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Figure S1 | Coverage across the 1kGP and HGDP. Coverage in both datasets is uniformly above
30X, with an average of 33X coverage across the harmonized dataset. The coverage of the HGDP
genomes is more variable than in 1kGP, as expected based on a variety of technical differences
such as multiple sequencing batches, PCR+ vs PCR-free, and older cell lines in HGDP compared
to 1kGP. The differences in project coverages also impacts the distribution of coverage statistics by
Geographical region given their tally by project (Table S4). The overall coverage distributions by
population are shown in Figure S2. 5
Figure S2 | Coverage across 1kGP and HGDP by population. Regional abbreviations are as
described in Table S1. OCE is excluded from this plot as it is represented by only two populations.
Mean coverage across the different regions is 33X with coverage consistently above 30X for all
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Figure S3. Dosage and sex ploidy of HGDP samples and batching strategy. A) Distribution of
dosage scores across HGDP samples. We used the previously developed whole genome dosage
model (Collins et al 2020) to quantify non-uniform distribution of sequencing coverage.The dosage
scores corresponded predominantly to PCR-amplified (PCR+) and PCR-free (PCR-) library
protocols. B) Distribution of chrX copy number across HGDP samples. C) Batching strategy for SV
calling. HGDP samples were first split by their PCR status and chrX ploidy. PCR- samples were
then ranked by their sequencing depth from low to high, and split into four sub batches of equivalent
sizes. Male and female batches with matched coverage quantiles are combined to form the final
batches. 6
Figure S4 | SV callset and quality evaluation results. A) Count of SV sites across 4,150 HGDP and
1KGP samples by variant type. B) Count of SVs per genome by variant type. C) Count of SV sites
by allele frequency. D) Inheritance of SVs calculated in 100 pather-mother-child trio families. E)
Correlation of allele frequencies. F) Hardy-Weinberg Equilibrium distribution of SVs. 7
Table S5 |   Sex chromosome aneuploidies in the HGDP samples. 7
Figure S5 | Mean count of SVs versus SNVs by project, region, and number of individuals. Top line
shows a fitted regression line to the 1000 Genomes Project points, and bottom line is fitted to
HGDP points. A larger number of SVs are present in the 1000 Genomes Project data, which was
explored more fully in Figure S6. 8
Table S6 | SV calls by external support from HGSV study. 8
Figure S6 | SV breakdown in count by class across HGDP and 1kGP (HGSV). Per genome SV
counts by study and PCR status (A,C), and population (B). Per genome SV counts are also broken
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down by SV type, including deletions, duplications, multi-allelic CNVs, insertions, inversions, and
complex SVs in D). 9
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Figure S7 | ADMIXTURE analysis of the HGDP and 1kGP resource. We ran ADMIXTURE with
values of K=2 through K=10 across populations and harmonized geographical/genetic regions.
Each row of bar plots shows the breakdown of regional substructure as K increases, where K is the
number of genetic ancestry components fit in that run. For example, when K=2, AFR separates
from the rest of the populations as the most distinct population due to high levels of genetic
diversity. When K=3 EUR separates from the rest, and so on. We chose the best fit value of K to be
K=6 based on a reduction in the rate of change of 5-fold cross validation error as shown in
Figure S8. 12
Figure S8 | 5-fold cross-validation error across ADMIXTURE runs. We selected K=6 as the point at
which cross-validation error leveled out. As described in the ADMIXTURE manual, the
cross-validation error enables users to identify the value of K for which the model has best
predictive accuracy, as determined by “holding out” data points. It partitions observed genotypes
into 5 roughly equally sized folds, masks genotypes for each fold, then predicts the genotypes. 12
Figure S9 | Subcontinental PCA of each geographical/genetic region. Each row shows PCA biplots
of PCs 1-4. PCA outliers were removed prior to this analysis. Filled circles indicate populations in
the 1000 Genomes Project, while filled triangles indicate populations in HGDP. Population codes
are as in Table S1. 14
Figure S10 | HGDP+1kGP ancestry labels applied to the Gambian Genome Variation (GGV)
Project. A) PCs 1 and 2 of all HGDP+1kGP samples with GGV projected into the same PC space,
with each reference population colored and the GGV samples shown in grey. B) The same PCs with
the reference data shown in grey and the GGV samples showing the assigned ancestry–all AFR. 15
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Figure S11 | Example of a filter that was included in gnomAD v3.1 but excluded from this project.
The “fail_n_snp_residual” filter, which regresses out principal components from the number of SNPs
in an effort to identify technical outliers, would have excluded whole continental groups and
populations in this resource because these groups are distinct from the majority of individuals in
gnomAD. 16
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Figure S13 | PCA shrinkage analysis to determine acceptable levels of missingness before ancestry
resolution becomes too low to accurately assign population labels. We started with a set of SNPs
that were used in other PCA (e.g. Figure 2), which had undergone LD pruning, minor allele
frequency filtering, and missingness filtering. We randomly selected 80% of samples (N=2,704) to
train the random forest with corresponding meta-data labels as usual and held out 20% of samples
as a test dataset (N=676). After filtering out monomorphic sites from the training dataset once
samples were divided, we retained 248,634 variants which were used to train the random forest.
We randomly downsampled SNPs in the test dataset to include A) 50%, B) 80%, C) 90%, D) 95%,
E) 99%, F) 99.9%, and G) 100% of SNPs in the training dataset. A-G) shows the corresponding
projected PCs in the test dataset, showing the extent to which shrinkage affects analyses. Table S7
shows rates of unclassified individuals by SNP missingness in the test dataset. 19
Table S7 | Shrinkage analysis matches and no classification numbers by SNP missingness in the
test dataset, as shown in Figure S13. There were no mismatched labels assigned. 19
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Data harmonization

Genotype data
Genotype data was processed as described in 1. Briefly, reads were mapped using BWA-MEM, cleaned using
the GATK Best Practices pipeline, and gVCFs were generated using GATK HaplotypeCaller. Joint calling was
performed using the Hail combiner 2 and converted to a VariantDataset (VDS), which was then densified into a
dense MatrixTable used for analysis. These datasets are released on Google Cloud Platform, Amazon Web
Services, and Microsoft Azure, and can be found on the Downloads page of the gnomAD browser
(https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg).

Metadata
Where possible, we combined meta-data from the 1000 Genomes Project and HGDP by combining the “super
population” data from the 1000 Genomes project 3 and region information from HGDP 4. We created a
harmonized combined label with 3-letter codes for all groups, which we refer to as geographical/genetic region
throughout the text. Where a region was only clearly contained in HGDP, we used the HGDP information to
define a 3-letter code. The CENTRAL_SOUTH_ASIA code contained within HGDP is more geographically
expansive than the SAS label contained in the 1000 Genomes Project, so we expanded the 3 letter code to be
CSA, as shown in Table S1.

Table S1 | Harmonization of HGDP and 1000 Genomes Project meta-data project labels. These labels are
referred to as geographical/genetic region throughout this manuscript.

1000 Genomes super population HGDP region Combined label
(geographical/genetic region)

AFR AFRICA AFR

AMR AMERICA AMR

SAS CENTRAL_SOUTH_ASIA CSA

EAS EAST_ASIA EAS

EUR EUROPE EUR

N/A MIDDLE_EAST MID

N/A OCEANIA OCE

After combining region data, we then used principal components analysis (PCA) to identify ancestry outliers
within regions. We identified outliers as described in Table S2 and provide final sample counts in Table S3.

Table S2 | Genetic outliers identified in analysis of global and subcontinental PCA.
Sample ID Region Population

HG01880 AFR ACB

HG01881 AFR ACB

NA20274 AFR ASW

NA20299 AFR ASW
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NA20314 AFR ASW

HGDP00013 CSA Brahui

HGDP00029 CSA Brahui

HGDP00057 CSA Balochi

HGDP00130 CSA Makrani

HGDP00150 CSA Makrani

HGDP00175 CSA Sindhi

HGDP01298 EAS Uygur

HGDP01300 EAS Uygur

HGDP01303 EAS Uygur

LP6005443-DNA_B02 EAS Uygur

HG01628 EUR IBS

HG01629 EUR IBS

HG01630 EUR IBS

HG01694 EUR IBS

HG01696 EUR IBS

HGDP00621 MID Bedouin

HGDP01270 MID Mozabite

HGDP01271 MID Mozabite

CHMI_CHMI3_WGS2 gnomAD QC sample

Table S3 | Final sample counts. Note: hard filtering was performed as in gnomAD v3 with modifications as
described b (in the initial gnomAD release, 3,280 of these 4,120 hard filtered individuals are included). Total in
first two rows includes a “synthetic diploid” QC sample (CHM; Complete Hydatidiform Mole) described
previously5.

HGDP 1kG Total

Initial dataset 948 3,202 4,151

Hard filtered 943 3,176 4,120

PCA outliers removed 930 3,166 4,096

Unrelated individuals 807 2,507 3,378

QC Metadata Summaries
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Figure S1 | Coverage across the 1kGP and HGDP. Coverage in both datasets is uniformly above 30X, with
an average of 33X coverage across the harmonized dataset. The coverage of the HGDP genomes is more
variable than in 1kGP, as expected based on a variety of technical differences such as multiple sequencing
batches, PCR+ vs PCR-free, and older cell lines in HGDP compared to 1kGP. The differences in project
coverages also impacts the distribution of coverage statistics by Geographical region given their tally by project
(Table S4). The overall coverage distributions by population are shown in Figure S2.

Figure S2 | Coverage across 1kGP and HGDP by population. Regional abbreviations are as described in
Table S1. OCE is excluded from this plot as it is represented by only two populations. Mean coverage across
the different regions is 33X with coverage consistently above 30X for all regions.

Table S4 | Coverage and SNV statistics by population.
Coverage was computed across the genome as part of the gnomAD project. Relatedness was inferred using
PC-Relate. Because number of variants and singleton counts per individual are sensitive to sample size
imbalances, they were tallied using a downsampled version of the dataset in which each population was
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randomly downsampled to match the smallest population (i.e. 6 individuals per population), then SNVs were
removed if they were not polymorphic in the downsampled dataset. Given the more pronounced impact of
batch effects on structure variant (SV) calling and the number of batches present within and between datasets,
the number of SVs per individual were calculated across the full dataset, not in the downsampled dataset.

Structural variants (SVs)

Figure S3. Dosage and sex ploidy of HGDP samples and batching strategy. A) Distribution of dosage
scores across HGDP samples. We used the previously developed whole genome dosage model (Collins et al
2020) to quantify non-uniform distribution of sequencing coverage.The dosage scores corresponded
predominantly to PCR-amplified (PCR+) and PCR-free (PCR-) library protocols. B) Samples ranked by dosage
score. C) Distribution of chrX copy number across HGDP samples. D) Batching strategy for SV calling. HGDP
samples were first split by their PCR status and chrX ploidy. PCR- samples were then ranked by their
sequencing depth from low to high, and split into four sub batches of equivalent sizes. Male and female
batches with matched coverage quantiles are combined to form the final batches.
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Figure S4 | SV callset and quality evaluation results. A) Count of SV sites across 4,150 HGDP and 1KGP
samples by variant type. B) Count of SVs per genome by variant type. C) Count of SV sites by allele frequency.
D) Inheritance of SVs calculated in 100 pather-mother-child trio families. E) Correlation of allele frequencies. F)
Hardy-Weinberg Equilibrium distribution of SVs.

Table S5 |   Sex chromosome aneuploidies in the HGDP samples.
Sample ID Population Genetic region chrX chrY Assignment

HGDP00445 Burusho CSA 1 0 XO

HGDP01157 Bergamo Italian EUR 1 0 XO

HGDP01208 Oroquen EAS 2 1 XXY

HGDP01368 Basque EUR 1 0 XO

LP6005441-DNA_G09 Palestinian MID 1 0 XO
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Figure S5 | Mean count of SVs versus SNVs by project, region, and number of individuals. Top line
shows a fitted regression line to the 1000 Genomes Project points, and bottom line is fitted to HGDP points. A
larger number of SVs are present in the 1000 Genomes Project data, which was explored more fully in
Figure S6.

Table S6 | SV calls by external support from HGSV study.

External Supports (Count SVs per genome)

SVtype Precision No Support Illumina PacBio Illumina and
PacBio

DEL 97.60% 74 116 205 2688

DUP 89.30% 73 34 216 359

INS 91.37% 346 456 320 2889

INV 85.71% 2 0 12 0

CNV 71.29% 143 12 308 35

CPX 75.89% 54 0 170 0
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All-SVs 91.87% 692 618 5971 1231

Figure S6 | SV breakdown in count by class across HGDP and 1kGP (HGSV). Per genome SV counts by
study and PCR status (A,C), and population (B). Per genome SV counts are also broken down by SV type,
including deletions, duplications, multi-allelic CNVs, insertions, inversions, and complex SVs in D).
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Population genetic comparisons
The breakdown of ancestry and population structure by ADMIXTURE is similar to that identified in global PCA,
with K=2 highlighting structure in the AFR, K=3 highlighting structure in the EAS, K=4 highlighting structure in
the EUR and CSA, K=5 highlighting structure in the AMR, K=6 highlighting structure in the OCE, K=7
highlighting structure in the MID, and subsequent values of K highlighting structure within meta-data labels
(Figure S7).
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Figure S7 | ADMIXTURE analysis of the HGDP and 1kGP resource. We ran ADMIXTURE with values of
K=2 through K=10 across populations and harmonized geographical/genetic regions. Each row of bar plots
shows the breakdown of regional substructure as K increases, where K is the number of genetic ancestry
components fit in that run. For example, when K=2, AFR separates from the rest of the populations as the most
distinct population due to high levels of genetic diversity. When K=3 EUR separates from the rest, and so on.
We chose the best fit value of K to be K=6 based on a reduction in the rate of change of 5-fold cross validation
error as shown in Figure S8.

Figure S8 | 5-fold cross-validation error across ADMIXTURE runs. We selected K=6 as the point at which
cross-validation error leveled out. As described in the ADMIXTURE manual, the cross-validation error enables
users to identify the value of K for which the model has best predictive accuracy, as determined by “holding
out” data points. It partitions observed genotypes into 5 roughly equally sized folds, masks genotypes for each
fold, then predicts the genotypes.
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Figure S9 | Subcontinental PCA of each geographical/genetic region. Each row shows PCA biplots of PCs
1-4. PCA outliers were removed prior to this analysis. Filled circles indicate populations in the 1000 Genomes
Project, while filled triangles indicate populations in HGDP. Population codes are as in Table S1.
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Figure S10 | HGDP+1kGP ancestry labels applied to the Gambian Genome Variation (GGV) Project. A)
PCs 1 and 2 of all HGDP+1kGP samples with GGV projected into the same PC space, with each reference
population colored and the GGV samples shown in grey. B) The same PCs with the reference data shown in
grey and the GGV samples showing the assigned ancestry–all AFR.

Quality control

Our sample QC procedure was mostly the same as in gnomAD, but differed slightly. Specifically, because
whole populations were removed from gnomad ‘fail_’ filters, we did not filter on the basis of these, which were
used in gnomAD v3.1. The clearest example of filters that failed was the fail_n_snp_residual filter, as shown in
Figure S11.
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Figure S11 | Example of a filter that was included in gnomAD v3.1 but excluded from this project. The
“fail_n_snp_residual” filter, which regresses out principal components from the number of SNPs in an effort to
identify technical outliers, would have excluded whole continental groups and populations in this resource
because these groups are distinct from the majority of individuals in gnomAD.

Analysis tutorials
To show examples of how to use the individual-level data in a cloud-computing environment, we have created
a series of tutorials in iPython notebooks that make use of Hail. These tutorials show how to merge datasets,
apply sample and variant QC, run ancestry analysis via PCA and visualization, generate summary statistics of
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genomes by population, compute and plot population divergence statistics via FST and F2 statistics, and
intersect external datasets with this dataset and infer ancestry information using project meta-data. The
organization of these notebooks is outlined in Figure 5.
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Figure S13 | PCA shrinkage analysis to determine acceptable levels of missingness before ancestry
resolution becomes too low to accurately assign population labels. We started with a set of SNPs that
were used in other PCA (e.g. Figure 2), which had undergone LD pruning, minor allele frequency filtering, and
missingness filtering. We randomly selected 80% of samples (N=2,704) to train the random forest with
corresponding meta-data labels as usual and held out 20% of samples as a test dataset (N=676). After filtering
out monomorphic sites from the training dataset once samples were divided, we retained 248,634 variants
which were used to train the random forest. We randomly downsampled SNPs in the test dataset to include A)
50%, B) 80%, C) 90%, D) 95%, E) 99%, F) 99.9%, and G) 100% of SNPs in the training dataset. A-G) shows
the corresponding projected PCs in the test dataset, showing the extent to which shrinkage affects analyses.
Table S7 shows rates of unclassified individuals by SNP missingness in the test dataset.

Table S7 | Shrinkage analysis matches and no classification numbers by SNP missingness in the test
dataset, as shown in Figure S13. There were no mismatched labels assigned.

Fraction of SNPs in test dataset
out of training dataset

Match No assignment

1 651 / 676 = 0.96 25 / 676 = 0.04

0.999 652 / 676 = 0.96 24 / 676 = 0.04

0.99 649 / 676 = 0.96 27 / 676 = 0.04

0.95 616 / 676 = 0.91 60 / 676 = 0.09

0.9 556 / 676 = 0.82 120 / 676 = 0.18

0.8 447 / 676 = 0.66 229 / 676 = 0.34

0.5 122 / 676 = 0.18 554 / 676 = 0.82
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