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 17 
SUMMARY 18 

Following infection, hematopoietic stem and progenitor cells (HSPCs) support immunity by increasing the 19 
rate of innate immune cell production but the metabolic cues that guide this process are unknown. To 20 
address this question, we developed MetaFate, a method to trace the metabolic expression state and 21 
developmental fate of single cells in vivo. Using MetaFate we identified a gene expression program of 22 
metabolic enzymes and transporters that confers differences in myeloid differentiation potential in a subset 23 
of HSPCs that express CD62L. Using single-cell metabolic profiling, we confirmed that CD62Lhigh myeloid-24 
biased HSPCs have an increased dependency on oxidative phosphorylation and glucose metabolism. 25 
Importantly, metabolism actively regulates immune-cell production, with overexpression of the glucose-6-26 
phosphate dehydrogenase enzyme of the pentose phosphate pathway skewing MPP output from B-27 
lymphocytes towards the myeloid lineages, and expansion of CD62Lhigh HSPCs occurring to support 28 
emergency myelopoiesis. Collectively, our data reveal the metabolic cues that instruct innate immune cell 29 
development, highlighting a key role for the pentose phosphate pathway. More broadly, our results show 30 
that HSPC metabolism can be manipulated to alter the cellular composition of the immune system. 31 

 32 
Introduction 33 
 34 
Throughout the body, stem cells need to constantly adapt the amount and type of cells that they produce to 35 
maintain tissue homeostasis, compensate for cell loss and promote tissue repair. A key challenge in the stem 36 
cell field is to understand the molecular signals that selectively differentiate stem cells into specialized cell types 37 
in vivo. Much emphasis has been placed on the role of transcription and growth factors in guiding lineage 38 
specification, but the role of metabolism in this context has been overlooked. Under homeostasis, 39 
hematopoiesis is the dominant biosynthetic process in the human body, generating 1011 cells each day1,2 and 40 
accounting for ~86% of daily cell turnover 1. Following infection, hematopoietic stem and progenitor cells 41 
(HSPCs) rapidly change the amount and the types of cells that they produce to support the immune system3. 42 
Despite the significant biosynthetic demands placed on HSPCs, the metabolic cues that regulate the magnitude 43 
and lineage-specificity of their cellular outputs are poorly understood.  44 
 45 
Recently developed population-level metabolomics, genetics, and pharmacological approaches show that 46 
cellular metabolism is a key regulator of hematopoietic stem cell (HSC) function4,5. At the top of the 47 
hematopoietic hierarchy, HSCs have been characterized by high rates of glycolysis6 and low rates of protein 48 
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synthesis7, while glutamine8, mitophagy and fatty acid oxidation9,10, vitamin A11, ascorbate12 and aspartate13 49 
have been shown to regulate HSC erythroid commitment, renewal, dormancy, abundance, and reconstitution 50 
capacity respectively. As in many other stem cell systems, much work has focused on the metabolic regulation 51 
of stemness and quiescence, with relatively little focus given to the metabolic cues that guide downstream 52 
lineage specification5,14,15. Consequently, the metabolic processes needed to differentiate HSCs into immune 53 
cells are unknown. In addition, fate-mapping and cellular barcoding studies have shown that the downstream 54 
multipotent progenitor (MPP) compartment acts as the major source of new blood cells in native 55 
haematopoiesis16, and is where lineage branchpoints occur 17,18. Despite their functional importance, it is 56 
unclear to what extent metabolism can shape the magnitude and lineage specificity of immune cell production 57 
from MPPs.   58 
 59 
The lack of metabolomics studies in HSPCs is due in part to the technical challenges associated with measuring 60 
metabolic processes in rare cell types. Metabolites are typically short lived - on the order of minutes19  and 61 
have a large structural diversity, limiting state of the art mass-spectrometry based assays to 104 HSPCs12,20. Such 62 
limitations in sensitivity make it difficult to link relative metabolite measurements of bulk populations to the 63 
functional heterogeneity of individual HSPCs, as characterised by lineage tracing and single cell transplantation 64 
studies17,18,21,22. Recent advances in high-dimensional mass cytometry 23, flow cytometric profiling of 65 
translation24, genetically encoded biosensors 25, and in situ dehydrogenase assays26 are helping to address this 66 
challenge. However, these techniques are typically destructive in nature, making it challenging to link metabolic 67 
state to functional outcomes, particularly in vivo. This limitation is critical, with recent studies showing that -68 
omics profiling should be paired with functional measurements to resolve HSPC heterogeneity 27,28.  69 
 70 

To address these challenges, we developed MetaFate, an in situ barcoding approach to combine the metabolic 71 
gene expression state and differentiation fate of single cells in vivo. RNA expression has a complex association 72 
with metabolite levels, due in part to non-linear enzyme kinetics and metabolites being processed by multiple 73 
pathways29. RNA measurements do however provide information about the expression patterns of metabolic 74 
enzymes and transporters, and can be used to identify novel surface markers to purify functionally distinct cell-75 
subsets for downstream metabolomics profiling. Here, using MetaFate profiling of HSPCs, we identified a gene 76 
expression program of metabolic enzymes/transporters that are associated with myeloid differentiation 77 
potential and expression of the adhesion molecule CD62L. Fluorescence based metabolic profiling assays 78 
corroborated MetaFate gene expression patterns, revealing a higher dependency on OXPHOS and glucose 79 
metabolism to fuel increased rates of protein synthesis and ATP turnover in CD62Lhigh myeloid-biased MPPs. In 80 
addition, we demonstrate that metabolism plays an active role in regulating immune cell production. MetaFate 81 
identified the pentose phosphate pathway as a metabolic signature of myeloid development. Overexpression 82 
of the glucose-6-phosphate dehydrogenase enzyme, rate limiting enzyme of the pentose phosphate pathway, 83 
limited the production of B-cells from transplanted MPPs, skewing output towards the erythromyeloid lineages. 84 
In the context of emergency myelopoiesis, the CD62Lhigh MPP compartment expands to meet increased 85 
demands for innate immune cells. 86 

Collectively, our data bridges understanding between the fields of stem cell biology, cellular metabolism and 87 
immunology, revealing the metabolic cues that guide early innate immune cell development. Our results 88 
highlight a key role for the pentose phosphate pathway in this process and show that by manipulating lineage 89 
specific metabolic cues, it is possible to alter the specificity of regenerative processes in vivo. 90 

Results  91 
 92 
 93 
MetaFate – a lineage tracing approach to obtain fate resolved RNA expression patterns of metabolic enzymes 94 
and transporters  95 
 96 
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In this study, we hypothesise that metabolism regulates the differentiation of HSPCs in vivo. To address this 97 
question, we developed MetaFate, an approach that combines single cells transcriptomics with in-situ 98 
barcoding to provide fate-resolved expression patterns of metabolic enzymes and transporters (Figure 1a). For 99 
a single progenitor cell MetaFate provides 3 pieces of information: (i) gene expression data (ii) a lineage barcode 100 
(iii) the frequency at which its lineage barcode is found across differentiated cell types. Collectively, this 101 
information can be used to link metabolic enzyme/transporter RNA expression to differentiation behaviours in 102 
single cells in vivo (Figure 1a).  103 
 104 
To barcode cells in their native environment, we use the DRAG (Diversity through RAG) in situ barcoding 105 
technology that allows inducible labelling of cellular lineages with heritable barcodes (Figure 1a, Figure S1a) 106 
(Urbanus and Cosgrove et al, under revision, manuscript provided within this submission). Importantly, DRAG 107 
barcoding is neutral with respect to hematopoietic differentiation, has a high barcode diversity, and can 108 
quantify clonal output in low cell numbers (Urbanus and Cosgrove et al). These key attributes make DRAG 109 
barcoding well-suited to studying the clonal dynamics of HSPCs in vivo. In brief, upon CRE induction by 110 
tamoxifen, the cassette between two loxP sites is inverted, causing the expression of both the RAG1 and 2 111 
enzymes and Terminal deoxynucleotidyl transferase (TdT). This leads to the generation of a heritable barcode 112 
through the recombination of the synthetic V-, D- and J-segments, with barcode diversity being generated both 113 
by RAG-mediated nucleotide deletion and TdT-mediated N-addition (Figure S1a). In addition, DRAG 114 
recombination results in GFP expression, facilitating the purification of barcoded cells by fluorescence activated 115 
cell sorting (FACS). To detect barcodes in large populations of differentiated cells, we use targeted amplification 116 
of the invariant region common to all barcodes and deep sequencing of genomic DNA at the population level, 117 
as in our original protocol (Urbanus and Cosgrove et al, in revision). To detect barcodes and gene expression 118 
information in progenitor cells, we developed a custom targeted amplification approach using primers targeted 119 
to the invariant region of DRAG barcodes to recover barcode transcripts from 10X genomics 3’ scRNAseq 120 
libraries (supplementary information).  121 
 122 
To test the metafate experimental and bioinformatics pipeline, RosaCreERT2+/- DRAG+/- mice were given 123 
tamoxifen injections to induce barcode recombination at 8-11 weeks of age.  47-67 weeks post-induction, 124 
barcoded HSPCs (Sca1+ cKit+ GFP+), Cd11b+ GFP+ Myeloid and Ter119+ CD44+ GFP+ nucleated erythroid cells were 125 
isolated from the bone marrow of 5 mice using fluorescence activated cell sorting (FACS) (Figure 1b; Figure S2). 126 
HSPCs were then processed for single cell RNA sequencing and targeted barcode amplification (materials and 127 
methods). In nucleated erythroid and mature myeloid cells, barcodes were detected from cell populations at 128 
the DNA level as described in Urbanus and Cosgrove et al. Following data pre-processing, integration and 129 
quality control (Figure S4a-c) transcriptomes for 4,485 cells were retained post quality control filtering and a 130 
median of 3,812 genes were detected per cell. Genes which mapped to enzymes and transporters of metabolic 131 
pathways from the KEGG, GO and REACTOME database were classified as metabolically-associated for 132 
downstream analyses (3095 genes). Following QC and filtering (materials and methods), we recovered RNA 133 
barcode information for 668 hematopoietic stem and progenitor cells (14.9% recovery rate at the RNA level), 134 
corresponding to 158 unique lineage barcodes (table S1). From the mature erythroid and myeloid bone marrow 135 
compartment, we recovered 381 unique barcodes at the DNA level with high consistency between technical 136 
replicates (Figure S3), with 97 barcodes overlapping between RNA and DNA detection. Comparison of lineage 137 
barcodes detected from either DNA or RNA showed similar barcode lengths, as well as similar insertion and 138 
deletion patterns, confirming that full barcode sequences could be accurately recovered from transcripts 139 
(Figure S1b-d). To compute the probability that two independent cells were labelled with the same barcode, 140 
we applied a mathematical model of DRAG barcode recombination (Urbanus and Cosgrove et al, materials and 141 
methods) to infer the generation probability of each barcode. Most DNA and RNA detected barcodes had a low 142 
generation probability (Figure S1e), with barcodes present in several mice having a higher probability than 143 
barcodes present in one mice (Figure S1f). Therefore many barcodes with low probability to label several cells 144 
both detected in RNA and DNA were available for lineage analysis. Collectively, these analyses demonstrate 145 
that MetaFate permits flexibility in barcode recovery at the RNA or DNA level, a comprehensive bioinformatics 146 
framework to filter spurious and probable barcodes, as well as providing a high degree of barcode diversity in 147 
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vivo. In summary, MetaFate is a robust method to integrate in situ barcoding and single cell transcriptomics 148 
measurements in rare cell types. 149 
 150 
Once we had validated the MetaFate pipeline, we sought to study the metabolic regulation of lineage 151 
commitment dynamics in HSPCs. By analysing the distribution of barcodes across the myeloid and erythroid 152 
lineages, we observed that HSPCs are highly heterogeneous in the amount (Figure 1c) and type (Figure 1d) of 153 
cells that they produced. To further characterize the functional heterogeneity of HSPCs, barcode labelled HSPCs 154 
were classified as differentiation inactive (98 cells ; 61 unique barcodes) if we could not detect their barcode in 155 
any mature cell compartments22,27,30,31, or as erythroid-biased (143 cells ; 35 barcodes), myeloid-biased (143 156 
cells ; 31 barcodes), or unbiased (284 cells ; 31 unique barcodes) depending on the relative abundance of the 157 
barcode across the respective lineages. Specifically, barcodes that had more than 75% of its barcode reads in 158 
the myeloid or erythroid lineage were classified as lineage-biased (Figure 1d-e), or otherwise classified as 159 
unbiased. Similar results were obtained with thresholds close to 75% (Figure S4e-g). Extreme thresholds (90% 160 
or below 55%) impacted the amount of barcodes and the magnitude of difference in gene expression, 161 
precluding robust analysis (Figure S4e-g). Note that the barcode generation probability was low for most 162 
barcodes, indicating that the labeling of multiple initial cells is not accounting for the classification of the 163 
barcode in the different categories (Figure S1g). Within our UMAP representation of the data, the distribution 164 
of differentiation inactive clones correlated with signatures of dormant HSCs32, while we observed a significant 165 
overlap in the distribution of erythroid and myeloid-biased clones within MPP-associated regions of UMAP 166 
space that was not resolved by unsupervised clustering on gene expression alone (Figure S4d) or mapped to 167 
an existing known MPP subset (Figure 1e-f), suggesting that metafate revealed new biased MPP subsets to be 168 
characterized.  Differential expression analysis between myeloid-biased, erythroid-biased and differentiation 169 
inactive clones identified a total of 464 differentially expressed genes associated with myeloid bias, 271 of 170 
which were upregulated in myeloid-biased clones, defining the DRAG-Fate myeloid gene signature (Figure 1e-171 
f). Among these genes were existing markers of myeloid potential including Mpo, Ctsg, Ms4a3 and Cpa327,33,34, 172 
confirming that metafate can identified myeloid biased cells. Interestingly, 57/271 genes within the DRAG-Fate 173 
myeloid signature encoded enzymes and transporters from metabolic pathways of the KEGG, REACTOME and 174 
GO reference databases (Figure 1g-h). This subset of metabolically-associated genes, hereafter called the 175 
MetaFate myeloid signature (Figure 1g-h), comprises genes relating to OXPHOS (Idh2, Idh3a, Cox7b, Ndufa4, 176 
Uqcr10), proteostasis and ribosome biogenesis (Hdc, Kyat3, Sec61b,Slc35b1,Psmc4), the pentose phosphate 177 
pathway (Tkt, Taldo1, Gpi1, Pgls) as well as genes relating to the regulation of redox state (Gsto1, Mgst2, 178 
Txn2,Txndc11,Gpx1) (Figure 1g-h). In summary, by combining analysis of the transcriptome and the lineage 179 
barcode in the bone marrow, metafate identified a new subset of myeloid-biased MPP that upregulate  specific 180 
metabolic-associated genes. These results suggest that a metabolic program associated to a lineage bias is 181 
active very early in differentiation.  182 
 183 
Within HSPCs expression of the MetaFate and DRAGFate -myeloid gene signatures are highly correlated (Figure 184 
S5a), suggesting that that enzyme/transporter expression state alone could be used to predict myeloid fate in 185 
HSPCs. To compare the predictive power of metabolic-associated genes from the MetaFate myeloid signature 186 
against other signatures, we computed the Spearman’s correlation coefficient between gene signature 187 
expression scores and the myeloid bias score of HSPCs (Figure 1i). The DRAG fate signature consistently 188 
outperformed the MetaFate myeloid signature, suggesting that metabolism is not the only program 189 
contributing to myeloid bias (Figure 1h). However the MetaFate myeloid signature predicted myeloid bias to a 190 
greater extent that gene sets relating to transcription factor activity (Figure 1i), which are established regulators 191 
of fate choice, highlighting the importance of metabolic regulation in cell fate decisions. Furthermore, in 192 
comparison to known signatures of myeloid bias in HSPCs, the MetaFate signature had a higher correlation (rho 193 
= 0.24, p-value = 2.5 x 10-10) with myeloid bias compared to the existing MPP3 signature34 (289 genes) (rho = 194 
0.2, p-value = 1 x 10-7) (Figure 1i). DRAG-barcode derived signatures also outperformed the MPP3 signature of 195 
myeloid bias when we performed 4-fold cross-validation analysis, to assess the sensitivity of our result to 196 
overfitting (Figure S4h), revealing the power of combined barcoding and transcriptome in the same cells to 197 
identify lineage bias subsets. To assess the broader predictive power of the MetaFate-myeloid signature, we 198 
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quantified its expression across 3 independent published scRNAseq datasets of hematopoieitic progenitors35–199 
37. In these datasets, the MetaFate-myeloid signature was upregulated in myeloid progenitors relative to other 200 
progenitor subsets (Figure S5). Taken together these analyses showed that the MetaFate myeloid signature, 201 
comprising only genes associated with metabolism, was a robust predictor of myeloid differentiation potential 202 
of MPPs in native hematopoiesis.  203 
 204 
To assess whether the MetaFate myeloid expression program was maintained throughout development or was 205 
transiently expressed in Lin- Sca1+ cKit+ HSPCs, we assessed enzymes and transporter gene expression patterns 206 
across different phases of myeloid development. We modelled early stages of myeloid differentiation (HSC -> 207 
MPP -> cKit+ restricted potential progenitors) by applying the PAGA algorithm38 to a published scRNAseq 208 
dataset of cKit+ progenitors36 (Figure S6). Using this developmental trajectory inference approach, we found 209 
that the MetaFate metabolic program was not expressed in HSCs but was heterogeneously expressed within 210 
the MPP compartment and increased as cells transition from the MPP to the cKit+ Sca1- myeloid committed 211 
progenitor compartments. This data is consistent with previous single cell studies showing that erythroid-212 
myeloid branching can occur before the common myeloid progenitor compartment within MPPs18,39 213 
 214 
In summary, MetaFate is the first approach to map metabolic gene expression states to developmental fate in 215 
single cells in vivo. By combining expression and fate analysis, MetaFate showed that MPP’s are metabolically 216 
heterogeneous and that this heterogeneity confers differences in lineage potential. Metafate revealed a 217 
metabolic-associated gene signature that starts to be expressed in MPPs following the exit of quiescence and 218 
entry into myeloid development. This early expressed metabolic-associated program is a robust predictor of 219 
myeloid potential in MPP and is reinforced upon lineage commitment and maturation. Together this suggests 220 
that the metabolic regulation of fate decisions can occur in the earliest phases of hematopoietic development, 221 
within multipotent progenitors. To build upon this result, we next assessed to what extent the metabolic-222 
associated gene expression patterns observed with Metafate are reflective of metabolic pathway activity in 223 
MPPs.  224 
 225 

CD62Lhigh Multipotent Progenitors Are Characterised by a Reduced ATP/ADP Ratio and Higher Rates of 226 
Protein Synthesis and Oxidative Phosphorylation 227 

Given that MetaFate identified a novel myeloid-biased MPP subset with a distinct expression program of 228 
enzymes and transporters, we developed a purification strategy to isolate this subset such that we could further 229 
assess their metabolic and functional properties. Differential expression analysis between barcoded HSPCs 230 
(Figure 1g) highlighted Sell, the gene encoding the adhesion molecule CD62L, as a putative marker of cells 231 
expressing the MetaFate-myeloid expression program. We also observed significant differences in Sell between 232 
MetaFatelow and MetaFatehigh  cells (cells below and above the 75th percentile of MetaFate signature expression 233 
respectively, p < 0.001) (Figure 2a). Flow cytometry profiling showed that CD62L is heterogeneously expressed 234 
in HSPCs (Figure 2b-c), with high expression in a subset of MPP3 and MPP4 cells, and little to no expression in 235 
LT-HSCs, ST-HSCs and MPP2s (Figure 2b-c), consistent with our MetaFate analyses. Based on these results, we 236 
selected CD62L as a marker of MetaFatehigh myeloid-biased MPPs (Figure 2d).  237 
 238 
To measure the metabolic pathway activity of CD62L+ MPPs, we combined two complementary fluorescence 239 
based assays (Figure 2e,f): (i) SCENITH (Single Cell Metabolism by Profiling Translation inhibition), a flow 240 
cytometry-based method24 based on profiling protein synthesis rates in response to metabolic inhibitors using 241 
flow cytometry  (ii) SPICE-Met which provides a measure of cellular ATP:ADP ratio using a genetically encoded 242 
PercevalHR biosensor that can be measured using fluorescence microscopy or flow cytometry25. PercevalHR is 243 
composed of a mutated version of the ATP-binding bacterial protein GlnK1 and the circular permuted 244 
monomeric Venus fluorescent protein. ATP but not ADP binding to the PercevalHR causes a ratiometric shift 245 
in the probe fluorescence excitation spectrum providing a read out of ATP:ADP intracellular ratio. In these two 246 
metabolic profiling assays, cells are purified from the bone marrow of wild-type B6j (SCENITH) or Vav-iCre 247 
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Percevalfl/fl (SPICE-Met) mice and treated with either DMSO (control; Co), or small molecule inhibitors of 248 
glycolysis (2-deoxy-D-glucose; 2-DG), OXPHOS (Oligomycin; O) and protein synthesis (harringtonine; H). By 249 
comparing the fluorescent intensities of ATP, ADP and puromycin across different experimental conditions  250 
(Figure 2e,f) we can then quantify the bioenergetic state of rare cell types such as HSPCs.  251 
 252 
To assess whether these methods could be applied to study HSPCs, we benchmarked them by comparing the 253 
metabolic profiles of HSCs (Lin- cKit+ Cd48- Slam+) and MPPs, for which a number of metabolic differences have 254 
already been reported7,40,41. Consistent with previous reports 7,40,41,  SCENITH and SPICE-Met profiling showed 255 
that HSCs had a higher glycolytic capacity and lower protein synthesis rate than MPPs (Figure S7b-d), confirming 256 
that our approach can be successfully applied to study other hematopoietic progenitor subsets. To assess 257 
whether the MetaFate-myeloid signature was reflective of differences in metabolic pathway activity, we then 258 
compared the metabolic profiles of  CD62Lneg and CD62Lhigh MPPs (Lin- cKit+ Sca1+) (Figure 2g,k). SCENITH 259 
profiling showed that CD62Lhigh MPPs have a significantly higher rate of protein synthesis than CD62Lneg MPPs 260 
(p < 0.001) and their translation rates are highly sensitive to oligomycin treatment (p =  0.001) (Figure 2h-i). 261 
Similar results were obtained when we measured the uptake of mitochondrial membrane potential TMRE dye 262 
in the different MPP subsets (p < 0.001) (Figure 2j). Using SPICE-Met, we observed that CD62Lhigh MPPs had a 263 
lower ATP/ADP ratio (p < 0.001) than CD62Lneg MPPs (Figure 2k,l) and a higher OXPHOS-dependence (p < 0.001) 264 
(Figure 2m), corroborating  results from SCENITH. To understand if the relationship between translation rates 265 
and OXPHOS was entirely glucose dependent, or to what extent the breakdown of fatty and amino acids via 266 
the TCA cycle was also involved, we measured ATP:ADP ratios of MPPs following inhibition of glucose 267 
metabolism using 2-DG. In this analysis, ATP:ADP ratios (Figure 2n), were more sensitive to glucose inhibition 268 
in CD62Lhigh MPPs compared CD62Lneg MPPs (p = 0.02), suggesting that the higher rates of translation observed 269 
in CD62Lhigh MPPs are typically fuelled by glucose, rather than through the oxidation of fatty and amino -acids.  270 
 271 
Consistent with our MetaFate analyses, CD62Lhigh MPPs have distinct metabolic properties compared to other 272 
multipotent progenitors. Specifically we observed higher rates of ATP turnover and protein synthesis, with 273 
metabolic demands fuelled by increased glucose catabolism in the mitochondria, rather than by increasing the 274 
rate of fatty and amino acid oxidation. Our results suggest that metabolic remodelling accompanies the earliest 275 
phases of hematopoietic lineage specification, and so we next investigated whether metabolism plays an active 276 
or a passive role in the decision making process.  277 
 278 

The Pentose Phosphate Pathway Actively Regulates Immune Cell Production 279 

MetaFate analyses and metabolic profiling highlighted a number of metabolic pathways that are associated 280 
with early myeloid development. This led us to hypothesise that manipulating metabolic processes within MPPs 281 
could influence the rate of immune cell production. To better discriminate between pathways that have an 282 
active versus a passive role in myelopoiesis, we applied the MIIC causal network reconstruction algorithm42 to 283 
enzyme and transporter expression data obtained from bulk RNA sequencing samples across the entire 284 
hematopoietic system 43 (Figure S8). MIIC is an information theoretic method which learns graphical models  285 
from observational data, including the effects of unobserved latent variables42,44. MIIC network reconstruction 286 
predicted that in myeloid cells, enzymes of the PPP (Taldo1, G6pdx) are strongly associated with redox state 287 
(Gsr, Mgst1, Mgst2), glucose metabolism (Hk2, Pkm), NADPH-oxidase activity (Ncf1) and lipid metabolism 288 
(Scarb1, Abcd1,Acer3), and collectively, these enzymes contribute to myeloid lineage specification. This 289 
prediction was consistent with MetaFate results, which showed that enzymes associated with the PPP are 290 
upregulated in myeloid-biased MPPs (Figure 1h). Together, this led to the hypothesis that manipulating the PPP 291 
in MPPs could be a strategy to regulate the dynamics of immune cell production.  292 

To test this hypothesis, we use a murine model where Glucose-6-Phosphate-Dehydrogenase (G6PD), the rate 293 
limiting enzyme of the PPP, is overexpressed45. In this G6PD overexpression system a large genomic fragment 294 
(20.1Kb) of the entire human G6PD gene, including upstream and downstream regulatory sequences was 295 
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inserted into the genome of a transgenic mouse line (G6PD-Tg). In G6PD-Tg mice, G6PD expression is increased 296 
2-fold at the RNA level compared to WT littermate controls, a phenotype associated with increased G6PD 297 
enzyme activity and NADPH production rates45. To assess the functional consequences of G6PD overexpression 298 
on MPP differentiation, we transplanted G6PD-tg and WT MPPs and quantified their differentiation patterns in 299 
vivo using a lentiviral cellular barcoding approach (Figure 3a). A single cell lineage tracing approach such as 300 
lentiviral barcoding allows to follow the fate of heterogenous cells like MPPs. MPPs were purified from the 301 
bone marrow of G6PD-Tg mice or WT littermate controls and infected with the LG2.2 lentiviral barcode library 302 
as previously described46. Cells were then transplanted into sub-lethally irradiated (6Gy) recipients and left to 303 
engraft, divide and differentiate. At day 21 after transplantation, the timepoint where myeloid production from 304 
transplanted MPPs peaks47, barcoded (GFP+) erythroblasts (E; Ter119+ CD44+), myeloid cells (M; 305 
Ter119- CD19-  CD11b+), and B-cells (B; Ter119- CD11b- CD19+) were sorted from the bone marrow and their 306 
barcode identity was assessed through PCR and deep sequencing from their bulk DNA (Figure 3a and S9a).  307 

Analysis of chimerism post-transplantation using the proportion of GFP+ barcoded cells in the erythroid, 308 
myeloid, and B-cell compartments showed a significant decrease in GFP+ cells  in G6PD-Tg derived leukocytes 309 
relative to WT controls, with a trending decrease in B-cell chimerism (p = 0.057) but no change in myeloid 310 
chimerism (p = 0.34) (Figure 3b-e). This result show that over-expression of a myeloid associated enzyme, G6PD 311 
lead to impaired B-lymphopoiesis. To better assess this phenotype, we analysed the distribution of lentiviral 312 
barcodes amongst mature cell types. For G6PD-Tg and WT samples, we detected similar number of sequencing 313 
reads (Figure S9b) as well as a high consistency between PCR duplicates (Figure S9c-d) and very little sharing 314 
of barcodes between mice (Figure S9e). Following these QC steps, we analysed the diversity, clone size 315 
distributions, and lineage bias of G6PD-Tg vs WT barcoded MPPs to understand the progenitor dynamics that 316 
gave rise to reduced leukocyte chimerism. Consistent with chimerism measurements, we observed no 317 
significant differences in the diversity, clone sizes, and bias of the erythroid- and myeloid- producing barcoded 318 
MPPs between the G6PD-Tg and control group (Figure S10c-h). Within the B-cell lineage, the cumulative 319 
barcode read distribution showed that only a small fraction (11.9 ± 2.5% of WT and 21 ± 9% of G6PD-Tg) of 320 
transplanted cells give rise to 95% of all donor-derived B cells (Figure S10b), contrary to the other two lineages 321 
(Figure S10c-h). Focusing on these B-cell producing MPP barcodes, we observed a 2.7-fold reduction in the 322 
number of B-cells derived from each barcoded MPP in the G6PD-Tg group compared to WT (Figure 3f), with a 323 
median clone size of 1692 ± 689 cells for WT B-cell barcodes, but only 630 ± 434 cells for G6PD-Tg B-cell 324 
barcodes (Figure 3f, Figure S10i). This reduced amount of lymphoid cells produced per MPP due to G6PD 325 
overexpression was then partly compensated at the population level by an increase the total number of MPPs 326 
producing B-cells in the G6PD-Tg group compared to WT (Figure 3g). Overall per individual MPP, G6PD over-327 
expression led to a net-skewing of cell production towards the erythro-myeloid lineages at the expense of the 328 
lymphoid lineage (Figure 3h-j). In summary, by combining targeted genetics and cellular barcoding approaches, 329 
we showed with single cell resolution that overexpression of the pentose phosphate pathway, a key pathway 330 
from our metafate myeloid derived gene signature, limits B-cell production in vivo. This result confirmed our 331 
hypothesis that manipulating metabolic processes within MPPs can regulate the dynamics of immune cell 332 
production in vivo. 333 

CD62Lhigh MPPs Fuel Emergency Myelopoiesis during acute infection and bone marrow transplantation 334 
 335 
Hematopoiesis is a highly dynamic system, and must adapt to meet changing requirements for blood and 336 
immune cells. We hypothesised that the metabolically-primed myeloid-biased multipotent progenitors we 337 
identified via MetaFate, could play a significant role in emergency myelopoiesis where the rate of myeloid cell 338 
production increases significantly48.   339 
 340 
To assess the role of CD62Lhigh MPPs in infection we first used an LPS challenge model in which mice are given 341 
35μg of LPS at 0 and 48 hours, and bone marrow samples are processed for flow cytometry analysis at 72 342 
hours49 (Figure 4a). In this established model of emergency myelopoiesis49, we observe increased CD62L 343 
expression in MPPs (Figure 4b) and an increased proportion of CD62Lhigh MPPs (Figure 4c). This change 344 
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correlated with large increases in both the GMP (cKit+ Sca1- CD16/32+ CD34-) and myeloid (Cd11b+) 345 
compartments of the bone marrow (Figure 4c). To assess whether the CD62Lhigh HSPC expansion can also occur 346 
following infection with a live pathogen, we re-analysed a scRNAseq dataset of cKit+ progenitors from WT mice, 347 
or mice infected with Plasmodium Berghei 7 days post infection50 (Figure 4d). In this setting, our MetaFate-348 
myeloid expression program gene signature was significantly increased in HSPCs relative to control cells (Figure 349 
4f,g). Additionally, we saw a concomitant increase in the number of cells which expressed Sell – the gene 350 
encoding CD62L  (Figure 4e,h).  Taken together, our results show that the CD62L multipotent progenitor 351 
compartment plays a key role in supporting immune responses by producing innate immune cells.  352 
 353 
In the context of bone marrow transplantation, the immune system must be restored following conditioning 354 
protocols to avoid life-threatening complications51. To assess whether CD62Lhigh MPPs preferentially 355 
reconstitute the myeloid compartment following bone marrow transplantation, we purified CD62Lhigh and 356 
CD62Lneg MPPs by FACS and transplanted them into irradiated recipient mice. However the use of the MEL-14 357 
anti-CD62L antibody clone to sort cells and transplantation led to much poorer engraftment of CD62Lhigh MPPs 358 
(Figure S11a-b), a result also supported by a report in the literature that MEL-14 inhibits CD62L function on 359 
leukocytes52. To overcome this limitation, we lentivirally barcoded total MPPs and transplanted them into 360 
irradiated recipient mice (Figure 5a).Barcodes present in the CD62Lneg and CD62Lhigh MPPs, as well as the 361 
nucleated erythroid, B cells and myeloid cells were analysed 3 week post-transplantation – the timepoint when 362 
myeloid production from MPPs peaks post-transplantation47 (Figure 5a-b). We obtained 172 barcodes from all 363 
the samples that passed QC and filtering with high consistency of sequencing read counts between PCR 364 
technical duplicates and very little sharing of barcodes between mice (Figure S12b-d). When comparing the 365 
distribution of barcodes between CD62Lneg and CD62Lhigh MPPs, we found 124 barcodes that are shared 366 
between the two types of MPPs, suggesting that CD62Llow can give rise to CD62Lhigh MPPs and vice-versa or that 367 
cells may transition directly between compartments without undergoing cell division (Figure 5b). We also 368 
observed barcodes present in only one of the two MPP subsets (Figure 5b). Focusing on the differentiation 369 
outcome of the barcodes that had more than 95% of its reads in either the CD62Llow (CD62Llow enriched ; 30 370 
barcodes) or the CD62Lpos (CD62Lhigh enriched ; 18 barcodes) MPPs, we found that CD62Lhigh enriched  barcodes 371 
produce more myeloid cells and less B cells compared to CD62Llow enriched  barcodes, while erythroid production 372 
was similar (Figure 5c).When comparing the lineage bias score of CD62Lneg enriched/high enriched barcodes, we found 373 
that CD62Lhigh enriched MPPs had a significantly higher myeloid bias than CD62Llow MPPs and significantly reduced 374 
B-cell bias and similar erythroid bias (Figure 5d). These results were corroborated by unsupervised clustering 375 
of the data where CD62Lhigh enriched barcodes cluster most closely with the myeloid lineage than the CD62Llow 376 
enriched indicating that CD62Lhigh HSPCs produce more myeloid cells (Figure 5e).  Importantly, the total number 377 
of unique barcodes detected was similar for both the CD62Lhigh  and the CD62Lneg subsets (Figure S13a). This 378 
confirmed that the reduced number of CD62Lneg barcodes in myeloid cells could not be explained by sampling 379 
or sensitivity issues, or differences due to the relative engraftment rates of the subsets. Furthermore, similar 380 
patterns in myeloid bias for CD62Lpos MPPs was observed when we transplanted lentivirally barcoded CD150+ 381 
HSCs, and purified CD62L MPP subsets at 12 months post transplantation (Figure S14). Together, our cellular 382 
barcoding experiments show that  CD62Lhigh MPPs play a key role in repopulating and maintaining myeloid cell 383 
numbers in transplantation hematopoiesis. In summary, our infection and transplantation experiments show 384 
that metabolically-primed multipotent progenitors play a key role in fuelling emergency myelopoiesis.  385 
 386 
Discussion 387 
 388 
A key goal for the field of stem cell biology is to identify the molecular signals that induce stem cells to 389 
selectively differentiate into a cell type of interest in vivo. Previous work has highlighted the critical role of 390 
transcription and growth factors in regulating lineage commitment, but the role of metabolism is less clear in 391 
this context. In this study we developed MetaFate to trace the metabolic state and developmental fate of single 392 
HSPCs in vivo. Using this innovative approach, we characterise the metabolic cues that instruct early myeloid 393 
development, showing that the pentose phosphate pathway plays an active role in this process and can be 394 
manipulated to alter the rate of immune cell regeneration.  395 
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 396 
To add a functional dimension to metabolic studies of rare cell types in vivo we developed MetaFate, a lineage 397 
tracing approach to perform state-fate mapping focused on metabolically-associated gene modules. Within a 398 
single mouse, there are an estimated 1.4 x 105 MPPs, representing just 0.03% of total bone marrow cellularity2. 399 
Consequently, cell yields falling far below the sensitivity limits of many metabolomics methods, making it 400 
technically challenging to study the metabolic properties of these rare subsets.  Furthermore, existing methods 401 
are destructive – making it difficult to link the metabolic and functional properties of heterogeneous cell 402 
populations. Because of these technical challenges, much of our understanding of stem cell metabolism comes 403 
from population based approaches, limiting our understanding of how metabolism regulates lineage 404 
commitment specificity. MetaFate can also interface with other metabolomics methods – identifying 405 
functionally resolved sets of enzymes and transporters that can be verified at the protein level using spatially 406 
resolved metabolomics methods such as high dimensional mass cytometry23 or by in situ dehydrogenase 407 
assays26. We anticipate that combining emerging metabolomics technologies such as SCENITH and SPICE-Met 408 
with lineage tracing tools like MetaFate will yield significant insights into how cellular metabolism regulates the 409 
function of rare cell types in both health, ageing and disease. Given the diverse array of lineage tracing and 410 
metabolomics technologies that are emerging, our strategy can be readily adapted to other stem cell and 411 
developmental systems, including human tissues using human-compatible retrospective lineage tracing 412 
methods. 413 
 414 
Using MetaFate, we have identified an expression program of enzymes and transporters that confers 415 
differences in myeloid lineage potential within a subset of MPPs. Leveraging the ability of the DRAG barcoding 416 
system to detect barcodes at both the RNA or the DNA level we were able to measure barcode abundances in 417 
both HSPCs and the much larger mature myeloid and nucleated erythroid progenitor compartments. This 418 
experimental design enabled us to trace lineage commitment over much longer developmental trajectories 419 
compared to studies that measure barcodes only in progenitors27,37. Using only genes encoding metabolic 420 
enzymes and transporters, our signature had a higher correlation with myeloid bias than the existing MPP3 421 
signature34,53, prompting us to develop a novel purification strategy using the surface marker CD62L. Through 422 
in situ and lentiviral barcoding experiments, we show that CD62L enriches for myeloid bias in MPPs. This is 423 
consistent with reports showing that CD62L enriches for MPPs, rather than HSCs within the LSK compartment54 424 
and that CD62L enriches for myeloid potential in CMPs55.  In humans, the CD62L gene SELL has been associated 425 
with abnormal myeloid cell counts56,57, suggesting that CD62L may have implications in the regulation of 426 
hematopoiesis in humans as well as mice. Metabolically, CD62Lhigh MPPs have higher rates of ATP turnover and 427 
protein synthesis compared to CD62Lneg MPPs.  CD62Lhigh MPPs also have a higher dependence on glucose 428 
metabolism via OXPHOS to meet their energetic requirements compared to other MPP subsets which had a 429 
higher reliance on glycolysis and on fatty/amino acid oxidation.  430 
 431 
Importantly, manipulating metabolic processes in progenitors alters the rate of immune cell production, with 432 
overexpression of G6PD altering the dynamics of B-cell producing MPPs, resulting in a net skewing towards the 433 
erythromyeloid lineages. This result is consistent with reports that pharmacological inhibition of the pentose 434 
phosphate pathway blocks erythropoiesis in vitro8 and that the pathway regulates the function of dendritic 435 
cells58 and macrophages59,60. This work bridges understanding between the fields of metabolism, stem cell 436 
biology and immunology, highlighting the pentose phosphate pathway as a regulator of immune cell 437 
production. While much focused has been placed on the roles of glycolysis and oxidative phosphorylation as 438 
key modulators of stem cell metabolism14,15, further work is required to assess whether the pentose phosphate 439 
pathway regulate can regulate stem cell function in other systems.   440 
 441 
To understand why metabolic priming of multipotent progenitors may be functionally important we assessed 442 
the role of the CD62Lhigh MPP compartment in 2 different emergency myelopoiesis models: infection and 443 
transplantation. In both models, myelopoiesis was fuelled by CD62Lhigh MPPs, consistent with the idea that 444 
metabolic priming of multipotent progenitors toward the myeloid lineage facilitates the production of innate 445 
immune cells in response to injury. Our work therefore shows for the first time that MPPs are metabolically 446 
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heterogeneous and that a subset of metabolically primed MPPs contribute to innate immunity in emergency 447 
settings.   448 

In our study, we use transcriptomic changes that occur during fate decisions to infer metabolic differences that 449 
we validate using metabolic pathway activity measures. Differences in metabolite levels or others changes not 450 
captured by transcriptomic analysis may also regulate fate decisions. In particular, changes in metabolites 451 
acting as substrates for chromatin modifiers may precede transcriptomic changes and influence fate. Recent 452 
advances in single cell techniques to study the epigenome will help to address this limitation. In this context, 453 
metabolic differences could arise by cell extrinsic mechanisms such as differential location within the niche, or 454 
cell intrinsic mechanisms whereby the asymmetric distribution of metabolites/cell organelles following cell 455 
division could influence lineage potential. Further exploration of these topics is required to better understand 456 
the role of metabolism in shaping fate decisions. 457 

Understanding the nutrients and metabolites that regulate hematopoiesis can inform the development of novel 458 
bone marrow organoid technologies to maintain and differentiate haematopoietic precursors ex vivo. Our data 459 
can also help to inform the development of nutrient/metabolite biomarker panels for stem cell function. Such 460 
tools can inform dietary interventions to promote HSPC function, particularly in prospective recipients of bone 461 
marrow transplants, a high-risk procedure that can lead to malnutrition and significant nutrient deficiencies61,62. 462 
Lastly, our results suggest that therapeutic interventions to alter the metabolism of HSPCs may not target all 463 
cells uniformly, given their underlying metabolic heterogeneity. Our approach may therefore be useful in 464 
studying whether this phenomenon occurs in other systems, such as cancer stem cells.  465 

Collectively, we have identified the metabolic cues that guide the earliest stages of innate immune cell 466 
development, highlighting a key role for the pentose phosphate pathway. More broadly, our results suggest 467 
that manipulating lineage-specific metabolic cues can alter the cellular composition of the immune system in 468 
vivo.  469 

Materials and Methods 470 

A detailed description of all materials and method is provided in the supplementary information 471 
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 652 

Figure 1. Myeloid-biased HSPCs have a distinct expression program of enzymes and transporters. (A) Overview of MetaFate and 653 
experimental set up: it consists in the induction of a lineage barcode in cells, the propagation of this barcode in vivo when cells divide 654 
and differentiate and then the recovery of the transcriptomes of HSPC and their barcode from RNA as well as the recovery of the barcode 655 
of their mature progeny by DNA. Tamoxifen injection in mice induces the recombination of the lineage barcode in situ. After division 656 
and differentiation of the barcoded cells, all offspring inheriting the barcode and a GFP tag. At the end time of the experiment, GFP-657 
expressing HSPCs (Sca1+ cKit+), nucleated erythroid progenitors (CD44+ Ter119+) and myeloid (Cd11b+) cells are isolated from the bone 658 
marrow using FACS. Then bulk of mature cells were processed though nested PCR for barcode detection at the DNA level and sequenced. 659 
In parallel, HSPCs were processed through 10X scRNAseq to recover their transcriptome. Specific targeted PCR amplification were 660 
performed on the cDNA obtained by scRNAseq to recover the barcodes from the HSPC. Then, the metafate bioinformatic pipeline 661 
consolidates expression and lineage barcode data and identifies enzymes and transporters that can be targeted for functional studies, 662 
as well as surface markers to purify cell subsets for downstream metabolomics profiling. (B) Experimental timeline for induction and 663 
collection of HSPC and mature cells for metafate profiling (C) Clone sizes, number of cells per barcode, in the erythroid and myeloid 664 
lineage, the y-axis is transformed using the hyperbolic arcsin function. Each point represents a single barcode. (D) Heatmap 665 
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representation of DNA barcode expression in myeloid and erythroid cells.  Normalized and hyperbolic arcsin transformed cell counts 666 
(clone size) data were clustered by hierarchical clustering using Euclidian distance. Color indicates hyperbolic arcsin transformed cell 667 
counts (clone size) The top column indicates barcodes that are found both in HSPCs and mature cells (red), or barcodes found only in 668 
mature cells (black). (E) UMAP representation of the MetaFate dataset of LSK cells overlaying the positioning of known HSC and MPP 669 
subsets (top left) as well as the localisation of myeloid-biased (blue), erythroid-biased (red), and differentiation inactive (grey) 670 
progenitors based on lineage barcode (bottom left). This figure represents 4,485 Sca1+ cKit+ GFP+ cells (668 RNA-barcoded cells ; 158 671 
unique barcodes). (F) Density map highlighting the localization of lineage biased barcoded cells on our UMAP representation of the 672 
data. (G)  Volcano plots showing differentially expressed genes between myeloid-biased barcoded cells and other (erythroid-biased and 673 
differentiation inactive) barcoded subsets. Left hand side highlights the top differentially expressed genes. All genes upregulated in 674 
myeloid-biased barcoded cells compared to erythroid and differentiation inactive-barcoded cells form a gene-signature called 675 
DRAGFate-Myeloid (271 genes) and are shown in the plot on the left hand side. The plot on the right hand side highlights differentially 676 
expressed enzymes and transporters. Downregulated and upregulated genes encoding enzymes and transporters (57 genes) are 677 
highlighted in the right hand plot in red and blue respectively. The subset of genes from the DRAGFate-myeloid signature relating to 678 
cellular metabolism form the MetaFate-myeloid signature. The signature score corresponds to the average expression values of these 679 
gene sets for each cell and is projected onto the UMAP visualisation of the data.  (H) Metabolic pathways from the KEGG database that 680 
are enriched amongst genes upregulated in myeloid biased barcoded progenitors compared to erythroid and differentiation inactive 681 
barcoded cell subsets. (I) Spearmans Correlation between different transcriptomic signatures and the myeloid bias of lineage barcodes. 682 
Red points represent the correlation between signature scores and myeloid bias score, while blue points represent the correlations 683 
observed for randomised gene-sets of an equivalent size. The MPP3 signature is taken from Sommerkamp et al (2021), each point 684 
represents a different mouse. In this figure all data was taken from 5 mice from 3 independent experiments.  685 
 686 

 687 

Figure 2. CD62Lhigh Multipotent Progenitors Are Characterised by a Reduced ATP/ADP Ratio and Higher Rates of Protein Synthesis, 688 
Oxidative Phosphorylation and Glucose Dependency:  (A) Comparison of Sell expression between MetaFatelow/high expressing 689 
populations. MetaFate-low cells are defined as HSPCs in the bottom 25th percentile of MetaFate signature expression. MetaFate-high 690 
cells are defined as HSPCs in the top 75th percentile of MetaFate signature expression (B-C) L-selectin expression across different HSPC 691 
subsets (n = 3 mice). Gating strategy for HSPC are in figure S7a. (D) Flow cytometry gating strategy to purify L-selectin expression MPPs  692 
(E) Overview of our strategy to profile the metabolic state of different HSPC subsets. Cells are incubated in the presence of DMSO 693 
(control) or inhibitors of glycolysis (2-DG), OXPHOS (Oligomycin) or translation (Harringtonine). The scheme shows where the inhibitors 694 
are acting. Following incubation of cells with these inhibitors, we measure either translation rate (puromycin labelling), and or the 695 
percevalHR biosensor as a measure of ATP: ADP ratio. (F) Example staining profiles for SCENITH and Perceval metabolic profiling 696 
experiments on Lin- Sca1+ cKit+ bone marrow progenitors.  (G) Median fluorescence intensity values for puromycin across CD62L MPP 697 
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subsets and experimental conditions. Each point represents 1 mouse, data pooled from 2 independent experiments (N = 8 mice). (H) 698 
Median fluorescent intensity of puromycin labelling in CD62Lneg and CD62Lhi MPPs. (N = 8 mice, data pooled from two independent 699 
experiments).  (I) Comparison of mitochondrial dependence measures calculated based on changes in puromycin labelling across 700 
control, oligomycin and harringtonine treated conditions. Formula for data transformation is provided in the materials and methods (J) 701 
Median fluorescent intensity measures for tetramethylrhodamine, ethyl ester (TMRE) labelling. N = 8 mice, data pooled from 2 702 
experiments. Each point represents 1 mouse. Statistical comparisons were made using a paired T-test.(K) ATP:ADP measurements 703 
obtained by dividing the median fluorescent intensity of the ATP channel by the median fluorescent intensity of ADP channel. (L) 704 
Comparison of ATP:ADP ratio in CD62Lneg and CD62Lhi MPP control samples (M-N) Comparison of mitochondrial and glucose dependence 705 
measures inferred from changes in ATP:ADP ratio across control, 2-DG and oligomycin treated conditions. Formula for data 706 
transformation is provided in the materials and metods  (N = 8 mice, data pooled from two independent experiments). CD62Lneg samples 707 
are highlighted in grey and CD62Lhi MPPs are highlighted in blue. Normality of the data was assessed using a Shapiro-Wilk test and 708 
statistical differences for h-j and L-N was assessed using a paired T-test. Barplots represent the mean value across all mice. Boxplots 709 
represent the median and interquartile range with whiskers extending to the minimum and maximum values.   710 
 711 

 712 

Figure 3: Upregulation of Glucose-6-Phosphate-Dehydrogenase in MPPs Inhibits B-Lymphopoiesis Post-Transplantation (A) Overview 713 
of the lentiviral barcoding experiment. MPPs (say phenotype) were purified from the bone marrow of WT or G6PD-Tg mice by FACS and 714 
were infected with the LG2.2 lentiviral barcoding library. 6 hours later transduced MPPs were injected I.V. into 6Gy irradiated WT 715 
recipients. 3 weeks post-transplantation bone marrow was harvested and cells were sorted and their bulk DNA was processed for 716 
barcode detection through nested PCR and sequencing. (n = 4 mice per condition). (B-E) % chimerism quantified by measuring the 717 
proportion of GFP cells relative to total live cell numbers in the respective lineage compartments by flow cytometry for the WT (black) 718 
and G6PD-Tg (blue) transplanted MPPs. Each point represents a single mouse with N=4 mice per experimental condition.  Pairwise 719 
comparisons were made using a Mann-Whitney test. (F) Median clone sizes for the top B-cell producing barcodes  (the top n barcodes 720 
defined as contributing to 95% of all read counts for the B-cell lineage)  from WT (black) and G6PD-Tg (blue) transplanted MPPs. Each 721 
point represents a single mouse. Pairwise comparisons are made using a Student’s T-test. (G) Barcode diversity as defined by the number 722 
of unique barcode for B-cell producing barcodes from WT (black) and G6PD-Tg (blue) MPPs, each point represents a single mouse. 723 
Pairwise comparisons are made using a Student’s T-test  (H-J) The lineage bias of each B-cell producing barcode is shown per lineage 724 
and per experimental condition. The bias is calculated by computing the frequency of barcode i in lineage j, and then comparing the 725 
relative frequencies of each barcode across all lineages. Each point represents a single barcode (81 WT barcodes (red), 138 G6PDtg 726 
barcodes (blue)) with data pooled from 4 mice per condition. Pairwise comparisons were made using a Mann-Whitney test. Boxplots 727 
represent the median and interquartile range with whiskers extending to the minimum and maximum values.   728 
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 729 

 730 

 731 

 732 

Figure 4: The CD62Lhi MPP compartment expands to fuel emergency myelopoiesis during acute infection (A) Overview of the LPS 733 
challenge model. 18 week old B6j Mice were injected with LPS (35ug/mouse) I.P. at 0 hours and 48 hours. At 72 hours bone marrow 734 
cells were harvested and analysed by flow cytometry. (B) Gating strategy for analysis of the progenitors in the bone marrow from a 735 
representative mouse and median fluorescence intensity of CD62L expression in multipotent progenitors in control and LPS treated 736 
mice. Each point is a mouse, N= 4 mice. Statistical significance was assessed using a Mann-Whitney test(C) Quantification of the 737 
porcentage of the different cell subsets in control (black) and LPS treated (red) mice. Normality of the data was assessed using a Shapiro-738 
Wilk test and significance was assessed using a T-test. N = 13 mice and data was pooled from 2 independent experiments. Barplots 739 
represent the mean expression value and each point represents a different mouse. (D) scRNAseq data reanalysed from Haltalli et al 740 
(2020), where mice were treated with vehicle control or P. berghei. 7 days post infection cKit+ progenitors were purified from the bone 741 
marrow of each group and processed for scRNAseq profiling. Data are represented using a density projection of the cell abundances on 742 
to a PCA embedding of the data. Cell type annotations of the data were taken from the original publication. Control samples have 14193 743 
cells and infected samples have 13905  cells. (E) Sell (gene encoding CD62L) normalised gene expression projected onto the PCA 744 
embedding of the data. (F) Boxplot showing MetaFate signature expression score in HSPCs (defined as primitive HSPCs in the original 745 
article) from control (black) and infected (red) mice. Pairwise comparisons were made using a Students T-test. Boxplot showing mean 746 
and sd over cells? (G) Same as F but for all cKit+ hematopoietic progenitors from control and infected mice. (H) The proportion of cells 747 
in control and infected mice that have non-zero expression of Sell. Boxplots represent the interquartile range and median values and 748 
whiskers represent the 5th and 95th percentile of the data.  749 
 750 
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 751 

Figure 5: The CD62Lhi MPP compartment reconstitutes the myeloid compartment following bone marrow transplantation (A) MPPs 752 
were purified from male donor B6 WT mice by FACs and infected with the LG2.2 lentiviral barcoding library for 6 hours. Transduced cells 753 
were transplanted into 4 sublethally irradiated (6Gy) control recipient mice (male littermate controls) and 3 weeks later CD62Lneg/hi 754 
MPPs, CD19+ B cells, CD44+ Ter119+ erythrocytes, and CD11b+ myeloid cells, as well as CD62Lhigh or neg MPPs from the bone marrow 755 
were sorted and processed for targeted sequencing of lentiviral lineage barcodes. (B) read abundance of barcode in the CD62Lneg enriched 756 
and the CD62Lhigh enriched HSPC (LSK ) fraction, each dot is a barcode and the axis are transformed using the hyperbolic arcsin function. 757 
Barcodes that had more than 95% of its reads in either the CD62Llow or the CD62Lpos MPPs were classified as CD62Lshared (light grey ; 124 758 
barcodes), CD62Lneg enriched  (dark grey ; 30 barcodes) and CD62Lhigh enriched  (blue ; 18 barcodes) MPPs. (C) Number of cells of a given 759 
lineage (the myeloid, erythroid and B-cell lineages) produced per barcode, is clone size, for the barcode categories CD62Lneg enriched (grey) 760 
and CD62Lhigh enriched (blue) MPP subsets. Each point represents a distinct barcode. Statistical comparisons were made using a Mann-761 
Whitney test. (D) lineage bias value for the myeloid, erythroid and B-cell lineages for barcodes in CD62Lneg enriched (grey) and CD62Lhigh 762 
enriched (blue) MPP subsets. Lineage bias represents the relative frequency of each barcode across the 3 mature cell lineage. Each point 763 
represents a distinct barcode. Statistical comparisons were made using a Mann-Whitney test. (E) Unsupervised clustering (using the 764 
Euclidean distance) and heatmap visualisation showing hyperbolic arcsin transformed barcode abundances for CD62Lneg enriched  and 765 
CD62Lhigh enriched  barcodes. Every row is a barcodes and every column is a cell type. All Boxplots represent the median and interquartile 766 
range with whiskers extending to the minimum and maximum values.  N= 4 mice.  767 
 768 
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