
Supplemental Text

A Related Works

According to the overview of strain detection methods in [1], ChronoStrain can be categorized
as a read alignment-based method. Here, we focus on the abundance estimation aspect of
strain inference (which is di�erent from detection), and thus organize the methods slightly
di�erently. More specifically, we emphasize three orthogonal features of existing methods: (1)
whole-genome based versus gene based, (2) read modeling versus allele frequency modeling,
and (3) genotype-learning versus reference calling.

In this work, we largely omit from the discussion methods which rely on metagenomic
assembly. This is because assembling low-abundance strains (such as UPEC in the gut)
requires an extremely high read depth to be successful. Furthermore, existing methods [2]
that nevertheless attempt this strategy produce contigs that are binned into metagenome-
assembled genomes (MAGs). However, when genomes exhibit su�cient overall similarity —
such as with phylogroup B2/F/G E. coli strains — it can be challenging to resolve contigs
into MAGs correctly. Still, the general idea of using assembly (or a related algorithm) using
reads still has some merit; we mention it in Section A.3.

A.1 Whole Genome vs Gene-based methods

Methods that use whole genome information sometimes rely on genome-to-genome alignments;
examples include StrainEst [3], which relies on pairwise alignments, and the marker gene
database construction step in BIB [4] (discussed below). In general, there is a limitation
that applies to any method that relies on a genome-to-genome alignment, because they can
be confounded by large-scale rearrangements and recombinations, even across variants of the
same species. Indeed, these events are not uncommon in E. coli, a major focus of this paper.
On the other hand, some multiple alignment algorithms that try to account for this issue (such
as progressiveMauve [5]) simply fail to scale with input size; the problem is far from being
resolved at this point in time. Two examples of whole-genome based methods that do not
use genome (pairwise or multiple) alignments are Sigma [6] (which only uses read-to-genome
alignments) and StrainGE [7] (which uses k-mer decompositions).

Another approach that avoids this issue altogether is to associate taxonomies with a single
gene (e.g. 16S for Karp [8]), or collections of genes (e.g. ConStrains [9], StrainFinder [10],
the inference algorithm in BIB [4] and our method ChronoStrain). Beyond using just the 16S
gene, the task of finding useful collections of genes is implemented by MetaPhlAn [11], which
defines a group of “core” genes for each clade. Either approach enables gene-specific variant
calling to define strains (StrainPhlAn [12], which produces pile-ups and does not resolve strain
genotype-specific abundances; see the discussion below about allele frequency-based methods).

Our method is built on the latter idea, with one key di�erence: our belief is that the genes
encoding interesting phenotypic signatures (e.g. hypothesized pathogenicity of UPEC strains)
are precisely those that are not core to the species. In fact, this is the same reason why
whole-genome methods have been developed; but our approach fits nicely in between the two
extremes and has the potential to utilize a larger (or more clinically relevant) fraction of the
pan-genome.

A.2 Read Modeling vs Allele Frequency Modeling

The phrase read modeling refers to methods that directly utilize the read nucleotides, usually in
a probabilistic model without any intermediate “proxies” for reads (e.g. BIB, Sigma, Karp and

S21

ChronoStrain). This is in contrast to allele frequency modeling, whereby a method will typically
align reads to a collection of reference genomes, and attempt to de-convolve a SNV frequency
matrix into abundance ratios (StrainFacts, StrainFinder, StrainEst fall into this category).

The primary issue with operating only on allele frequencies is that the action of computing
a frequency matrix causes the loss of evidence of SNV-to-SNV correlations that each read
provides. Deconvolving frequency matrices into strain genome & abundance profiles is, gen-
erally speaking, statistically challenging with just reference information. A useful example to
consider is the task of deconvolving a frequency matrix on L loci produced by two distinct
genomes at equal abundances; this special setting requires picking one of 2L≠1 possible com-
binations of SNVs. Mathematically, this is equivalent to the haplotype phasing problem from
the context of human genomes [13], for which reads are known to be extremely helpful, and
population-wide correlations (e.g. linkage disequilibrium) alone generally cannot solve every
instance. Furthermore, when calling alleles across whole genomes (and not gene-specific alle-
les), one is e�ectively performing genome-to-genome comparisons, and thus this approach is
subject to the same challenges discussed in the previous section.

A.3 Genotype Learning vs Reference Calling

We use the phrase “reference calling” to describe methods that use a reference database of
assemblies, and attempt to output abundance estimates of reference labels that are most
appropriate for the latent strains in the sample. Several methods (e.g. StrainGST, StrainEst,
Sigma, BIB and Karp), including ChronoStrain fits in this category. The main limitation with
this approach is that it is not obvious what to do for experimental data when there are novel
strains. (The following points are discussed in the main text, but we recapitulate them here.)
It is possible that a new strain may not deserve any one particular reference label; it may
be mixtures of di�erent known variants across loci, or it may contain previously unobserved
variants. Typically, one digs further using allele frequency estimators such as StrainPhlAn
and StrainGR (which is packaged with StrainGST), bringing us back to the allele frequency
modeling setting. Another alternative is to output mixtures of labels through a posterior
distribution (BIB and ChronoStrain); point estimates are also possible (StrainGST, Sigma,
Karp), but when comparing across multiple samples, one may end up with inconsistency in the
labels.

One potential advantage of several “genotype-learning” methods (ConStrains, Strain-
Finder, StrainFacts, which all happen to operate on allele frequencies) is that these methods
attempt to jointly estimate strain-specific genotypes and abundance ratios. The word “po-
tential” is used to emphasize the fact that this is a much more general task than what the
reference-calling methods are attempting; thus, the inherent dimensionality of these problems
is much higher, and there are more ways that these methods can go wrong. It is important
to note that this harder problem is not limited to the allele-frequency modeling approach; by
utilizing reads directly, one can treat this as a variant of an assembly problem (either de novo
metagenomic assembly or as an analogue of a polyploid haplotype assembly).

ChronoStrain fits squarely into the category of reference calling, which is why it currently
outputs mixtures of references on the UMB dataset. We do not attempt to learn genotypes de
novo in this work, but we leave it as a crucial future direction as discussed in the Discussion
section of the main text. To our knowledge, a bona-fide “time-series”-aware (genome or
genotype) assembly algorithm across multiple metagenomic samples (e.g. beyond merging
samples into one giant read set) has not yet been invented, but we imagine it would be a quite
helpful contribution to the field.

S22

A.4 Method-specific Comparison

We note that out of all works mentioned, ChronoStrain is the only one to explicitly encode
timepoints t at which samples were taken, even if several other works perform joint estimation
across multiple samples (ConStrains, StrainFinder, StrainFacts). Excluding this feature, exactly
two methods agree with ChronoStrain for all categories: BIB and Karp (as well as Metakallisto
[14] which inspired the latter). We summarize their di�erences at a high level.

BIB leverages read alignments to a database of core genes (genes shared by all strains of
a species or higher clade) via a likelihood model on the read’s nucleotides and phred scores;
it is the only other method known to us that implements an approximate posterior probability
distribution over abundance profiles. BIB has two limitations that do not extend to our
method. First, its database construction of core genes is seeded by a whole-genome multiple
sequence alignment (MSA) and thus has trouble scaling to species with more than a few dozen
strains. Second, our method includes a position-encoding, fragment sliding-window model
Eq. (1), whereas BIB does not. It was excluded in that method for the sake of computational
complexity (since the method wants to fully consider reads that don’t map uniquely to their
database), but finding a tractable approximation (Section B.1.2) is a key part of ChronoStrain’s
implementation.

Karp was designed for 16S reads and builds upon Metakallisto’s usage of k-mer based
pseudoalignments: it was developed after observing that utilizing base quality can be helpful
(ChronoStrain also includes quality information). However, Karp’s model does not distinguish
the scenario when a read maps to a reference in multiple positions; the inherent assump-
tion is that reads map to a unique position for each reference. This assumption is valid if
each reference sequence is a single 16S gene variant, but the 16S gene is known to vary in
copy number [15] and thus does not result in a neat, one-to-one correspondence with actual
genomes. Still, it is not unreasonable to at least try to run this method given the findings of
the authors of Metakallisto, which produced great results on synthetic, whole-genome data.
However, we found that when Karp was run on real data (UMB18), it showed an incoherent
and uninterpretable output across time, and deviated greatly from the two methods discussed
in our paper.

In the main text, we draw a comparison between our results and those of StrainGST (an
algorithm in the StrainGE package). That method follows a common paradigm in bioinformat-
ics: designing fast, low-memory footprint algorithms by working in k-mer space. It operates
iteratively, by repeatedly calling successive reference labels whose k-mer profile has the highest
“overlap” with a remaining set of k-mers formed by the reads. However, like allele frequencies,
decomposing read collections to k-mer frequencies loses some SNV-to-SNV correlations, and
there is a natural tradeo�. If k is too large, then the speed/memory advantages becomes neg-
ligible and the algorithm loses robustness to sequencing noise. If k is too small, one sacrifices
some ability to resolve long-range, multi-locus correlations, especially for strains at perpet-
ual low-abundance. As a consequence, untangling the sequences and abundances of multiple
similar, co-abundant strains becomes challenging.

In theory, the following latent information ought to be inferrable from raw data, but be-
comes extremely challenging if one uses algorithms that are lossy, which is the case with allele
or k-mer counts. These are: (1) correlation in time-series (which SNVs are correlated across
time?), and (2) correlation between loci (which SNVs are correlated across reads?). It is an
algorithmic challenge to e�ciently resolve both simultaneously, particularly for low-abundance
strains, without resorting to sequencing depths likely far beyond what is theoretically required.
This is precisely the type of scenario where Bayesian methods — such as ChronoStrain — tend
to shine, and these concerns helped shape our algorithmic design.

S23

A.5 Methods Excluded from Analysis

We remark upon tools mentioned above that did not make it into our benchmarks (fully
synthetic and semi-synthetic). First, BIB’s database construction did not scale well to the
hundreds of genomes being used in the semisynthetic scenario. In contrast, since ChronoS-
train’s database requires one to specify marker seeds without worrying about copy number
or homologies, it took ≥2 hours to construct the full database of ≥5400 Enterobacteriaceae
genomes and 1

2 hour to agglomerate this into the final 1225 at 99.7% marker nucleotide iden-
tity. Furthermore, the original StrainEst paper ran ConStrains [9] and Sigma [6] for its own
comparisons. Unfortunately, in that work, the authors found that these two tools fail to prop-
erly learn sub-species mixtures of E.coli and/or relies on very high coverages, and thus we do
not expect them to perform better than what StrainEst can already accomplish. Furthermore,
we could not run ConStrains to completion due to its reliance on outdated software.

We also made an attempt to run at least one estimation tool that provided genotype
deconvolutions jointly with abundance estimates. In particular, we ran StrainFacts [16], which
is the newest published allele-based method, using the pipeline documented in the manuscript.
We could not include it into the fully synthetic benchmark due to a software limitation that
the database contains at least five reference strains; that scenario only has two. For the
semisynthetic benchmark, we used our collection of Ø 300 E. coli strains from the 99% identity
agglomeration (≥650 genomes), and was able to get it to run on the dataset. This came with
a caveat: the main StrainFacts algorithm (which outputs a maximum a posteriori estimator)
requires specifying a value k which represents the desired number of genotypes. Since we
actually mixed the synthetic reads with real reads, this value could not be determined.

Instead, we attempted to give it an advantage by passing in only the simulated reads, with
k = 4 passed as input. Note that the method attempts to output abundance estimates of
potentially novel combinations of alleles, which has no guarantee of perfectly matching our
ground truth strains. To engineer a fair metric for this purpose, we calculated the following,
adjusted ¸1 error metric

Error(x̂) = min
fiœS4

ÿ

tœT

4ÿ

i=1
|xt(i) ≠ xt(fi(i))|

where S4 is the set of all permutations of four elements, x is the ground truth abundance ratio,
and x̂ is the abundance estimate. This is the same error metric applied to the other methods,
but minimized across all ways to mix-and-match the inferred genotypes with the ground truth
strains. Unfortunately, it consistently provided poor results (errors between 4 and 5 across all
coverages, indicating that the algorithm did not actually learn the simulated strains) for all
coverages.

This suggests a potential incompatibility or limitation of allele deconvolution methods
when using the simulated benchmarks. For instance, it is quite possible that StrainFacts
learned at least one “fuzzy” genotype (mixtures of alleles per loci) that was a mixture of the
simulated strains. This is problematic, since it is rather unclear how the four fuzzy genotypes
relate to the four synthetic genotypes, and since it is not clear how to further untangle these
into individual abundances. (Our main hope was that the cross-sample correlation provided
su�cient information to resolve non-fuzzy genotypes from the allele frequency matrix.) Another
potential issue might have been that the software was designed using a bi-allelic assumption,
whereas the true synthetic genotypes — and the underlying database — are multi-allelic after
multiple genome alignment. Keeping these issues in mind, we stopped short of re-engineering
parts of the code ourselves. The core problem of allele deconvolution is a strictly harder one
than what we are after (after incurring some information loss by converting reads into allele

S24

counts, as discussed in Section A), so our benchmarks’ assumptions/requirements may have
been too optimistic.

B Mathematical Details

B.1 Objective Function

The posterior that we are after is P (X | R) (conditional on R aligning to the database), where
R is the subcollection of reads for which we condition on as originating from our markers.
As mentioned in the main text, our algorithm is an adaptation of Automatic Di�erentiation
Variational Inference (ADVI) [17]. A core ingredient of this method is the Monte-Carlo estimate
to the Evidence Lower Bound objective (ELBO):

ELBO(Ï) = EX≥q◊ [log p(R, X)] + H[qÏ]

æ \ELBO(Ï) ¥
A

1
M

Mÿ

m=1
log p

1
R, ÂX(m)

2B

+ H[qÏ]

where qÏ is an approximating likelihood function parametrized by Ï, ÂX(1), . . . , ÂX(M) are i.i.d.
samples from qÏ, and H(·) is the Shannon entropy function (explicitly computable for Gaus-
sians). Note that the above is not “stochastic optimization” in the commonly understood sense
of Machine Learning literature [18], since we do not sub-sample the reads for optimization (we
do a full pass on the entire dataset). Subsampling would help scale the optimization to much
larger datasets, but the above calculation helps minimize variability across optimization seeds.

The core principle of ADVI is that one maximizes this function by pushing it through
standard, automatic-di�erentiation algorithms as a black box. Since such a heuristic would
call for evaluating this function many times — preferably using fresh samples for each iteration
— it is critical to minimize the computational complexity required to estimate the ELBO.
Otherwise, this becomes a rather expensive algorithm which might not run, even on high-
performance computing resources. This is in terms of runtime and in terms of the memory
required when storing all of the necessary gradients.

We assume that the likelihood of a read set R given latent X can be written as the product
p(R | X) =

Ÿ

tœT
p(Rt | Xt) (Cond. Indep. over T)

=
Ÿ

t

NtŸ

i=1
p(rt,i | Xt) (Cond. Indep. over reads).

Each individual term can be expressed as a marginalization over fragments, e.g.
p(rt,i | Xt) =

ÿ

ft,i

p(rt,i | ft,i)p(ft,i | Xt).

Dropping the subscripts (t, i) for readability, we expand this according to the model described
in Methods:

p(r | Xt) =
ÿ

f

p(r | f)
ÿ

¸

p(f | Yt, ¸)p(¸)

=
ÿ

f

p(r | f)
ÿ

¸

p(¸)

Q

a
q

sœS Yt(s)n(¸)
f,s

q
ŝœS Yt(ŝ)n(¸)

ŝ

R

b

=
ÿ

sœS
Yt(s)

ÿ

f

p(r | f)

Q

a
ÿ

¸

p(¸)
n(¸)

f,s

q
ŝœS Yt(ŝ)n(¸)

ŝ

R

b

S25

This expression for p(r | Xt) looks complicated, but it can be broken down into two major
pieces.

1. The calculation of fragment-to-error likelihoods Ár,f

def= p(r | f), and
2. The calculation of the (weighted) strain-specific fragment frequencies

Êf,s

def=
ÿ

¸

p(¸)n(¸)
f,s

A
1

q
ŝœS Yt(ŝ)n(¸)

ŝ

B

In plain English, the first piece characterizes the error likelihood of reads enumerated across
the reference strains, and the second piece characterizes the genetic diversity within and across
reference strains. The inverse term (containing the sum indexed by ŝ) can be understood as a
correction that accounts for the bias induced by the choice of marker seeds. Roughly speaking,
when estimating the posterior distribution, this term ensures that strains aren’t unfairly boosted
just by the pure virtue of having more marker sequences.

Let F be the collection of all possible fragments in the model. Algorithmically, if we are
given both pieces in the form of two matrices

W =
1
Êf,s

2

fœF ,sœS
and Et =

1
Ár,f

2

rœRt,fœF

then the likelihood computation can be reduced to the evaluation of the product E€
t WYt across

t œ T . Symbolically, this is a simple linear algebraic operation, and thus easily black-boxed
using standard tensor libraries.

In practice, however, the matrices W and E can be extremely large. Furthermore, E can
be pre-computed but W cannot, since the latter explicitly depends on the Yt’s (for which
we will use samples throughout ADVI). The key observation is that for biologically plausible
models (e.g. variants of markers need to be somewhat similar), W can be approximately
decoupled from Yt via a sparse sum and Et is “close” to being sparse, in the sense that all
but O(|Rt|) entries are vanishingly close to zero. We carefully designed heuristics for sparsely
approximating Et (Section B.1.1) as well as W (Section B.1.2), which are key ingredients for
scaling up our model to accommodate the entire E. coli reference database.

B.1.1 Per-read error likelihood calculation

In this section, we explain how we estimated the matrix Et. The overall goal here is to identify
which rows f support the row vector corresponding to read rt,i. For the sake of exposition,
we drop the subscripts and write r = (‡, q) to represent a generic read, where ‡ is the read’s
nucleotide sequence. Expand

Ár,f = p(r | f)
=

ÿ

Alignments A
p(‡ | f, A) ◊ p(A = a | f ; q) (S.1)

for the error likelihood, which includes marginalization over A. Instead of exhaustively list-
ing out all theoretically plausible f , we narrowed down the search using an alignment-based
heuristic.

The main idea here is that we can restrict the calculation to candidate fragments f and
alignments a for which this likelihood value is significantly larger than their alternatives. More
precisely, this heuristic assumes the right hand side of Equation S.1 is dominated (by several
orders of magnitude) by a single term:

Ár,f ¥ p(‡ | f, Aú) ◊ p(Aú | f ; q)

S26

where Aú is an optimal global alignment between f and ‡. For those reads r for which all of
the above products are su�ciently small (< e≠500), we simply round Ár,f to zero.

Note that this truncation applies on a per-fragment basis for each read, so we must search
for all candidate fragments f which align well to r. To carry out this strategy, we aligned the
filtered reads to the marker database. Since speed is less of a concern than in the filtering
step operating on all of the reads, by default we use bwa mem (and optionally bwa-mem2)
which has been suggested for providing better alignments when genomes in the database are
similar to each other [19]. We use the same parametrization as in the filtering step – but
this time configured to output all available alignments instead of just the best one. Each
alignment ought to be understood as a mapping to a particular marker m in the database. If
the alignment clipped read nucleotides that extended inside the boundary of m, we re-included
those bases into the alignment without indels; this is to ensure that we properly model the
whole read. The aligned marker’s substring, with gaps removed, was included in the model as
a candidate fragment f (the support of r).

B.1.2 Fragment frequency

In this section, we describe how we compute the matrix W , whose entries are Êf,s. Here, s
denotes an arbitrary strain, but we may now assume that f is a supporting fragment of Et for
some t œ T . We rewrite each entry Êf,s for convenience:

Êf,s

def=
Œÿ

¸=0
p(¸)n(¸)

f,s

A
1

q
ŝœS Yt(ŝ)n(¸)

ŝ

B

.

Note that n(¸)
f,s

= 0 if ¸ < |f |, since each fragment f can only be induced by windows at least
as long as f . There is some room for truncation in the above sum. Since the negative binomial
distribution (using the parameters that we set) is approximately Gaussian, taking ¸ ranging
from 0 to µ + 2‡ (in reality |f | to µ + 2‡), already captures roughly 98% of ¸’s probability
mass.

To evaluate n(¸)
f,s

, we ran bwa fastmap to search for exact matches of f within the database.
Since the only way f can be induced by a window longer than |f | (by removing padded bases)
is if it maps to an edge on a marker, we take

n(¸)
f,s

=
ÿ

mœMs

ÿ

hœHf

1{h maps f to the edge of m} ‚ 1{|f | = ¸}

where, as a reminder, Ms is the set of markers in strain s, Hf is the set of exact-match
mappings to the marker sequences, and ‚ denotes the binary OR operator.

Next, we consider the denominator. Note that we can expand the expression by explicitly
computing n(¸)

ŝ
:

ÿ

ŝœS
Yt(ŝ)n(¸)

ŝ
=

ÿ

ŝœS
Yt(ŝ)

ÿ

mœMs

(|m| + ¸ ≠ 2— + 1)

=

Q

a
ÿ

ŝœS
Yt(ŝ)Ls

R

b + (¸ ≠ 2— + 1)

Q

a
ÿ

ŝœS
Yt(ŝ)|Ms|

R

b

These terms have simple interpretations. The first sum is the (weighted) mean total marker
content across strains in the database. The second term is the total number of padded
window positions that we introduce; in particular, — is the budget parameter that determines
how willing we are to incorporate edge-mapped reads into our model.

S27

Since with high probability ¸ cannot be too large (e.g. consider the rationale behind the
suggested truncation ¸ Æ µ + 2‡), and assuming that the total length of markers for each
strain typically greatly exceeds the total number of padded bases (which is generally true in
our case), we provide the approximation

1
q

ŝœS Yt(ŝ)n(¸)
ŝ

¥ 1
q

ŝœS Yt(ŝ)Ls

In particular, this expression does not depend on ¸, and thus we end up with

Êf,s ¥
A

1
q

ŝœS Yt(ŝ)Ls

B
µ+2‡ÿ

¸=|f |
p(¸)n(¸)

f,s

In log-likelihood space (which we need for numerical stability when computing the ELBO), the
expression is

log Êf,s ¥ log

Q

a
µ+2‡ÿ

¸=|f |
p(¸)n(¸)

f,s

R

b ≠ log

Q

a
ÿ

ŝœS
Yt(ŝ)Ls

R

b

We gain quite a bit from this chain of heuristic reasoning. The primary advantage here is that
the above expression is now decoupled :

• the complicated summation over ¸ does not depend on Yt, so it can be precomputed,
and

• the second term is easily computable via a single vectorized operation during ADVI.
Furthermore, from a purely algorithmic perspective, this expression is rather nicely inter-
pretable. The first term can be thought of as the “bag-of-words” component from a standard
topic model (logP(word = f | topic = s)). The second term corrects for database-specific
bias; it penalizes strains that are over-represented in terms of marker content. Indeed, having
too few markers is not an intrinsic property of the strain, it is a property of the database being
used.

B.2 Model hyperparameters

The negative binomial parameters r, p for fragment lengths were fit using a standard regression
package from statsmodels. As a proxy to the “true” fragments, we fit parameters to the
empirical distribution of read lengths of five arbitrarily chosen participants (the first five test
set participants in the cohort), after trimming the adapter sequences. The resulting fitted
Negative Binomial distribution has a mean µ = 150.5 and standard deviation ‡ = 12.27. This
overestimates the variance of read lengths – but keep in mind that a read model is not what
we are after. We are actually trying to parametrize fragment length (the reference window
that the read is measuring). Since edge e�ects and indels cause variation in fragment lengths
in the model, we took this over-dispersed fit to be rather desirable. The window overlap ratio
b that parametrizes WindowsWithPaddings is chosen to be 0.5. In words, this means that
for each fragment-read pair (r, f) allowed by the model, the fragment f aligns with at least
half of the read.

The insertion and deletion error rates Áins, Ádel, depending on whether the read was forward
or reverse in the pair, are set by default to the empirical insertion and deletion error rates
(on the order of 10≠6) from [20]. We remark that that work used a di�erent HiSeq dataset
to obtain estimates. However, we do not expect the inference results of this work to be too
sensitive to this choice using the given Escherichia database, in the sense that changing this
setting within an order of magnitude empirically does not alter the results too much. This is
something we also observe in practice.

S28

B.3 An estimator for overall relative abundance

Our method is applied to the UMB dataset specifically to estimate the ratio of strains Yt =
softmax(Xt) with respect to only the database strains. Since the whole population of strains,
including those species not in the database, is unknown, we derive a simple estimator for the
overall relative abundance (e.g. with respect to the entire sample) via the calculation

P(Strain = i | Xt) = P(Strain œ DB | Xt) ◊ P(Strain = i | Strain œ DB, Xt)

¥
3

nDB
nmarker

4
◊

3
nmarker
ntotal

4
◊ (Yt)i.

Here, given a particular timepoint t, nDB is the number of reads that map to all database
chromosomes, nmarker is the number of reads that map to markers, and ntotal is the total
number of reads. This formula considers the probability that a randomly chosen strain from
the (unknown) overall population at time t is equal to i, an arbitrary Escherichia strain.

The goal is to estimate the above without performing yet another costly alignment of all
reads to the reference collection (e.g. for estimating nDB). We estimate the first ratio as the
ratio of overall sequence material available in the population:

3
nDB

nmarker

4
¥ Total length of DB genomes

Total length of DB markers =
q

j
(Yt)j ◊ (Len of j’s chromosome)

q
jÕ(Yt)jÕ ◊ (Total len of jÕ’s markers)

For the second ratio, we simply count the number of marker-aligning reads and the overall
read depth.

S29

Supplement References

1. Anyansi, C., Straub, T. J., Manson, A. L., Earl, A. M. & Abeel, T. Computational
methods for strain-level microbial detection in colony and metagenome sequencing data.
Frontiers in Microbiology 11, 1925 (2020).

2. Quince, C. et al. DESMAN: a new tool for de novo extraction of strains from metagenomes.
Genome biology 18, 181 (2017).

3. Albanese, D. & Donati, C. Strain profiling and epidemiology of bacterial species from
metagenomic sequencing. Nature communications 8, 1–14 (2017).

4. Sankar, A. et al. Bayesian identification of bacterial strains from sequencing data. Mi-
crobial genomics 2 (2016).

5. Darling, A. E., Mau, B. & Perna, N. T. progressiveMauve: multiple genome alignment
with gene gain, loss and rearrangement. PloS one 5, e11147 (2010).

6. Ahn, T.-H., Chai, J. & Pan, C. Sigma: strain-level inference of genomes from metage-
nomic analysis for biosurveillance. Bioinformatics 31, 170–177 (2015).

7. Van Dijk, L. R. et al. StrainGE: a toolkit to track and characterize low-abundance strains
in complex microbial communities. Genome biology 23, 1–27 (2022).

8. Reppell, M. & Novembre, J. Using pseudoalignment and base quality to accurately
quantify microbial community composition. PLoS computational biology 14, e1006096
(2018).

9. Luo, C. et al. ConStrains identifies microbial strains in metagenomic datasets. Nature
biotechnology 33, 1045–1052 (2015).

10. Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial engraftment
in the human gut following fecal microbiota transplantation. Cell host & microbe 23,

229–240 (2018).
11. Segata, N. et al. Metagenomic microbial community profiling using unique clade-specific

marker genes. Nature methods 9, 811–814 (2012).
12. Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level

population structure and genetic diversity from metagenomes. Genome research 27, 626–
638 (2017).

13. Browning, S. R. & Browning, B. L. Haplotype phasing: existing methods and new devel-
opments. Nature Reviews Genetics 12, 703–714 (2011).

14. Schae�er, L., Pimentel, H., Bray, N., Melsted, P. & Pachter, L. Pseudoalignment for
metagenomic read assignment. Bioinformatics 33, 2082–2088 (2017).

15. Lee, Z. M.-P., Bussema III, C. & Schmidt, T. M. rrn DB: documenting the number of
rRNA and tRNA genes in bacteria and archaea. Nucleic acids research 37, D489–D493
(2009).

16. Smith, B. J., Li, X., Abate, A., Shi, Z. J. & Pollard, K. S. Scalable microbial strain
inference in metagenomic data using StrainFacts. bioRxiv (2022).

17. Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A. & Blei, D. M. Automatic di�eren-
tiation variational inference. Journal of machine learning research (2017).

18. Ho�man, M. D., Blei, D. M., Wang, C. & Paisley, J. Stochastic variational inference.
Journal of Machine Learning Research (2013).

S30

19. Jaillard, M., Tournoud, M., Meynier, F. & Veyrieras, J.-B. Optimization of alignment-
based methods for taxonomic binning of metagenomics reads. Bioinformatics 32, 1779–
1787 (2016).

20. Schirmer, M., D’Amore, R., Ijaz, U. Z., Hall, N. & Quince, C. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC bioinformatics 17,

1–15 (2016).

S31

	Introduction
	Results
	Overview of ChronoStrain
	ChronoStrain outperforms other methods in synthetic and semi-synthetic experiments
	Analysis of UMB dataset with ChronoStrain provides interpretable results with more consistent correlations over time

	Discussion
	Conclusion
	Online Methods
	Overview of ChronoStrain
	Bayesian Model
	ChronoStrain's Database (and a construction for E. coli)
	Read Filtering
	Target Posterior Approximation
	Fully Synthetic Benchmark
	Semi-synthetic benchmark
	Detection Classifier
	Computational Resources
	Sequencing & Real Data Processing
	Software and Data Availability

	Contributions
	Competing Interests
	Funding
	Supplemental Figures
	Complete UMB Results

	Supplemental Tables
	Fully Synthetic Experiment p-values
	Semisynthetic Experiment p-values

	Related Works
	Whole Genome vs Gene-based methods
	Read Modeling vs Allele Frequency Modeling
	Genotype Learning vs Reference Calling
	Method-specific Comparison
	Methods Excluded from Analysis

	Mathematical Details
	Objective Function
	Per-read error likelihood calculation
	Fragment frequency

	Model hyperparameters
	An estimator for overall relative abundance

