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Supplementary Videos

Supplementary video 1. Time-lapse STED imaging of mitochondria dynamics with a pixel time of 90 us.
Hela cells were labeled with PK Mito Orange.

Supplementary video 2. Fast deep-learning STED imaging of mitochondria dynamics with a pixel time of
1 us. Hela cells were labeled with PK Mito Orange.

Supplementary video 3. Two-color live-cell deep-learning STED imaging of mitochondria (green) and ER
(magenta) in Hela cells with a pixel time of 1 us. Mitochondria was labeled with PK Mito Orange, and ER
was labeled with SiR-Halo.

Supplementary video 4. Deep-learning live-cell STED imaging with deconvolution. COS-7 cells were
labeled with PK Mito Orange.

Supplementary video 5. Denoising fast 3D STED xz imaging of giant unilamellar vesicles (GUV) labeled
with NR4A with a pixel time of 2 ps.
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Supplementary Fig. 1, Semi-synthetic dataset generation. Poisson noise was applied to the high SNR
STED images of cristae labeled with PK Mito Orange in Hela cells to generate a pair of noisy and high SNR
data for training UNet-RCAN. The amount of Poisson noise was adjusted such that the intensity histogram

of the generated noisy data resembles that of the noisy live cell STED data (See Methods). Scale bars,
2um.
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Supplementary Fig. 2, Denoising performance of UNet-RCAN on the semi-synthetic dataset. (a)
Denoising results of cristae labeled with PK Mito Orange in Hela cells. The GT data was captured with a
dwelling time of 90 us. The noisy data was generated by adding Poisson noise. The prediction is the
denoising result by UNet-RCAN. (b) Line profiles of noisy, prediction, and GT data along the dashed lines
in (a). (c) Resolution analysis by decorrelation, PSNR, and MS-SSIM calculations were performed on the
prediction results by UNet-RCAN. Mean and standard deviation are displayed (n = 10).



Supplementary Note 1, Comparisons with other deep learning approaches

In cross-modality image restoration, a diffraction-limited confocal image is transformed into a super-
resolved STED image with resolution enhancement by a deep convolutional neural network. Different
network architectures could perform this image transformation, such as generative adversarial networks
(GAN)? or residual channel attention networks (RCAN)3. A transformation between confocal and STED
imaging modalities at least requires a 3~5-fold resolution enhancement, i.e., from 250 nm to 50 nm;
however, the cross-modality deep learning approaches have proven to be limited by a factor of 2-2.5 in
terms of resolution enhancement®. Moreover, a lack of enough information often leads to exhibit
artifacts.

Unlike the cross-modality image transformation, denoising is performed on noisy but super-resolved STED
images to improve SNR. In denoising, the input data contains more information in terms of spatial
resolution. This can help to reduce artifact generation and improve resolution enhancement. In Figs.1f-h,
we showed that denoising STED data clearly outperforms the cross-modality approach perceptually and
according to the image quality assessment parameters.

Two popular network architectures suitable for denoising super-resolution data are UNet and RCAN. A
UNet learns the features in an image dataset through convolutional layers and multiple down-sampling
and up-sampling layers. Although the UNet effectively denoises diffraction-limited imaging data such as
widefield images, its output does not reliably preserve high-frequency information. This is likely due to
the fact that there is no mechanism to prioritize high-frequency information. Moreover, in UNet, a final
image is reconstructed through downsampling and upsampling layers rather than applying the
convolutional filters on the original noisy super-resolved data.

On the other hand, RCAN contains channel attention blocks and several skip connections, which help
prioritize and maintain high-frequency information in super-resolution image reconstruction. Moreover,
in RCAN, final super-resolved images are restored by applying filters on the original noisy data. This lowers
the possibility of missing high-frequency information. However, our STED denoising results with RCAN
show that although its final result is superior to UNet in terms of resolution, it generates more high-
frequency artifacts, which may be due to its CAB building blocks, especially when the input SNR is
extremely poor.

We showed that by combining UNet and RCAN, denoising could be effectively performed on fast STED
data while we can maintain the super-resolution and prevent high-frequency artifact generation.



Supplementary Table 1. Parameters and training time for CARE, 2D-RCAN, and UNet-RCAN.

Supplementary Tables

CARE 2D-RCAN UNet-RCAN
# Iterations per epoch 70 1,080 1,080
Batch size 16 1 1
Patch size 256x256 256x256 256x256
Epochs 200 200 200
Number of parameters | 3,790,850 | 3,944,073 16,684,270
Training time 1h17m 11h40m 8h10m

Supplementary Table 2. Performance comparison chart of UNet-RCAN, CARE, and 2D-RCAN in terms of

SNR.

Supplementary Table 3. Performance comparison chart of UNet-RCAN, CARE, and 2D-RCAN in terms of

Noisy CARE 2D-RCAN UNet-RCAN

B-tubulin | 21.3¥1.1dB | 23.0+1.6dB | 22.0+1.6dB | 27.2+1.3dB
Clathrin 26.2¥1.1dB | 27.4#3.0dB | 25.6+1.2dB | 29.3+1.1dB

Histone 16.2+0.6dB | 20.4+0.8dB | 21.2+0.8dB | 21.6+0.9 dB

TOM20 18.0£0.7dB | 23.1+x1.3dB | 20.9+0.8dB | 24.6+0.6 dB

Vimentin | 17.7£0.9dB | 23.0+t1.8dB | 23.0+1.1dB | 24.2+1.1dB

similarity.
Noisy CARE 2D-RCAN UNet-RCAN
B-tubulin 0.61+0.04 0.77+0.05 0.73+0.06 0.83+0.02
Clathrin 0.79+0.03 0.87+0.03 0.83+0.03 0.88+0.02
Histone 0.53+0.06 0.67+0.04 0.660.04 0.70+0.06
TOM20 0.59+0.03 0.79+0.02 0.80+0.01 0.81+0.02
Vimentin 0.58+0.05 0.81+0.05 0.83+0.04 0.85+0.06




Supplementary Table 4. Performance comparison chart of UNet-RCAN, CARE, and 2D-RCAN in terms of

resolution measured by decorrelation analysis.

CARE 2D-RCAN UNet-RCAN
B-tubulin 8013 nm 7143 nm 51+1 nm
Clathrin 12245 nm 10316 nm 81+4 nm
Histone 166+2 nm 1152 nm 1101 nm
TOM20 193+2 nm 179+3 nm 98+2 nm
Vimentin 243+1 nm 115+13 nm 101+1 nm

Supplementary Table 5. Acquisition settings of STED imaging.

Figures
1b, 2a Fluorophore: STAR635P, Aexc = 635 Nnm, Astep = 775 nm
ED 2a,4a,5,9 Pixel time: 0.054 ps (noisy) and 2.3 ps (ground-truth)
2a Fluorophore: Alexa 594, Aexc = 594 nm, Astep = 775 nm
Pixel time: 0.054 ps (noisy) and 2.3 us (ground-truth)
ED 10a Fluorophore: STAR635P, Aexc = 635 Nnm, Astep = 775 nm
Pixel time: 0.025 ps (noisy) and 1us (ground-truth)
1f Fluorophore: Atto647N, Aexc = 647 NnM, Astep = 775 nm
ED 3a, 4b, 4c, 8a, | Exc. power = 20% Pixel time: 0.054 ps (noisy) and 2.3 ps (ground-truth)
8b STED power = 50%
ED 3b Resonant scanning Fluorophore: Atto647N, Aexc = 647 nm, Astep = 775 nm
Gating: 0.4-12 ns Pixel time: 0.090 ps (noisy) and 2.3 us (ground-truth)

ED5, 83,9 Leica STED Fluorophore: STAR580, Aexc = 580 nm, Astep = 775 nm
Pixel time: 0.054 ps (noisy) and 2.3 us (ground-truth)

ED 7a, 7c Fluorophore: Atto647N, Aexc = 647 NnM, Astep = 775 nm
Pixel time: [0.018,0.036,0.072,0.108,0.144] ps (noisy) and
2.3 us (ground-truth)

ED 7a, 7c Fluorophore: STAR580, Aexc = 580 nm, Astep = 775 nm
Pixel time: [0.018,0.036,0.072,0.108,0.144] us (noisy) and
2.3 us (ground-truth)

ED 6a Exc. power = 20% Fluorophore: STAR635P, Aexc = 635 NnM, Astep = 775 nm
STED power = Pixel time: 0.050 s (noisy) and 1.0 ps (ground-truth)
[0%,10%,20%,50%,70%),

Resonant scanning
Gating: 0.4-12 ns
Leica STED
2g, ED 10b Exc. power = 20% Fluorophore: Atto647N, Aexc = 635 NnM. Astep = 775 nm

2D-STED power = 50%
z-STED power = 50%
Resonant scanning
Gating: 0.4-12 ns

Pixel time: 0.018 ps (noisy) and 2.3 us (ground-truth)




Leica STED

2¢, 2d Exc. power =4.5% Fluorophore: PK Mito Orange, Aexc = 561 nm, Astep = 775 nm
Sl 2a STED power =22% Pixel time: 1 ps (noisy)
Galvo scanning
Gating: 0.75-8 ns
Abberior STED
2h Exc. power = 35% Fluorophore: NR4A , Aexc = 561 nm, Astep = 775 nm

2D-STED power = 0%
z-STED power = 100%
Galvo scanning
Gating: 0 ns

Abberior STED

Pixel time: 2 ps (noisy) and 20 ps (ground-truth)

Supplementary Table 6. Inmunolabeling conditions.

Figures Primary antibody Secondary antibody Fluorophore
1b, 2a Monoclonal Anti-B-Tubulin Fab Fragment Goat Anti- Abberior STAR 635P
ED 2a, 5, 6a, | antibody produced in mouse, Mouse IgG1, Jackson
9 Sigma-Aldrich, T5293 ImmunoResearch, 115-007-
185
ED 73, 7c, Monoclonal Anti-B-Tubulin Fab Fragment Goat Anti- Abberior STAR 580
8a antibody produced in mouse, Mouse IgG1, Jackson
Sigma-Aldrich, T5293 ImmunoResearch, 115-007-
185
EDS5,9 Anti-Clathrin heavy chain Fab Fragment Goat Anti- Abberior STAR 580
antibody (ab21679) Rabbit IgG, Jackson
ImmunoResearch, 111-007-
008
1f Anti-acetyl-Histone H3 (Lys9) Rabbit IgG (H&L) Antibody Atto 647N
ED 4b, 74, in rabbit, Sigma-Aldrich, ATTO 647N Conjugated Pre-
7¢, 8a, 07-352 Adsorbed, ROCKLAND, 611-
Sl 4a 156-122
2a Anti-acetyl-Histone H3 (Lys9) Alexa Fluor® 594 AffiniPure Alexa Fluor 594
in rabbit, Sigma-Aldrich, F(ab'), Fragment Goat Anti-
07-352 Rabbit IgG (H+L)
2g Anti-TOMM20 antibody - Rabbit IgG (H&L) Antibody Atto 647N
ED 3a, 3b, Mitochondrial Marker, abcam, | ATTO 647N Conjugated Pre-
4c, 10b ab78547 Adsorbed, ROCKLAND, 611-
156-122




ED 4a Anti-Vimentin antibody, Fab Fragment Goat Anti- Abberior STAR 635P
Mouse monoclonal (V6389- Mouse IgG1, Jackson
200UL) ImmunoResearch, 115-007-
185
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