) to 72 
pools such that each pool contained 4 or 5 ligands (average of 4.75 ligands per pool). Two such plates 
were designed, with distinct random assignment of ligands to pools in each plate. Ligands were first 
dispensed into 25 µL / well of OWRNA media in a 384-well format transfer plate (quadrant-wise). After 
ligand dispense, each well was backfilled with an additional 50 µL / well of OWRNA media.  65 µL / 
well was then transferred with a Tecan Freedom Evo 150 from each transfer plate quadrant into the 96-
well assay plate with PDAC organoids, making a final total volume of 100 µL / well in the assay plate. 
Ligand concentration was modified to account for the multi-stage transfer such that final assay plate 
concentrations are as reported (see Supplemental Table S2). Assay plates were cultured for 7 days at 
37C/5% CO2 and processed for single-cell RNA-seq with cell hashing as follows. 
 
PDAC single-cell RNA-seq with cell hashing 
 
PDAC organoids for compressed screens and validation experiments were dissociated to single cells, 
hashed with antibody-derived oligo tags, pooled and captured for single-cell RNA-seq via Honeycomb 
Bio HIVEs. Briefly, 200 µL of RP-10 (RPMI – ThermoFisher #12633-012 
 + 10% FBS - ThermoFisher #26140) was added to each well of PDAC organoids in the 96-well assay 
plate (300 µL total volume) with vigorous mixing. The full volume was then transferred to the upper 
chamber of a 30-40 µm 96 well filter plate (Pall #8027) situated on a vacuum manifold (Honeycomb 
Bio). Media was aspirated under vacuum, with organoids larger than the filter pore size retained in the 
upper chamber, an additional 300 µL of RP-10 was added, mixed, and aspirated under vacuum to remove 
residual Matrigel and cell debris. The bottom of the filter plate was blotted dry and sealed with a plate 
seal (ThermoFisher #AB0558), and the upper chamber was resuspended with 100 µL of pre-warmed 
TrypLE Express (ThermoFisher #12604013), mixed 10-15 times, and incubated for 20 minutes at 37C 
with intermittent mixing. Digestion was then quenched with the addition of 200 µL RP-10 + 50 µg/mL 
DNase (Stem Cell Technologies), and the single cell suspension was collected by centrifugation (300g, 5 
minutes) into a 96-well u-bottom ultra low attachment plate (Corning #7007). Quenching solution was 
aspirated and 50 µL / well of cell staining solution (45uL cell staining buffer - BD #554656 + 5uL human 
multiplexing antibody – BD #633781) was added to each well and incubated at room temperature for 20 
minutes. Human multiplexing antibodies were distributed column-wise with each column having a unique 
tag. Following staining, cells were washed in triplicate by adding 300 µL cell staining buffer, pelleting by 
centrifugation (400g 5 minutes), and aspirating wash solution. Cells were then resuspended in a volume 
of cell staining buffer such that when samples are collapsed row-wise (containing non-overlapping tags) 
the total sample volume was 200 µL. Each row was then treated as a sample for loading onto a 
Honeycomb HIVE. 
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Honeycomb HIVE single-cell RNA-seq was performed as described in their October 2021 protocol 
(v21.10), with modifications to accommodate cell hashing. Briefly, each cell suspension was counted by 
hemocytometer and normalized to a concentration of 15,000 cells in 1 mL of RPMI. Cells were loaded 
into the HIVEs by centrifugation at 30g for 3 minutes, and stored in cryopreservation solution at -20 C 
until library preparation (no longer than 2 weeks). HIVEs were thawed, sealed, lysed and hybridized 
following the standard protocol. Bead recovery was followed by first strand synthesis (reverse 
transcription), bead clean up (exonuclease treatment), and second strand synthesis following the standard 
protocol. Whole transcriptome amplification was modified with the addition of 2.5 µL of 10 µM BD-HC 
WTA linker primer per 400 µL reaction preparation, and PCR was run following the standard protocol. 
Following PCR, 15 µL of each WTA reaction per HIVE was pooled size selected with a 0.65X SPRI bead 
(Beckman Coulter #A63881) addition. The bead bound fraction (cDNA) was washed with a 0.65X SPRI 
concentrate (Honeycomb Bio), eluted, and used in index PCR per the standard protocol. The supernatant 
(cell hashing library) had additional SPRI beads added to bring the final ratio to 1.2X, product was eluted 
from the beads, and run through a round of PCR (10 cycles of the standard WTA PCR, with 2.5 µL each 
of 10 µM BD-HC linker-UPS and 10 µM Bead-specific primers per 50uL reaction preparation) to append 
the Linker-UPS sequence to the cell hashing library. This product was then used as input to the standard 
index PCR protocol. Following index PCR, cDNA product was cleaned via SPRI beads and quantified 
per the standard protocol. The cell hashing library was size selected with a reverse 0.65X SPRI selection, 
followed by a 1.2X SPRI pull down, and a second round of  reverse 0.65X SPRI selection and 1.2X SPRI 
pull down, and quantified per the standard protocol. Quantified libraries were pooled and sequenced on 
either Illumina NextSeq 500 or NextSeq 2000 with HIVE custom read and custom index primers 
(Honeycomb Bio) with Read 1: 25 Read 2: 50 Index 1: 8 Index 2:8 bases. 
 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Deconvolution of compressed screens with regularized linear regression 
 
To deconvolute the effects of individual perturbations in a compressed screen, we adopted a regularized 
linear regression approach that was previously used to infer the effects of guide RNAs on gene expression 
in pooled CRISPR screens 6. This general framework to deconvolution required a design matrix X (pools 
by perturbations) and an assay readout matrix Y (assay readout by pools) which we fit with a linear model 
with elastic net regression in order to infer the coefficient matrix ß describing the association between 
perturbations and assay features. We fit the regression and used crosss validation to determine the optimal 
l1_ratio using the MultiTaskElasticNetCV function in sklearn with possible l1_rations varying from 0.01 
to 1. We then permuted the perturbations labels 1000 and re-ran elastic net regression in order to obtain a 
null distribution for the perturbation-feature coefficients. We then filtered out any coefficients in our non-
permuted regression that occured more than p_value_threshold*1000 times in the permuted data. 
 
Cell painting data preprocessing 
 
We used the Distributed Cell Profiler software on AWS to process the Cell Painting images 
https://github.com/CellProfiler/Distributed-CellProfiler. Our pipeline first applied an illumination 
correction to each image based on per-channel measurements and applied intensity correction on each 
channel between batches based on differences in the batch-averaged median channel intensity. We next 
adopted an existing approach for using the isolation forest outlier detection algorithm implemented in 
sklearn to remove outlier images confounded by artefacts 30 based on the whole-image measurement of 97 
features. This was performed batch-wise and excluded 4.6% of ground truth batch 1 and 2, 2.0% of 
compressed batch 1, 2.2% of compressed batch 2, and 1.7% of compressed batch 3 images. We next 
segmented individual cells, nuclei, and cytoplasm and measured a total of 3,402 morphological features 
across all five imaging channels and compartments. Each feature was then median aggregated over all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525189
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells within a given well, constituting a single sample. We then removed empty wells and wells with 
fewer than 50 segmented cells and scaled each feature by plate using the RobustScaler function in sklearn 
centered on DMSO wells and scaled by all wells within each plate. Finally, we selected robust and 
variable features within a dataset (either dose-time analysis or our ground truth and compressed screen 
analysis) by retaining features with low noise and high signal. We accomplished this by first calculating 
the median absolute deviation (MAD) for each feature within a plate. Low-noise features were all features 
with a MAD greater than the 10th percentile across greater than 90% of the plates in a dataset – features 
which consistently showed at least some variability in most plates. Within the dose-time analysis 1,859 
features passed the low-noise criteria, while in the ground truth and compressed screen analysis 2,117 
features passed. High-signal features were all features with a MAD greater than the 90th percentile across 
greater than 10% of the plates in a dataset – features which showed the most variability in at least some of 
the plates. Within the dose-time analysis 1,254 features passed the high-signal criteria, while in the 
ground truth and compressed screen analysis 1,054 features passed. The final feature set was then taken as 
the intersection of low-noise and high-signal feature sets, for the dose-time analysis this resulted in 861 
final features, and in the ground truth and compressed screen analysis it was 886 final features. 
 
Identifying dose and timepoint for cell painting screens 
 
To determine the dose and timepoint where the compounds in our library had the most activity we 
screened all compounds in our library in duplicate at nine dose timepoint pairwise combinations (0.1 µM, 
1µM, 10 µM; 6 hours, 24 hours, 48 hours). We then quantified the effect of each perturbation we 
calculated the Mahalanobis distance 𝐷(between the mean vector for each perturbation and the negative 
control (DMSO) samples at the same dose and timepoint. 
Mahalanobis distance is similar to a multidimensional generalization of a z-score and quantifies how 
many standard deviations a vector �⃗� is away from a distribution with mean 𝑢8⃗  and covariance 𝑆:  

𝐷((x8⃗ ) = :(		�⃗� − 𝑢8⃗ ))𝑆*!(�⃗� − 𝑢8⃗ ). 
 We then calculated the coefficient of variation of the Mahalanobis distance values at each 
dose/timepoint in order to the dose/timepoint with the broadest range of effects. This occurred at a dose of 
1µM and a 24 hour timepoint. We then screened 4 more replicates of each drug at this dose and time point 
to create a final ground truth dataset consisting of 6 replicates of each drug, which we used to recalculate 
the Mahalanobis distance between each drug and the negative control distribution. We refer to this dataset 
as our ground truth (GT).  
  
Identification of cellular phenotypes in ground truth cell painting data 
 
To identify the biological cellular morphological phenotypes in the GT dataset, we first needed to account 
for substantial batch effects that existed between the first two replicates in our GT dataset (obtained 
during the dose-time analysis) and the final four replicates that we collected later. These batch-effects 
were consistent with large batch effects observed in previous studies using Cell Painting 34. To account 
for this technical variation, we applied Harmony – a batch correction technique that utilizes soft k-means 
clustering to identify dataset specific batch effects – to our ground truth datasets. After running Harmony, 
we identified the number of Harmony principle components (PCs) that explained 90% of variance in the 
data and used these top PCs as the features for identifying the cellular phenotypes in the ground truth 
data. 
 
To identify cellular phenotypes, we followed the following workflow for clustering the GT cell painting 
samples. First, we computed the neighborhood graph for all GT samples over the Harmonized features, 
using the pp.neighbors function in scanpy and a nearest neighbor value of !

":𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠. We 
then clustered on this neighborhood graph using the Leiden algorithm implemented in the tl.leiden 
function in scanpy. To determine clustering resolution, we re-ran clustering over resolution values from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525189
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.01 to 2.0 and identified the resolution value (0.65) where greater than half (~52%) of DMSO samples 
resided in a single cluster, each cluster had significant perturbations, and few perturbations (<0.5%) were 
significant in more than one cluster (based on phenotypic fingerprinting described below). This identified 
8 clusters (GT phenotypes) in the GT cell painting data. For each cluster, we then used the 
tl.rank_gene_groups function in scanpy to run a Wilcoxon test over the processed and feature selection 
cell paining features to identify features enriched in each cluster.  
 
 
To determine perturbations with significant effect we employed an approach for identifying the 
“phenotypic fingerprints” of the perturbations 15. For each perturbation, we counted the number of 
samples in each of the 8 phenotypic clusters, and then we randomly permuted the perturbation labels 
10,000 times and recalculated the samples in each cluster. Using these randomly permuted labels as a null 
distribution, we calculated the z-scores and p values for the true counts of samples in each cluster. We 
filtered these results to perturbations with significant enrichment values (maximum z-score > 2 and 
maximum p value < 0.01). We then clustered the perturbations over these enrichments z-scores and found 
10 clusters of perturbations (GT perturbation clusters).  
  
Compressed cell painting screen design, deconvolution, and comparison to ground truth 
 
To test the limitations of compressed screening, we conducted cell painting screens at a wide array of two 
parameters: replicates R (the number of pools in which and individual drug occurs) and compression C 
(the fold sample savings in the compressed screen relative to our 6 replicate ground truth data). We tested 
R values of 3, 5, and 7, and C values of 6, 12, 24, 48, and 96. This resulted in eleven different parameter 
schemes consisting of 3, 5, 6, 7, 10, 12, 14, 20, 28, 40, and 80 drugs per pool. For each parameter scheme 
we conducted two screens that were designed with distinct pool randomization which we refer to as CS 
Run1 and CS Run 2 
 
To deconvolute the compressed screening data, we passed the preprocessed & features selected cell 
painting features in our general regression framework for deconvolution. To assess the total magnitude of 
the inferred effect of each perturbation, we then calculated the L1 norm of the regression coefficients 
across all features for each perturbation. We then calculated the Pearson correlation between these values 
across all compound and the GT Mahalanobis value in order to assess how well the inferred compressed 
effects agreed with the effects of perturbations in the ground truth data. 
 
scRNA-seq alignment, hash demultiplexing, and initial quality control 
 
For each sequencing run, raw sequencing reads were converted from bcl files to FASTQs using bcl2fastq 
(v2.2) based on Honeycomb Bio indices that corresponded to individual samples. Demultiplexed 
FASTQs were then aligned to the human GRCh38 genome using STARsolo as implemented by Cumulus 
(v2.0.0) on Terra.bio. We implemented a 2-pass alignment to first generate a pseudo-whitelist (15,000 
cell barcodes with the greatest number of unique molecular identifiers - UMIs) and then realign with this 
pseudo-whitelist for cell barcode collapse. Additionally, in alignment we specified the following 
parameters: Multi-mappers: EM, UMI Dedup: 1MM_CR, Solo Features: FullGene, UMI Filtering: 
MultiGeneUMI_CR, Cell Filter: CellRanger2.2 3000 0.99 10. To align the cell hashing libraries, we 
provided as input to citeseqcount v1.4.3, implemented via a Terra.bio pipeline, the demultiplexed 
FASTQs, the pseudo-whitelist from the first pass STARsolo alignment and the hash barcodes per 
experiment. 
 
Following alignment of sample transcriptomes and cell hashing libraries we performed initial QC 
filtering, and sample demultiplexing via cell hashing. All samples were filtered to retain only cell 
barcodes with greater than 500 unique genes and 500 UMIs, and less than 75,000 UMIs and 50% 
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mitochondrial transcripts. Cell barcodes were further filtered by hashing libraries such that only barcodes 
with greater than 10 hash UMIs, and a 1.1 signal-to-noise ratio (maximum ADT UMI count divided by 
the second highest ADT UMI count) were retained. Next samples were demultiplexed and labeled by 
original sample identity by iterating across a range of quantile parameters (0.85 to 1 - (1x10-6) ) in the 
Seurat HTODemux function (v4) and choosing the quantile parameter maximizing the number of singlets. 
Retaining only labeled singlets, dataset were filtered to retain genes detected in at least 10 cells, and used 
for subsequent analysis. 
 
PDAC compressed screen scRNA-seq analysis  
 
We next ran consensus non-negative matrix factorization (cNMF) on the combined counts matrices from 
both compressed runs21. We choose an optimal K value, number of cNMF gene expression programs 
(GEPs), by combining a data driven approach with existing knowledge of PDAC biology. We tested K 
values ranging from 5 to 50 and then identified candidate optimal K values by plotting the tradeoff 
between stability and error and focusing on the K values at local stability maxima. We then examined the 
GEPs at each of these K values and found that at higher K values, a distinct TGFbeta (a known major 
driver of PDAC biology and one of the landmark positive controls in the screen) GEP was present but at 
lower values the TGFbeta signaling GEP was collapsed into other GEPs. Thus, chose the smallest of the 
candidate K values as which we observed a clear TGFbeta signaling GEP.  
 
We proceeded to analyze the combined scRNA-seq dataset in scanpy using the highly variable genes 
output from cNMF and Pearson residual normalization. We visualized the full dataset by running PCA 
with the number of PCs chosen by running KneeLocator in python to find the knee of the variance 
explained by the PCs then running Harmony to integrate the data by batch for visualization purposes only 
before visualizing the data in an UMAP projection.  
 
We next correlated the usage of the cNMF GEPs across cells and found that a subset described basal 
expression states that were broadly expressed across all cells were as the remaining were variably 
expressed across cells. We focused our downstream analysis on these variably expressed cNMF 
programs. To annotate these GEPs, we first used decoupler and the score_genes function in scanpy to 
generate module scores for all PROGENy and MsigDB genesets, for the genes differentially upregulated 
in the TNFa, IFNG, and TGFB1 landmark samples (got this by running scanpy rank genes groups and 
then running kneelocator), for the top 25 genes in the Basal and Classical signatures from Moffitt et al 16, 
fpr gene signatures for cycling cells and for scRNA-seq quality metrics (nUMI, nFeature, percent of 
mitochondrial reads, percent of ribosomal reads) 35. We then correlated all of these module scores with 
the GEP usages across all cells and where GEPs highly correlated with a given module, we used this 
information to annotate the GEPs. With this approach, we annotated all but one highly variable GEP. 
 
Then we passed the usage scores for each highly variable cNMF GEP across cells in the compressed 
wells into our deconvolution code to infer the effect of perturbations on each GEP. We used these results 
to annotate the GEP that we could not annotate based on gene signatures. 
 
Ligand receptor analysis: We took the gene names for the 68 ligands in the compressed screen and 
searched against the CellphoneDB database using the command line call cellphonedb query 
find_interactions_by_element. In siutations were the found interacting partner for a ligand was a complex, 
the complex was expanded to the individual components.  
 
 
PDAC single ligand validation screen scRNA-seq analysis  
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We adopted the same approach to run cNMF, processes scRNA-seq data, and identify and annotate highly 
variable GEPs and annotate in the single-ligand data. We then correlated the gene spectra scores in these 
GEPs to those from the compressed data and focused our analysis on the GEPs that highly correlated with 
the compressed data. As we observed a large difference in the mean Moffit Classical score in negative 
control samples from the three different batches of samples in the single-ligand dataset, we assessed the 
effect of ligands on each GEP by running a linear regression with batch included as a covariate in order to 
identify ligand effects independent of batch. 
 
 
Projecting NMF GEPs onto existing PDAC tumor datasets 
 
To project the validation cNMF GEPs onto existing PDAC tumor datasets from TCGA and Raghavan et 
al, we first generated a representative genesets for each GEP by running KneeLocator in python on the 
sorted gene spectra scores to identify the top genes contributing to each GEP. We then generated a 
module score for each of these genesets, the top 25 Classical and Basal genes from Moffit et al, and IL-
4/IL-13 signaling genesets from MsigDB in both PDAC tumor data sets (for each tumor in TCGTA and 
each cell in Raghavan et al). We then correlated the GEP module scores and MsigDB module scores with 
the Moffit et al module scores. To look for further evidence of IL-4/IL-13 signaling associated with 
Classical tumors in Raghavan et al, we did a targeted analysis of the genes differentially expressed in 
SPP1+ macrophages, as this cell population was in significantly higher abundance in the TME of 
Classical tumors in Raghavan et al. 
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Figure 1: Compressed screening with high-fidelity model systems and high-content assays 

a, Comparison of the number of samples required to conduct a phenotypic screen in a conventional and 

compressed manner with N=8 perturbations and R=4 replicates of each perturbation. 

b, Visualization of the construction of a compressed screen with an acoustic liquid handler. 

c, Regression framework for inferring the effects of individual perturbations in a compressed screen: We 

solve for the coefficient matrix (β) that describes the effect of perturbations (whose assignment to pools is 

denoted in the design matrix X) on the measured features of the screen (matrix Y). 

d, Conceptual visualization of how assay and biological model complexity may limit the scalability of 

conventional screens, as well as how this scalability boundary may be increased in a compressed screen. 
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Figure 2: Compressed screening identifies compounds with largest effects in a ground truth setting 

a, Overview of screens (ground truth (GT) and compressed screens (CS)) and analytical approach for 

validating the technology and assessing the maximum compression factor that is feasible. 

b, Heatmaps of the GT cellular phenotypes that each GT perturbation cluster is enriched in (fingerprint z-

score), as well as the average number of cells per well and Mahalanobis distance for each GT perturbation 

cluster. 

c, Heatmap of the Fisher’s exact enrichments (-log10(p value)) of the features differentially utilized by each 

GT phenotype (log2 fold change > 3) in the 7 types of Cell Painting features. Bottom bar visualizes the 

mean number of cells per well across all samples in each GT phenotype. 

d, Scatterplots of the inferred perturbation effects in a compressed screen (Scaled L1 norm) vs. the GT 

effect (Mahalanobis distance) for two replicate runs (6X compression, 5 replicates of each perturbation) 

with distinct pool randomization. r, Pearson correlation, CS run1: p value < 2.2*10-16, CS run 2: p value < 

2.2*10-16). 

e, Dotplot of the mean scaled L1 norm of the perturbations called as hits (scaled L1 norm > 0) in both 

replicate compressed screens at each pool size, as well as the GT perturbation cluster and GT 

Mahalanobis distance of each perturbation. 

f, Scatterplot over all pool sizes of the fraction of perturbation hits in the CS screen that were significantly 

enriched in a biological phenotype in the GT screen, for three permute test significance levels (blue – p 

value < 0.05, green – p value < 0.01, red – p value < 0.001). 

g, ROC curves for each pool size in both CS screens displaying the changes in the true positive and false 

positive rates for identifying GT significant perturbations as hits in CS screens that occur when varying 

the permutation testing threshold in deconvolution from 0 to 1 by steps of 0.01. 
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Figure 3: Compressed screen of biological ligands in PDAC organoids reveals major axes of 

transcriptional response. 

a, Overview of biological ligand compressed screen with PDAC organoids and scRNA-seq analysis 

approach 

b, Heatmaps visualizing the Pearson correlation across cells of the usage of the cNMF gene expression 

programs and the module score for existing gene signatures.  

c, Scatterplot of significant ligand – cNMF module effects (deconvolution regression coefficients) from 

two compressed screens with distinct random pooling. 

d, Heatmap of the mean ligand – cNMF module effect over both compressed screens. 
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Figure 4: Context specific signatures from compressed screening validate and recontextualize 

existing primary tumor data 

a, Overview of single-ligand validation experiments and dataset.  

b, Heatmap of the Pearson correlations of select compressed and single-ligand cNMF modules. 

c, Heatmap of the significant (adj. p value < 0.05) non-zero regression coefficients by ligand for five 

cNMF modules of interest. 
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d, Heatmap of the Pearson correlation across PDAC tumors from TCGA bulk RNA-seq data of the 

expression of the classical or basal transcriptional states with the expression of each cNMF module. 

e, Heatmap of the Pearson correlation across malignant single cells from PDAC tumors from Raghavan et 

al of the expression of the 

f, Scatterplots of the correlation of the classical score across PDAC tumors from TCGA bulk RNA-seq 

with the score of the type 2 immunity GEP and two IL-4 transcriptional signatures from MsigDB. 

g, Scatterplots of the correlation of the classical score across malignant cells in PDAC tumors from 

Raghavan et al with the score of the type 2 immunity GEP and two IL-4 transcriptional signatures from 

MsigDB.  

h, Violin plot of IL4I1 expression in macrophage subtypes in the Raghavan et al dataset. 
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Extended Data Figure 1: Developing compressed screening by screening 316 small molecules in the 

U2Os cell line with a Cell Painting readout 

a, Histogram of the log Mahalanobis distance between each small molecule perturbation and the mean of 

the distribution of negative control cells (DMSO) at 6 hours, 24 hours, and 28 hours. For each time point, 

the coefficient of variation of the log Mahalanobis distances (mean / std. deviation) is reported to assess 

how broad the range of effects is. 
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b, Histogram of the log Mahalanobis distance between each small molecule perturbation and the mean of 

the distribution of negative control cells (DMSO) for the 24 hours timepoint at three doses: 0.1, 1, and 10 

µM. For each dose, the coefficient of variation of the log Mahalanobis distances (mean / std. deviation) is 

reported. 

c, Composite cell painting images from each GT perturbation cluster in the GT screen as well as from top 

hits from the CS screen. 

d, Scatterplot of non-zero enrichment scores for each perturbation in each GT phenotype 

e, UMAP of all samples in the GT dataset colored by GT perturbation cluster. 
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Extended Data Figure 2: PDAC compressed screen scRNA-seq quality metrics and cNMF modules 

a, Scatter plot of the number of cells per perturbation across all pools in each replicate plate. 

b, Violin plots of the number of UMIs, the number of unique genes, and the percent of genes that are 

mitochondrial in the compressed scRNA-seq dataset. 

c, Heatmap of the pairwise correlations of cNMF modules by usage across cells. 

d, Top three genes by gene spectra score for the highly variable cNMF modules. 

e, UMAP visualization all cells from both compressed screens, colored by cNMF module usage. 

f, UMAP visualizations all cells from both compressed screens, colored by density of cells from pools 

containing specific ligands. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2023. ; https://doi.org/10.1101/2023.01.23.525189doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525189
http://creativecommons.org/licenses/by-nc-nd/4.0/


g, Ordered scatter plot of mean cognate receptor expression for each screened ligand over control PDAC 

cells in the compressed scRNA-seq dataset, colored by ligands with significant effects on identified 

cNMF GEPs. 
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Extended Data Figure 3: Single ligand perturbation experiment scRNA-seq quality metrics and 

cNMF modules 

a, Violin plots of the number of UMIs, the number of unique genes, and the percent of genes that are 

mitochondrial in the single-ligand scRNA-seq dataset. 
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b, Heatmap of the top three genes by gene spectra score for the single ligand cNMF modules that 

corresponded with the highly variable compressed cNMF modules. 

c, Heatmaps visualizing the Pearson correlation across cells of the usage of the select single-ligand cNMF 

gene expression programs and the module score for existing gene signatures.  

d, Violin plot of the Moffit classical module score – Moffit basal module score for all cells from 

organoids grown in media only from the different single ligand experiments. 

e, Heatmap of the non-zero regression coefficients by ligand for all single ligand cNMF modules 

corresponding with the highly variable cNMF modules from the compressed screen. 

f, Venn diagrams of the number of intersecting and unique genes between the cNMF type 2 immunity 

GEP and corresponding signatures in MsigDB. 
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