
Extracting nanoscale morphology from localizations

SUPPLEMENTARY MATERIAL

Figure S1: Left, Tubular ER from the lower left portion of Figure 3, colored by mean curvature. Lookup table: -0.01 to 0.01
nm�1. Scale bar is 200 nm. Right, Histogram of ⇡ = 2/:max,; where :max,; is the maximal principal curvature of vertex ;. The
mean and standard error of the mean for the diameter distribution are reported.

Point cloud simulation
In order to demonstrate the e�ectiveness of the algorithm, it was necessary to generate biologically-motivated test structures. To
do this, we established a constructive solid geometry library where each primitive is represented as a signed distance function
(SDF).

Points were generated from a test structure using Monte-Carlo sampling of an octree of the structure’s SDF. The octree
subdivides space that straddles where the SDF goes to zero until a fixed sampling rate 3G is reached. The center of each octree
box with an absolute SDF value of less than 3G is kept with a probability of ? and rejected otherwise. This results in a point set
of size (.

Next, non-specific localizations are simulated. For a given noise fraction =, � = =(
1�= additional points are generated with

uniform randomness over the bounding box of the point set. This ensures �/) = = for) = � + (total points.
To simulate localization precision, each point 8 in the resulting point set is jittered by sampling values from a Gaussian

with mean `8 equivalent to the location of point 8 2 0 . .) � 1 and standard deviation 28,4 for 4 2 G, H, I. Up to # samples are
generated per point. The total point set is then clipped to size) via random uniform selection of points.

The uncertainty 28,4 is calculated by simulating an exponential distribution with a mean value of d, corresponding to the
average photon count of a simulated localization. This distribution is clipped to only contain values greater than a background
photon count 1, simulating the noise floor for data collection. For the remaining counts, the first (are selected and

f8,4 =
A4

2.355
p
d8

where A4 is the resolution of the simulated system along axis 4.

Meshing parameters
To generate the parameter space for evaluation of SPR meshes derived from simulated data in Figure 2, we followed
recommendations in (18). For SPR we estimated normals from 10, 30, 50 and 100 nearest neighbors, set the smoothing parameter
U = 0, 1, 2 and 4, and set the samples-per-node to 1.5, 5, 10, 20 and 30. We used an octree depth of 8, 8 Gauss-Seidel relaxations,
and a scale factor of 1.1.

Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

Figure S2: Distance between two surfaces. Surface generated from Sec61V localizations (red-white-blue) and surface generated
from TOMM20 localizations (magenta). The Sec61V surface is colored by its distance from the TOMM20 surface (0 to 100
nm; red to blue). A, Full field of view, displaying both surfaces. B, Region of interest, showing both surfaces. C, The Sec61V
surface alone. Scale bars are 1 µm.

For our method, we compared maximum number of iterations 19 and 39, a variety of starting threshold densities, 5 ⇥ 10�6,
1⇥ 10�5, 2⇥ 10�5, 5⇥ 10�5, 1⇥ 10�4, 2⇥ 10�4, 4⇥ 10�4, 1⇥ 10�3, 2⇥ 10�3, and _ = 10, 15, 25. We remeshed every 5 iterations.

Extracting nanoscale morphology from localizations

Max iters
Curvature
weight

Remesh
frequency

Neck first
iter

Punch
frequency

Kc
Minimum
edge length

Smooth
curvature

Truncate
at

Figure 3 19 20 5 0 0 1.0 10 True 1000
Figure 4
A-C

29 20 5 0 0 1.0 10 True 1000

Figure 4
D-F (ER)

29 20 5 0 0 1.0 10 True 1000

Figure 4
D-F (Mito)

49 20 5 0 0 1.0 10 True 1000

Figure 4
G-I

9 20 5 0 0 1.0 10 True 1000

Table S1: Parameters used for iterative surface fitting of experimental data in this paper.

Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

USER GUIDE
This tutorial will walk you through using the shrink-wrapping method within PYMEVisualize to create 3D surfaces based on a
provided 3D point-cloud data set (user-guide-data.hdf). After completing this tutorial, you should be able to apply the
same approach to shrink-wrap your own 3D point-cloud data sets. If you are unfamiliar with using PYMEVisualize, we strongly
encourage you to first install PYME and go through the PYMEVisualize User Guide to understand the basics of the program
before moving on to this tutorial (24).

Install the Shrink-wrap Plugin
You can find the GitHub repository for the shrink-wrap plugin and installation instructions here.

Download and import tutorial data set
Download the data set user-guide-data.hdf found in the supplementary materials. Launch a PYMEVisualize window
by entering visgui into an Anaconda prompt with the PYME environment activated. Navigate to File �! Open and select
the user-guide-data.hdf file. To improve the visualization of our data, under the "Layers" side tab change "Method" to
pointsprites, "Colour" to z, "Alpha" to 0.2, and "Point size" to 10. Your PYMEVisualize window should look identical to Figure
S3 now.

Create initial isosurface
You can learn about PYMEVisualize isosurfaces and how to make them here. Once you’re familiar with how to create an
isosurface, use the parameters shown in Figure S4 to create an isosurface based on the user-guide-data.hdf points. Once
finished, you should see a 3D surface rendered with your points. Change "Method" to wireframe to more easily visualize how
well the isosurface adheres to the point cloud. It should look something like Figure S5. At this point, it is a good idea to assess
the overall accuracy of this initial isosurface. You can alter the parameters for the isosurface in the Data Pipeline tab on the left
under DualMarchingCubes. It is typical to test several parameters before settling on the best options with "N points min" and
"Threshold density" being the two major parameters requiring tweaking. It should be noted that this data set is a small cropped
region of interest (ROI) from a much larger data set. It is highly recommended that you test parameters for the initial isosurface
(and the eventual shrink-wrapped surface) on a smaller ROI that has enough points to test the structure you’re trying to create a
surface from, but no more than that (about 20,000 points is ideal). The time required to create the surfaces scales roughly with
the number of localizations, so testing parameters on large data sets is impractical. Once you establish which parameters are best
with your smaller ROI, you can apply the same ones to the full data set. Learn how to create an ROI in PYMEVisualize here.

Create shrink-wrapped surface
Now that we have our initial isosurface, we can use it to create a shrink-wrapped surface. You will find this option under Mesh
�! Shrinkwrap membrane surface. Once selected, a new window will pop up for you to select the parameters you’d like to
use. Refer to Table S2 for descriptions of what each parameter is and what typical values are for it. For this tutorial, use the
parameters shown in S6. This process can take a minute or so. Check the Anaconda prompt for output to confirm it is running.
Once finished, your shrink-wrapped surface should look similar to S7.

Additional tips for shrink wrapping surfaces
The following are tips for situations that did not come up in the tutorial, but occur frequently enough to warrant mentioning:

• An error that can occur when attempting to shrink wrap is the "singular matrix" error. This simply means that the
operation reached a point that was mathematically impossible to calculate. It is most often caused by several surfaces
being present after creating an isosurface, especially small surfaces that are often capturing background localizations.
Most of the time, this can be fixed be removing all but the largest surface present. To do so, enter the following line the
the Shell tab in PYMEVisualize: pipeline.dataSources[’surf0’].keep_largest_connected_component().

NOTE surf0 should be the name of your isosurface. By default it is surf0, but can be a di�erent name for various
reasons.

NOTE This solution clearly isn’t always reasonable to use. For data from an ER protein, it is reasonable since the ER is
continuous. However, data from a mitochondrial protein is not so reasonable since mitochondria are discontinuous.

https://python-microscopy.org/doc/Installation/Installation.html
https://python-microscopy.org/doc/PYMEVis.html
https://github.com/python-microscopy/ch-shrinkwrap
https://python-microscopy.org/doc/pymevis/surface_extraction.html#isosurfaces
https://python-microscopy.org/doc/pymevis/data_exploration.html#roi-selection-the-output-filter

Extracting nanoscale morphology from localizations

Figure S3: Data from user-guide-data.hdf displayed as 10 nm point sprites with 0.2 alpha. The points are colored by their
location in the z-direction according to the lookup table on the right.

Figure S4: Ideal parameters to use to create an isosurface based on user-guide-data.hdf.

Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

Figure S5: The isosurface generated using the parameters in S4. The isosurface is displayed using the wireframe method to
make it easy to assess how well it fits the point cloud.

Extracting nanoscale morphology from localizations

Figure S6: Ideal parameters to create a shrink-wrapped surface based on user-guide-data.hdf.

Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

Figure S7: The shrink-wrapped surface generated using the parameters in S6.

Extracting nanoscale morphology from localizations

Parameter Description Standard values
input The data source containing the coarse isosurface. surf0

Points The data source containing the points to fit. filter_localizations

Max iters Maximum number of fitting iterations. 10 - 100

Curvature weight
The contribution of curvature (vs. point attraction force)
to the fitting procedure. Higher values create smoother
surfaces.

10 - 100

Remesh frequency
Remesh the isourface every N iterations. Helps keep the
fitting numerically stable. Should be often.

5

Neck first iter
Every neck first iter iterations, check for and remove
necks in the mesh.

9 (0 to not use necking)

neck_threshold_low
Vertices with Gaussian curvature below this threshold
are necks.

-1.00E+03

neck_threshold_high
Vertices with Gaussian curvature above this threshold
are necks.

1.00E+02

Punch frequency

Every punch frequency iterations, check for and add
holes in regions of the mesh where there is a
continuous empty area in between two "sides" of
the mesh.

0

Kc
Lipid sti�ness coe�cient of membrane in eV (can be
looked up in the literature).

0 - 1 (20k_bT)

Minimum edge length

Small length that the edges joining surface vertices
can be. Smaller means the surface is more finely
sampled. Setting it to 10 is usually su�cient. Setting
it to -1 removes any limit.

10

Smooth curvature
Replace the fit curvature of a vertex with the average
curvature of it and its neighbors

True

Truncate at
Stop after this many iterations no matter what. Useful
for visualizing the behavior of a shrink wrap over time

1000

sigma_x
The variable in the points data source containing localization
precision in the x-direction. If sigma is only known for one
direction, supply it here and it will be assumed for all directions.

sigma_y
The variable in the points data source containing localization
precision in the y-direction.

sigma_z
The variable in the points data source containing localization
precision in the z-direction.

output The name of the data source that will contain the fit isosurface. membrane0

Table S2: Descriptions and standard values for all parameters used in the shrink-wrapping algorithm.

Z. Marin, L.A. Fuentes, J. Bewersdorf and D. Baddeley

In the latter case, try to change the initial isosurface parameters, especially N points min and Threshold density, to
resolve the error when shrink wrapping.

• If attempting to create several separate shrink-wrapped surfaces from multi-color data, make sure you are shrink wrapping
to only the points belonging to the desired channel. By default, the algorithm uses filtered_localizations which
includes all points in the data. To learn how to extract color channels from multi-color data in PYMEVisualize, please
read the relevant documentation here.

https://python-microscopy.org/doc/pymevis/appendix.html?highlight=extracttablechannel#isolating-a-single-channel-for-processing

