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Abstract

There exists a range of different quantification frameworks to estimate the synergistic effect of drug combinations. The
diversity and disagreement in estimates make it challenging to determine which combinations from a large drug screening
should be proceeded with. Furthermore, the lack of accurate uncertainty quantification for those estimates precludes the
choice of optimal drug combinations based on the most favourable synergistic effect. In this work, we propose SynBa,
a flexible Bayesian approach to estimate the uncertainty of the synergistic efficacy and potency of drug combinations,
so that actionable decisions can be derived from the model outputs. The actionability is enabled by incorporating the
Hill equation into SynBa, so that the parameters representing the potency and the efficacy can be preserved. Existing
knowledge may be conveniently inserted due to the flexibility of the prior, as shown by the empirical Beta prior defined
for the normalised maximal inhibition. Through experiments on large combination screenings and comparison against
benchmark methods, we show that SynBa provides improved accuracy of dose-response predictions and better-calibrated
uncertainty estimation for the parameters and the predictions.

Introduction

With the increased use of small molecule drugs in monotherapy

and drug combination treatments, off-target toxicity and

resistance to treatments are becoming clear challenges. The

use of combinations of drugs offers a possible solution to

reduce toxicity minimising doses and bypassing resistance

with alternative targeting. Thanks to the development of

high-throughput approaches to screen drug-sensitivity in cell

lines, dose-response data for a large number of combinations

have been made available. Examples include the AstraZeneca-

Sanger DREAM challenge (DREAM) [1], NCI-ALMANAC [2],

DrugComb [3], and the screening data from the Wellcome

Sanger Institute [4]. The availability of these datasets makes

it possible to predict the effect of drug combinations from

modelling drug-sensitivity data, leveraging information from

biological features of the cell lines and chemical characteristics

of the drugs [5].

To understand how synergistically drugs can work when

combined, models with a quantification framework are required.

Traditional quantification frameworks usually involve a null

surface, based on a number of set assumptions. The Bliss model

is based on the Multiplicative Survival Principle [6], whereas

the Loewe model is based on the Dose Equivalence Principle

[7]. In the past decade, parametric methods have started to

emerge as alternatives to the above. These include MuSyC

[8, 9], BRAID [10] and the Effective Dose model [11]. All these

frameworks are based on assumptions and parameterisations

different from each other and as a result of this, the outputs

from these models often disagree. Although there have been

efforts to unify the frameworks, this is still an open problem

for the field.

To define a common framework for drug combination, we

need a less ambiguous definition of synergy [12]. When a

combination is said to be synergistic, it is unclear whether

it implies that the combination is desirable in terms of its

potency or its efficacy. Potency is the amount of dosage

required for a drug to produce a specified effect, whereas

efficacy is the degree of the beneficial effect produced by the

drug [8]. A strong synergistic potency implies the toxicity may

be reduced when the drugs are combined, which is crucial for

avoiding overdose. On the other hand, a strong synergistic

efficacy implies that the combination increases the maximal

possible effect. Both aspects are relevant for progressing with

further pre-clinical and subsequent clinical investigation. An

ideal combination would be potent and effective. However, in

clinical research there are situations where a drug partner is

requested only for enhancement of potency and not to increase

efficacy. Until recently, potency and efficacy are entangled

within the concept of synergy as defined in the traditional

quantification frameworks. To tackle this problem, Meyer et al.

[8] developed MuSyC, a framework that decouples potency and

efficacy following the principles of the generalised Hill equation.

Although the MuSyC approach is effective for modelling both

potency and efficacy, the model does not fully explore the

challenge of properly handling uncertainty using model-based

estimation. There are various sources of uncertainty associated

with drug-sensitivity modelling. Firstly, the biology of dose-

response relationships is still unknown despite existing efforts.

This leads to uncertainty associated with insufficient scientific

knowledge. Secondly, there are systematic and random errors

arising from the experimental procedures. Thirdly, biological

variation exists among cell lines of the same type, resulting in

a further source of noise. Finally, uncertainty also stems from

limited information that can be extracted due to the small size

of available data (epistemic uncertainty).

Given these multiple sources of uncertainty, it is often

impossible to reach a true estimate of the quantities of interest,

e.g potency of a monotherapy, or the synergistic effect (in terms

of either potency or efficacy) of a combination. Since the best

single deterministic estimates might not be reached, here we

focus on accurately quantifying uncertainty in the model (e.g.

the credible range of model parameter estimates/predictions)

to quantify a devitiaon from the true estimate given the noise.

The majority of the existing frameworks for drug

combinations either do not compute the uncertainty or
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estimate it by standard error [11] or parametric bootstrap

[9], each of which contains its own unrealistic assumptions.

The standard error is only accurate when a large number

of samples is available, which is not the case for most

pharmacology datasets. Similarly, for the parametric bootstrap,

an accurate uncertainty estimation relies on a sufficiently

large number of observations to be reasonably close to the

truth. In either case, the uncertainty estimation will often

be inaccurate due to the small data sizes. For this reason,

here we approach uncertainty estimation with a Bayesian

framework, which incorporates the uncertainty by treating all

parameters of interest as probabilistic quantities. This enables

us to continuously model the uncertainty in our estimates as

the number of measurements grows, without becoming over-

confident. Moreover, the estimated quantities of interest are

obtained simultaneously with their uncertainties, making this

approach computationally efficient.

In the current literature, there are examples that use a

probabilistic model to incorporate uncertainty in their outputs.

Shapovalova et al. developed Hand-GP [13], a non-parametric

model based on the combination of the Hand model with

Gaussian processes, providing more believable uncertainty

estimation than MuSyC in some cases. However, Hand-GP

does not incorporate the 1D Hill equation that imposed

biological constraints useful for providing interpretability of the

model outputs. For example, monotonicity of the monotherapy

fitted curve is not enforced in Hand-GP, meaning that it is

possible that the model produces a dose-response surface that

is physically impossible. More importantly, due to the non-

parametric structure of Hand-GP, the parameters describing

potency and efficacy are lost. Ronneberg et al. developed

bayesynergy [14], a Bayesian framework that models synergistic

interaction effects using Gaussian Processes, which provide

uncertainty quantification. Although flexible, its formulation is

still based on the Bliss independence assumption that is biased

against combinations of drugs with a moderate level of efficacy,

compared to those with strong or weak efficacy [9]. bayesynergy

is also not able to separate out synergistic potency and efficacy.

Here, we design a flexible Bayesian framework to infer

Synergistic effects of drug Combination (SynBa) where (1)

the classic Hill equation is preserved to produce estimates

of efficacy and potency (2) the existing biological knowledge

or insight from historical data may be conveniently added

through the prior distribution over parameters in the model. In

SynBa we will use MuSyC as a baseline framework to decouple

synergistic potency and efficacy and add probabilistic inference

to provide outputs and their associated uncertainty. This is

to design a framework estimating the most favourable scores

and efficiently provide optimal candidates to the drug discovery

pipeline with actionable decision-making criteria that can be

easily derived from the model outputs.

With our approach, when a combination is predicted to be

synergistic, a level of confidence will be quantified for this

prediction, as well as whether the synergy stems from an

improvement in efficacy or in potency. If the synergy prediction

has high associated uncertainty, then further laboratory

experiments may be required before proceeding to the next

step in the pipeline. The ability to quantify all these variables

and their clear interpretation will provide actionable metrics

for the subsequent stages of the drug discovery pipeline,

which is an unmet need. Our model offers the ability to

define any consequential decision-making step, whether pre-

clinical or clinical, based on accurate and calibrated uncertainty

quantification.

Fig. 1. Description of the dose-response datasets for the proposed

framework. (A): A typical dose-response matrix, where the top-left entry

is the base value, the first row contains the monotherapy responses for the

first agent, the first column contains the monotherapy responses for the

second agent. The remaining entries are the responses when a combination

of the two drugs is applied. (B): A dose-response matrix where not all

responses are available for training. The shaded cells represent the test

data.

Methods

Our proposed method can be used for both analysing existing

dose-response data and predicting unseen dose-response data

for a given monotherapy D = (X,Y ) = {(xi, yi) | i = 1, ..., N}
or a given combination D = (X,Y ) = {(xi, yi) | i = 1, ..., N}
where N is the number of measurements in the data. The

covariate can be a scalar xi (in monotherapy) or a vector

xi (in combination) corresponding to the drug dosages. The

response yi can be defined as cell growth or inhibition of growth,

depending on how the data are collected. In this study, we focus

on inhibitory datasets, where a large dosage typically results in

growth inhibition. In this case, yi is defined as the percentage of

growth-inhibited cells. Nevertheless, our method can be easily

modified to accommodate the opposite setting where the drug

response is enhancing growth with respect to the dosages.

Fig. 1 (A) illustrates a typical dose-response matrix for a

combination from a screening, where the first row and column

contain monotherapy data and the remaining entries contain

combination data. The core aim of our method is to infer

the synergistic potency and efficacy given such a matrix (or

a vector in the case of monotherapy). To accomplish this,

we designed SynBa, a Bayesian framework for the inference

of Synergistic effects of drug combinations. SynBa is defined

by a prior distribution p(θ) for the parameters θ and a

likelihood function p(Y | θ, X) for the drug responses Y . The

likelihood function describes the probability of the responses

given the dosage data X and the parameters θ. The prior

distribution encodes the existing belief or knowledge about the

parameters of interest. In the case of monotherapy, we have

θ = {E0, E1, C,H, σ}, whereas in combination, we have θ =

{E0, E1, E2, E3, C1, C2, H1, H2, α, σ}. The likelihood function

and parameters together encode the shape of the dose-response

curve (defined in Boxes 1 and 2 and described in more detail

below).

In addition, our method provides a way of predicting unseen

dose-response data for both monotherapies and combinations.

For example in the case of Fig. 1 (B), the quantity of interest

would be the posterior predictive distribution of the response

of interest, i.e.

p(ỹ | X,Y, x̃) =

∫
θ

p(ỹ | θ, x̃)p(θ | X,Y )dθ (1)

where x̃ is the untested dosage of interest, ỹ is the predicted

response and p(θ | X,Y ) is the posterior distribution over the

parameters θ given training data (X,Y ).
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Overview of SynBa: Monotherapies
We begin by defining SynBa for monotherapy screens, where the

dosage x is a scalar. The likelihood function for the response y

is based on the Hill equation [15], which has been the classic

choice to model pharmacology data:

E(x) = E(0) +
E(∞) − E(0)

1 + (C
x )H

(2)

where x is the dosage of the drug, E(x) is the corresponding

measured response, and H controls the slope of the curve. The

interpretation of C depends on the problem and the dataset of

interest. In this study, as the focus is on inhibitory datasets,

C represents the half maximal inhibitory concentration, which

is the dosage required to inhibit the given biological process or

biological component by 50%, known as IC50. C quantifies the

potency of the monotherapy in the study.

The base level of the monotherapy is denoted by E0 := E(0),

which is the response when no drug is applied. The efficacy of

the monotherapy is quantified by E1 := E(∞), or denoted as

Einf , which is the maximal inhibition when a sufficiently large

dosage x is applied.

Box 1 defines the prior distribution for the parameters and

the likelihood model for the response given the dosages, which

are also illustrated in Fig. 2.

Fig. 2. Two options (A) and (B) for the monotherapy prior model. The

prior for logC is plotted underneath the x-axis, which is uniform in both

options. The priors for E0 (which is Gaussian in both options) and the

normalised E1 are plotted along the y-axis. Given E0, the normalised E1

is uniform in Option (A) and follows a Beta(0.46, 0.58) distribution in

Option (B). The 300 blue curves are random samples from the expected

prior responses E[Y |θ] where θ are sampled from the prior distributions

defined in Box 1. The seven red points illustrate an example set of

monotherapy dose-response data D. The black curve is a sample from

the expected posterior responses E[Y |θ,D] after the model is fitted to the

data D, whilst the orange bell-shaped curves illustrate the i.i.d. Gaussian

noise for the responses.

To account for observational noise in the data, we define a

noise model for y centred around E(x). More specifically, for

each fixed experiment setting (i.e. a fixed cell line treated by

a fixed monotherapy or combination in the same laboratory

environment), y is modelled as having Gaussian noise that is

conditionally independent given the dosage: y ∼ N (E(x), σ2).

The assumption of conditional independence is valid because in

screenings such as the AstraZeneca-Sanger DREAM Challenge

[1], the measurements for each monotherapy or combination are

performed independently in different plates, instead of being

performed sequentially. Therefore, given a set of measurements

for a monotherapy or a combination, the noise level of their

corresponding responses is independent. The i.i.d. noise is

illustrated as orange bell-shaped curves in Fig. 2. As a result,

the likelihood function for y is defined as Eq. (4).

The datasets are normalised by measuring cell inhibition

when no drug is added (at dose zero). However, due to the

noise in the biological process, the inhibition at dose zero would

not be the same if the experiment is repeated multiple times.

Thus, the normalization procedure itself contains uncertainty.

Therefore, we define E0 to be probabilistic instead of a fixed

initial value. A Gaussian prior with mean B and variance 0.03B

is given for E0, where B is the normalized inhibition of a dose

zero, e.g. B = 100 in the DREAM dataset. The variance of this

prior is defined to be 0.03B so that it is flexible enough to allow

for errors, but not too conservative at the same time.

The prior for the normalised maximal response (i.e. Ẽ1 :=
E1

E0
, with a range of [0, 1]) may be defined in various ways

depending on whether to insert existing knowledge or historical

information. One option is to remain uninformative and impose

a uniform prior, as shown in Fig. 2 (A).

Alternatively, we may make use of the existing information

from the monotherapy data available. According to the single

agent datasets in DREAM, the empirical distribution of Einf

has a high density on both extremes of the range, with 17.9% of

them smaller than 0.05 and 15.1% equal to 1 (after normalising

to the interval [0, 1]). Using maximum likelihood estimation

to fit a Beta(a, b) distribution to these Einf values, we obtain

a = 0.46 and b = 0.58. To account for this information, we

define Beta(0.46, 0.58) as the second option of the prior for the

normalised maximal response, as illustrated in Fig. 2 (B). This

prior is consistent with the biological behaviour that a drug

administered with a sufficiently large dose will either kill the

majority of the targeted cells if effective, or very few of them

if not effective. The choice of this empirical prior shows how

existing knowledge or information on the dynamic/kinetic of

drugs can be conveniently added to SynBa through its priors.

A uniform prior is imposed for the logarithm of IC50, or

logC, with C bounded by δ and M . The values of δ and M

depend on the dataset and the unit of the dosages. In this

work, we define δ to be smaller than any non-zero dosage in

the dataset we model and define M to be larger than any non-

zero dosage in the dataset. In another word, we have 0 < δ <

min{x | x > 0, (x, y) ∈ D} and M > max{x | (x, y) ∈ D}
For example, δ = 10−10 and M = 106 is a viable choice for

DREAM, whereas in NCI-ALMANAC, we may have δ = 10−15

and M = 10. The idea is to be uninformative about logC

a priori, due to the fact that the ideal dosage range for the

experiments is unknown and often unsuitable, either too small

or too large. It is common that IC50 exceeds the maximum

dosage, which is challenging to infer from the data. In other

cases, IC50 may lie between zero dosage and the smallest non-

zero dosage, due to the tested dosages being too large. Our

method includes these possibilities a priori.

H and σ are both given a lognormal(0, 1) prior because they

are both non-negative and assumed to be moderately small. In

addition, previous literature has agreed that H approximately

follows a lognormal distribution [9]. A lognormal(0, 1) prior

ensures that P (H < 5) ≈ 0.95 and P (σ < 5) ≈ 0.95 a priori.

The blue curves in Fig. 2 are 300 random samples from the

expected prior responses E[Y |θ] where θ are sampled from the

prior distributions. It can be observed that the curves cover a

wide range of possibilities a priori. Yet, they are not excessively

general, as all of them follow the Hill equation. For comparison,

we also show (in black) an example of a sample from the

posterior distribution given a dataset of seven measurements,

and we see how the posterior sample falls close to the data.

Note that the specific priors we have chosen have been

motivated in a generic fashion through general knowledge

and previous literature. When more knowledge exists for a

specific combination, the prior can be conveniently adjusted
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Box 1: Overview of SynBa for the inference of monotherapy dose-response data.

The joint prior distribution for the response and the parameters of the curve given the dosages is

p(Y,E0, E1, C,H, σ | x) = p(Y | E0, E1, C,H, σ, x)p(E1 | E0)p(E0)p(C)p(H)p(σ). (3)

where the likelihood model for the responses Y given the dosage x is defined as

p(y | E0, E1, C,H, σ, x) = N (E0 +
E1 − E0

1 + (C
x )H

, σ
2
) (4)

independently for all y ∈ Y , where E0 := E(0), E1 := E(∞) and σ is the standard deviation of the noise level of y, and the

priors are
p(E0) = N (B, 0.03B), p(

E1

E0

) = U(0, 1) or Beta(0.46, 0.58),

p(log(C)) = U(log(δ), log(M)), p(H) = lognormal(0, 1), p(σ) = lognormal(0, 1),

(5)

where 0 = x1 < x2 ≤ x3 ≤ ... ≤ xn are the dosages, and δ ∈ (0, x2) is a small non-zero value to avoid logC being undefined.

to accommodate this, since the inference framework is agnostic

to the choice of prior.

Fig. 3 is an illustrative example of SynBa trained on a

monotherapy (the compound MTOR 1 treated on the cell line

MDA-MB-231) with six measurements, taken from the DREAM

dataset. The first row shows the resulting model with a uniform

prior for the normalised Einf (i.e. Ẽ1), whereas the second row

shows the model with the Beta(0.46, 0.58) prior for Ẽ1. We

start with two measurements and add two additional responses

each time. It can be observed that the posterior distribution

for IC50 narrows down quickly for both models because the

observed responses span across the range between 40 and 100,

which provides sufficient information to estimate IC50 with low

uncertainty. The posterior for Einf , on the other hand, is more

uncertain, due to the dosage range being too small to observe

the convergence of the responses. In this case, the two models

provide a visibly different posterior distribution for Einf , due

to the different priors. As shown in Fig. 3 (F), the maximum a

posteriori probability estimate for Einf is 0 when the Beta prior

is imposed, which results from the inserted prior knowledge

that the response is likely to converge to 0 if an effective (but

non-zero) response is already observed. This example shows

how the prior design affects the inference of the parameter

uncertainty. Nevertheless, if we look at the posterior predictive

distribution for the responses (with samples illustrated by light

blue curves), the two models reach a similar conclusion. We will

show in Result that the predictive performance of the model is

insensitive to the different choices of prior.

Overview of SynBa: Combinations
Extending SynBa to combinations of two drugs, the goal is

now to model the dose-response surface E(x1, x2) = f(x1, x2)

where x1 and x2 are the dosages for the two drugs respectively,

whereas E(x1, x2) is the response, and f is some class of

function to be defined.

To define our likelihood model for the responses Y , we

take inspiration from [8, 9] but maintain some flexibility on

their model assumptions. The effect of a drug in a system is

usually described by the Hill equation that describes the state

of equilibrium of a reversible process between an unaffected

population and an affected one (the principle of detailed

balance). To obey to this equation and its effects, in our model

we incorporate the assumptions of the principle of detailed

balance, of the proliferation rate of unaffected population and

of the saturation of the maximum effect of the drug in the

affected population. In MuSyC these assumptions are defined

in a nested structure, which levels are called Tiers (see Table

Fig. 3. An example illustration of SynBa on a set of monotherapy data

with six measurements. Each blue curve is a sample from E[Y | θ] where

θ ∼ p(θ | D). The distribution for IC50 is shown in red, whereas the

distribution for Einf is shown in green. (A)-(C): The prior distribution for

Ẽ1 is U(0, 1). (D)-(F): The prior distribution for Ẽ1 is Beta(0.46, 0.58).

S5 in [8]). In defining SynBa for combinations we are adopting

the same model assumptions as MuSyC, using the category

Tier 4 of the levels specified by MuSyC models. This category

encodes the most complex class of models that still maintains

the assumption of detailed balance. It is worth noting that,

conversely to MuSyC, our model posterior covers all four tiers

simultaneously. This is because Tier 4 subsumes all lower

tiers and thus for how our model is defined, they will not be

eliminated from the posterior distribution, unless the evidence

from the data is strongly against them. The concepts of Tiers

as described in MuSyC would require a post-learning model

selection. The use of a Bayesian approach avoids any post-

learning model selection whilst still maintaining biologically

and physically viable assumptions.

We choose to maintain the detailed balance assumption

to also avoid over-parameterisation, which is likely to occur

due to the limited data size for each drug combination set.

For example, the majority of the combinations in the NCI-

ALMANAC dataset [2], one of the most widely used in

pharmacology, has a data size of 15 (excluding the base level

at dose zero), only 3 more than the number of parameters

in MuSyC. In a real-world scenario, the data size may often

be even smaller. Furthermore, with the detailed balance

assumption, matrix multiplication and inversion are avoided,

which lowers the computational cost.

Box 2 defines the prior distribution for the parameters

and the likelihood model for the response given the dosages.
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Box 2: Overview of SynBa for the inference of combination dose-response data.

We define the following joint distribution for the response and the parameters of the surface given the dosages x = (x1, x2),

p(Y,E0, E1, E2, E3, C1, C2, H1, H2, σ, α | x)

= p(Y | E0, E1, E2, E3, C1, C2, H1, H2, σ, α,x)p(E1 | E0)p(E2 | E0)p(E3 | E0)p(E0)p(C1)p(C2)p(H1)p(H2)p(σ)p(α),
(6)

where the likelihood model for responses Y given the dosages is defined as

p(y | E0, E1, E2, E3, C1, C2, H1, H2, σ, α,x) = N (
CH1

1 CH2

2 E0 + xH1

1 CH2

2 E1 + CH1

1 xH2

2 E2 + αxH1

1 xH2

2 E3

CH1

1 CH2

2 + xH1

1 CH2

2 + CH1

1 xH2

2 + αxH1

1 xH2

2

, σ
2
) (7)

for all y ∈ Y , where E0 := E(0, 0), E1 := E(∞, 0), E2 := E(0,∞), E3 := E(∞,∞), C1 and H1 are the monotherapeutic

parameters associated for Drug 1, C2 and H2 are the monotherapeutic parameters associated for Drug 2, and α is an association

parameter that controls how the two drugs are affected by the presence of each other.

The priors are
p(E0) = N (B, 0.03B), p(

Ei

E0

) = U(0, 1) or Beta(0.46, 0.58) for i = 1, 2, 3,

p(log(Ci)) = U(log(δ), log(M)) and p(Hi) = lognormal(0, 1) for i = 1, 2, and (8)

p(α) = lognormal(0, 1), p(σ) = lognormal(0, 1),

where 0 = xi,1 ≤ xi,2 ≤ ... ≤ xi,n are the dosages for drug i, and δ is a small non-zero value to avoid logC being undefined.

The definitions of the priors are a natural extension from the

monotherapy model, with the same arguments being followed.

The only new parameter is α, which follows a lognormal

prior with median 1 because α is non-negative and equals 1

when the combination is additive (i.e. neither synergistic nor

antagonistic) in terms of potency.

Inference of the synergy

After inferring the posterior for the parameters and their

associated uncertainty, we focus on distinguishing the effect of

efficacy and potency in drug combinations. MuSyC has defined

metrics for both synergistic efficacy and synergistic potency,

which is a promising step in decoupling potency and efficacy.

However, the uncertainty for these two quantities has not been

quantified systematically. Our model output includes not only

quantification for the synergistic efficacy and the synergistic

potency, but also a separate uncertainty estimation for each of

them.

For the synergistic efficacy, one simple yet informative

quantity is ∆HSA = min(E1, E2) − E3 which is the change

in the maximal effect between the combination and the more

effective single drug of the two [16]. A positive score indicates

synergistic efficacy. As E1, E2 and E3 are probabilistic, the

resulting ∆HSA score is also probabilistic. A metric such as

P (∆HSA > 0 | D) (9)

can then be defined to estimate how confident we are about the

synergistic efficacy of the combination, based on the dataset

D. It is possible to have a synergistic combination that is highly

uncertain, which would indicate that more data are required to

reach confidence in the estimation.

For the synergistic potency, α contains the required

information. α > 1 would indicate synergistic potency [9],

which means the potency of the two drugs has reduced due

to being combined. Consequently, we define

P (α > 1 | D) (10)

as an estimation of how likely the combination satisfies

synergistic potency.

Fig. 4. The data and the inference outputs of the combination of AKT

and ADAM17 applied on the cell line BT-20. (A): The original dose-

response matrix. (B)-(C): The monotherapy model outputs. Each blue

curve is a sample from E[Y | θ] where θ is a sample from the posterior

of the respective monotherapy model. The posterior distribution for IC50

and Einf are shown in red and green respectively. (D): The contour plot

for the joint posterior distribution of the synergistic efficacy (∆HSA)

and the synergistic potency (log(α)). The distribution is smoothed from

the empirical posterior with a kernel density estimation for visualisation

purpose. (E)-(F): The histogram of the empirical posterior distribution

for the synergistic efficacy (∆HSA) and the synergistic potency (log(α))

respectively. The areas on the right hand side of the red vertical lines are

the probability that the combination is synergistic in terms of efficacy (in

(E)) and potency (in (F)).

Case studies
To illustrate how the uncertainty estimation from our method

can be explained and further used for decision-making, we take

two combinations from the DREAM dataset [1] as examples.

Fig. 4 (A) shows the dose-response matrix for the

combination of ADAM17 and AKT acted on the cell line BT-

20. The first column is the monotherapy dose-response data

for AKT (as the dosage for ADAM17 is zero), whilst the first

row is the monotherapy dose-response data for ADAM17 (as

the dosage for AKT is zero). It can be observed that the

responses for AKT start to decrease at a higher rate when

the dosage increases, but the dosage range is too small to
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understand its potency (IC50) and efficacy (Einf). The efficacy

cannot be determined because the response has not shown any

sign of convergence, whereas the potency cannot be determined

because it relies on understanding the maximal response, which

is itself uncertain. However, if a deterministic Hill equation

is fitted to the monotherapy data, it will only provide a

point estimate for the IC50 and Einf , without acknowledging

the above caveats. On the contrary, our method provides an

uncertainty estimation for both quantities. As shown in Fig. 4

(B)-(C), the posterior distribution of IC50 and Einf have large

variances, which correspond to large uncertainty. In particular,

as shown in Fig. 4 (C), the posterior of Einf for ADAM17 has

a multimodal shape, which is sensible because it is unclear

whether the dosage range is too small (which corresponds to

the peak at 0), or the drug is simply ineffective regardless of

the dosage (which corresponds to the peak at around 90).

Moving to the inference of the full combination matrix,

most existing synergy methods have no means to showcase

the uncertainty. Our method, on the contrary, provides the

uncertainty around the synergistic potency and the synergistic

efficacy, as shown in Fig. 4 (D), (E) and (F). According to

the model output, the combination is moderately likely to be

synergistically potent (with a probability of 85.2%), but it is

difficult to conclude its synergistic efficacy (with a probability

of 62.9% to be synergistic effective). This is reasonable because

the excessively small dosage range makes it impossible to

conclude anything about efficacy with low uncertainty, but with

the 25 available measurements on the plates where the two

drugs have interacted, information can be extracted on whether

combining the two drugs may lower the level of toxicity required

to reach the same beneficial effect.

Fig. 5. The data and the inference outputs of the combination of EGFR

and AKT applied on the cell line MDA-MB-468. (A)-(F): The same as

the caption of Fig. 4.

This combination is an example where the model implies

some potential in the synergy of the combination, but the level

of uncertainty in the synergy is still high, which may require

more measurements at larger dosages to be narrowed down.

The uncertainty captured in SynBa allows conclusions such as

this to be drawn, which is a helpful guidance for subsequent

experiments.

We now consider the combination of AKT and EGFR

acted on the cell line MDA-MB-468. Fig. 5 shows its dose-

response matrix and the inference result from our model

for the monotherapies and the combination respectively.

All parameters and metrics of interest have low variances,

representing low uncertainties. As shown in Fig. 5 (B) and

(C), the dosages have suitable ranges and approximately follow

the sigmoidal shapes of the expected dose-response fit, in

particular for AKT. They contain sufficient information for the

possibilities for IC50 and Einf to be narrowed down. Similarly,

the combination data are well-behaved. Fig. 5 (C), (D) and (E)

show that the probabilities of this combination being synergistic

in terms of potency and efficacy are both close to 100%.

These are signs that this combination is worth being taken to

subsequent steps in the drug development pipeline.

The two examples above show that concrete decisions can

be made based on the posterior distributions (e.g. for IC50,

Einf , ∆HSA and α) from our model, and more importantly, the

uncertainties associated with these distributions.

Training details
The models are trained by Stan [17], a state-of-the-art platform

for statistical modelling and high-performance statistical

computation, particularly for Bayesian computation. The user

specifies the prior model of the parameters and the likelihood

model of the data, while Stan performs either full Bayesian

statistical inference with Markov chain Monte Carlo (MCMC)

sampling, or approximate Bayesian inference with variational

inference. While full Bayesian inference with MCMC sampling

provides an asymptotically exact solution, it is slower and has

worse scalability than variational inference [18, 19]. In this

study we use MCMC due to the small size of the data and

the model, as well as the importance of the reliability of the

output, which is strengthened by the asymptotic exactness

of the MCMC inference. Despite choosing the slower option,

SynBa is still computationally efficient. Running on 4 CPUs

of the Intel Xeon Platinum 8276 CPU Processor, the median

time taken to fit SynBa (via MCMC with 1000 iterations and

4 chains, including 500 iterations in the warm-up phase) to a

6-by-6 dose-response matrix in DREAM is 10.2 seconds, which

is comparable to MuSyC with bootstrap.

With this training pipeline, we can avoid the overhead that

occurs during the usage of non-linear optimisation packages in

deterministic parametric methods such as MuSyC, BRAID and

the Effective Dose model. A different choice of the numerical

algorithm (and its hyperparameters) results in a different result

for those methods. On the contrary, in SynBa, the same exact

result can be found asymptotically via MCMC with Stan.

For the implementation of the other benchmark methods

including MuSyC, BRAID and the Effective Dose model, the

Python package synergy [20] is used.

Results

Prediction of drug combination responses
In this subsection, we show that in addition to providing

uncertainty estimations, SynBa is competitive in predicting

unseen responses within a dose-response matrix, and is less

prone to overfitting compared to the existing methods.

The datasets of interest are DREAM [1] and NCI-

ALMANAC [2], two of the most widely-used publicly-available

combination screenings. In DREAM, we focus on all examples

in the training set of Challenge 1 that have passed the Quality

Assurance and that only contain non-negative responses and

one set of replicates, which are 1631 sets of combinations in

total. In NCI-ALMANAC, we focus on the subset defined in

[21], which is a subset of the data consisting of 50 unique FDA-

approved drugs and 36,120 combinations in total. We remove
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examples that contain negative measurements, which results in

28,854 remaining combinations to be experimented on.

We leave out 20% of the non-zero dosage combinations for

prediction. The models are trained using the remaining 80%

dosage combinations, and then evaluated on the left-out points.

For the dose-response matrices in DREAM, we leave out 7 of

the 35 points with non-zero dosages from the 6-by-6 matrix

(see Fig. 1(A)) using a specific leave-out strategy. For each of

the two monotherapy slices, one point is left out for testing.

For the 5-by-5 combination grid (i.e. the orange cells in Fig.

1(A)), five points are randomly left out for testing. Fig. 1(B)

shows an example of what a train-test split may look like for

DREAM. The measurements are left out in this manner so that

each monotherapy contains one measurement for testing.

For the dose-response matrices in NCI-ALMANAC, it is not

possible to leave out points separately for monotherapies and

for combinations because the data size is too small. For most

combinations, there are only 3 points for each monotherapy and

9 points for the interactions. Thus, we directly leave out 3 of

the 15 points randomly for prediction.

Evaluation metrics

To evaluate the predictive performance of the models,

test likelihood and the root-mean-square error (RMSE) are

computed using the left-out points. Both are common metrics

for evaluating the goodness of fit. The former focuses on the

goodness of the full predictive distribution, whereas the latter

focuses solely on the goodness of the point estimates for the

responses.

The computation of the test likelihood for SynBa follows

Equation (1) for both monotherapy and combination. However,

the right hand side of the equation cannot be computed in a

closed form, so Monte Carlo estimation is required using the

expression

p(ỹ | D, x̃) ≈
1

M

M∑
m=1

p(ỹ | θm, x̃) (11)

where ỹ is the predicted response of the left-out dosage, D is

the training data containing the known dosages and the known

responses, and θm ∼ p(θ | D) are the MCMC samples from the

posterior distribution for the parameters.

For MuSyC, BRAID and the Effective Dose model, the

parametric bootstrap pipeline described in [9] is followed. Each

bootstrapped dataset provides a fitted curve. The density for

ỹ is then estimated by averaging its density computed on the

models learnt from the bootstrapped datasets.

The computation of RMSE is more straightforward. For each

combination, its RMSE for the test responses {y1, ..., yN} is

RMSE =

√∑N
i=1(yi − ŷi)2

N
(12)

where ŷi is the point estimate for the response that corresponds

to dosage xi. For SynBa, we define ŷi to be the posterior

predictive mean E[yi | D,xi], which is estimated by the Monte

Carlo estimator

E[yi | D,xi] ≈
1

M

M∑
m=1

E[yi | θm,xi] (13)

where θm ∼ p(θ | D) are the MCMC samples from the

posterior, and E[yi | θm,xi] can be computed by Eq. (7).

Quantitative results

We compare our prediction results against MuSyC, BRAID,

and the Effective Dose model, which are three of the most

widely-used synergy models. For SynBa, we implement both the

uniform prior and the empirical Beta prior for the normalised

Einf , which we denote as SynBa-U and SynBa-B respectively.

Tables 1 show the mean and the median of the test log-

likelihood and the test RMSE for MuSyC, BRAID, Effective

Dose model and SynBa. It can be observed that our method

outperforms all three other methods in all metrics except for the

mean test log-likelihood on DREAM. What is worth noting is

that our method performs strongly on RMSE, which is a metric

that only considers the quality of point estimates and ignores

uncertainty. The upper diagonal panels in Fig. 6 show the

scatter plots directly comparing the test RMSE values between

methods (visualised with the blue colour). Our method is the

most competitive, as evidenced by having more points above

the diagonal y = x line. These show that our method is not

trading off predictive accuracy for uncertainty estimation. By

following a principled Bayesian workflow, our model is strong

in both prediction and uncertainty estimation.

It is worth noting that at least one of MuSyC, BRAID or

the Effective Dose model fail to find a solution for 4.8% of the

examples in DREAM and 38.4% of them in NCI-ALMANAC,

despite an effort in tuning the bounds, initial values and

hyperparameters involved in the optimisation. Most likely this

is because these methods rely on external optimisation packages

with no guaranteed convergence, which can become a problem

when overparameterisation becomes severe due to small data

sizes. SynBa does not incur this problem since its priors ensure

conservative outputs when data size is too small.

To investigate whether SynBa is prone to overfitting and

how it compares to the other three methods, we perform the

same prediction experiment on DREAM, but with a train-test

split ratio of 40% : 60% instead, so that we may observe how

the test RMSE changes on exactly the same data but with a

different train-test split ratio.

As shown in the lower diagonal panels in Fig. 6, the

test RMSE values (visualised with the red colour) increase

significantly for MuSyC, BRAID and the Effective Dose model.

For SynBa, however, the test RMSE values have increased on

average, but not by much. It can be seen that the mean value

and the spread increase more significantly for the other three

methods compared to SynBa. It can also be observed that the

predictive performance of SynBa is not sensitive to the choice

of prior, with the two priors producing very close RMSE values

to each other.

Uncertainty calibration
For a model M with learnt cumulative distribution FM with

well-calibrated uncertainty, it would approximately follow the

identity that

FY (xi) ≈ FM(xi) (14)

for every data point {(xi, yi(xi)) | i = 1, ..., N} in the dataset,

where yi(xi) is a sample from the unknown true cumulative

distribution FY (xi). Equivalently, assuming the measurements

yi(xi) for a combination are conditionally independent given

the dosages xi, their cumulative probabilities F (yi) :=

P(yi(xi) < FM(xi)) would be approximately uniformly

distributed between 0 and 1, if M is well-calibrated.

In this study, for each combination in DREAM, we split the

35 measurements (excluding the base value) with a 80%:20%

ratio in the same way as the prediction evaluation in the

previous subsection. We then evaluate the quality of the

uncertainty calibration with the Kolmogorov–Smirnov (K-S)

uniformity test [22] for the empirical cumulative probabilities
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Table 1. The mean and the median (Mdn) of the test log-likelihood (LL) and the test root-mean-squared error (RMSE) for MuSyC, BRAID,

the Effective Dose model (ED) and SynBa, computed on a subset of DREAM and NCI-ALMANAC, along with their standard errors. The

standard error of the mean is computed by the standard deviation of the metrics across examples divided by the square root of the number

of examples. The standard error of the median is estimated by nonparametric bootstrap. SynBa with a uniform prior for the normalised Einf

is denoted by SynBa-U. SynBa with the Beta(0.46, 0.58) prior for the normalised Einf is denoted by SynBa-B.

DREAM, LL DREAM, RMSE NCI-ALMANAC, LL NCI-ALMANAC, RMSE

mean (± se) Mdn (± se) mean (± se) Mdn (± se) mean (± se) Mdn (± se) mean (± se) Mdn (± se)

MuSyC −3.50 ± 0.35 −3.09 ± 0.02 6.11 ± 0.10 5.01 ± 0.08 −3.86 ± 0.01 −3.79 ± 0.01 14.87 ± 0.10 10.17 ± 0.03

BRAID −4.12 ± 0.69 −3.06 ± 0.02 5.71 ± 0.09 4.88 ± 0.08 −3.80 ± 0.04 −3.48 ± 0.01 9.57 ± 0.06 7.16 ± 0.03

ED -3.37 ± 0.09 −3.22 ± 0.02 6.46 ± 0.09 5.66 ± 0.09 −3.68 ± 0.02 −3.48 ± 0.01 8.47 ± 0.05 6.77 ± 0.09

SynBa-U −3.59 ± 0.42 -3.01 ± 0.02 5.20 ± 0.07 4.56 ± 0.08 −3.42 ± 0.02 −3.24 ± 0.01 6.72 ± 0.04 5.45 ± 0.05

SynBa-B −3.84 ± 0.66 -3.01 ± 0.02 5.15 ± 0.07 4.55 ± 0.08 -3.39 ± 0.01 -3.23 ± 0.01 6.66 ± 0.04 5.43 ± 0.04

Fig. 6. Upper diagonal panels (with blue points): Scatter plot of the

test RMSE values obtained from different methods on DREAM with a

train-test split ratio of 80% : 20%. Lower diagonal panels (with red

points): Scatter plot of the test RMSE values obtained from different

methods on DREAM with a train-test split ratio of 40% : 60%. Diagonal

panels: Histograms of the test RMSE values and their corresponding

kernel density estimates, where the blue ones represent a train-test split

ratio of 4:1, whilst the red ones represent a train-test split ratio of 2:3.

(or CDF values) across all test data points. If the model is well-

calibrated, then the CDF values for the test data points will

be approximately uniformly distributed for each combination.

Otherwise, they will show a non-uniform pattern, and the

resulting p-value for the K-S test will be statistically significant.

This procedure is performed across every combination in

DREAM, resulting in a p-value for each combination. The

resulting histogram of the p-values for SynBa is in Fig. 7

(A), showing that 6.07% of the combinations have not passed

the uniformity test, and thus are not well-calibrated. As a

comparison, the same procedure is performed over DREAM

using MuSyC. Fig. 7 (B) shows that 25.1% of the combinations

are not well-calibrated when MuSyC is chosen as the model,

which is roughly four times as high as the number for SynBa.

This shows that SynBa provides a better-calibrated uncertainty,

which means its estimated uncertainty is more reliable and

closer to the unknown ground truth on average.

Discussion

Machine learning methods have been developed for preclinical

modelling and the prediction of drug combinations, thanks

Fig. 7. Histogram of p-values that represent the calibration

quality of combination models. The p-values are derived from the

Kolmogorov–Smirnov test between the uniform distribution and the

cumulative probability of the data points in their predicted densities. For

a well-calibrated model, the p-value will be higher than 0.05.

to the availability of large screenings in recent years [21, 23].

The development of such methods is beneficial for discovering

and explaining drug combinations. However, a few factors

prevent most of these methods from being applied to real-

world drug discovery projects [24]. First, most of them are

trained to perform well on datasets with a set format and do not

generalise well to real-world scenarios where the need of defining

decision criteria for choosing optimal drug combinations is

prominent. Second, the performance measure is based on

synergy scores, which is a proxy measure that contains its

shortcomings, as discussed above. Due to the limited data size

for each combination and the inherent noise in the data, any

performance measure would be associated with a non-trivial

amount of uncertainty. However, uncertainty measurement is

not included in the estimation of synergy scores. The Spearman

correlation of the replicate experiments performed in DREAM

[1] and the O’Neil et al. dataset [25] are 0.56 and 0.63

respectively, which show that quantifying a combination with

a single synergy score would result in a high variance. A

high level of uncertainty in the data is ignored during the

modelling process. This could be one of the reasons that 20% of

drug combinations are poorly predicted by all methods in the

DREAM challenge [1]. Measuring the uncertainties associated

to the estimated scores is important in real-world scenarios for

the subsequent decision-making process based on the model

outputs. In real-world scenarios, scientists are often facing the

decision to choose amongst a large set of drug combinations that

score similarly in terms of synergy. Without any quantification

of how certain (or uncertain) the estimated scores are, they will

have to rely on background knowledge compromising innovation

in their choices. SynBa provides a way to implement a ranking

strategy in the decision process of a drug-discovery pipeline,

which is a real-world unmet need.
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Conclusions

We have developed a new framework for quantifying dose-

response relationships for monotherapies and combinations that

provides a full uncertainty estimation for all parameters that

are associated with the monotherapies and the combinations,

including information about efficacy, potency and synergy.

These uncertainty information would be helpful to the

biologists to make further decisions about progressing to the

next stages of the drug discovery pipeline, or whether more

experiments are required to lower the level of the uncertainty

and better understand the drug mechanism of action.

We have also shown that SynBa is competitive in predicting

unseen responses within a given dose-response matrix, and

outperforms MuSyC, BRAID and the Effective Dose model

on DREAM and NCI-ALMANAC. In addition, the prediction

performance is not sensitive to the choice of the priors.

In summary, our framework is capable of (1) providing a

reliable uncertainty estimation for the potency (e.g. IC50) and

the efficacy (e.g. Einf) of a monotherapy, or the synergistic

potency and efficacy of a combination, in a decoupled

manner, and (2) reliably predicting unseen responses within

a dose-response matrix. The parameter uncertainties can be

interpreted and used as guidance for further experiments and

subsequent decision-making.

Code and Data Availability

The method implementation is available at https://github.

com/HaotingZhang1/SynBa. The datasets used in this study are

publicly available (DOI of DREAM: 10.7303/syn4231880; DOI

of the subset of NCI-ALMANAC: 10.5281/zenodo.4135059).
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