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Trial history biases and lapses are two of the most common suboptimalities observed6

during perceptual decision-making. These suboptimalities are routinely assumed to7

arise from distinct processes. However, several hints in the literature suggest that8

they covary in their prevalence and that their proposed neural substrates overlap –9

what could underlie these links? Here we demonstrate that history biases and appar-10

ent lapses can both arise from a common cognitive process that is normative under11

misbeliefs about non-stationarity in the world. This corresponds to an accumulation-12

to-bound model with history-dependent updates to the initial state of the accumulator.13

We test our model’s predictions about the relative prevalence of history biases and14

lapses, and show that they are robustly borne out in two distinct rat decision-making15

datasets, including data from a novel reaction time task. Our model improves the abil-16

ity to precisely predict decision-making dynamics within and across trials, by positing17

a process through which agents can generate quasi-stochastic choices.18

Introduction19

It has long been known that experienced perceptual decision makers deviate from the predictions of20

optimal decision-theory, displaying several suboptimalities in their decision-making. Among the21

most pervasive of these is the dependence of behavior on the recent history of observed stimuli,22

performed actions, or experienced outcomes, despite it being disadvantageous and leading to worse23

performance (Cho et al. 2002; Gold, Law, et al. 2008; Busse et al. 2011; Carandini and Churchland24

2013; Zhang et al. 2014; Fründ et al. 2014; Scott et al. 2015; Abrahamyan et al. 2016; Odoemene et25

al. 2018; Akrami et al. 2018; Pinto et al. 2018; Urai et al. 2019; Hermoso-Mendizabal et al. 2020;26

Mendonça et al. 2020; Lak et al. 2020; Mochol et al. 2021; Roy et al. 2021; The International Brain27

Laboratory et al. 2021; schematized in Fig 1A top). History biases may arise due to a strategy that28

is optimized for naturalistic settings, where continual learning of priors, action-values, or other29

decision variables helps agents adapt to changing environments, but is maladaptive in experimental30

settings where the statistics of the environment are stationary (Yu and Cohen, 2009; Molano-31

Mazon et al., 2021). To date, decision-theoretic models have accommodated history biases by32
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modeling them as a biasing factor on the perceptual evidence that drives choices (Nevin, 1969;33

Ratcliff and Rouder, 1998; Bogacz et al., 2006; Busse et al., 2011; Goldfarb et al., 2012; Gardner,34

2019; Urai et al., 2019; Hermoso-Mendizabal et al., 2020). In the predominant conceptualization35

of these models, history biases can be overcome with sufficient perceptual evidence.36

A second widely-recognized but less studied suboptimality is the tendency to “lapse”, or37

make (asymptotic) errors that are immune to strong evidence (Wichmann and Hill 2001; Law38

and Gold 2009; Busse et al. 2011; Gold and Ding 2013; Brunton et al. 2013; Carandini and39

Churchland 2013; Wang et al. 2018; Pinto et al. 2018; Pisupati et al. 2021; Shushruth and Shadlen40

2021; schematized in Fig 1A bottom). Because lapses appear to be evidence-independent, they are41

assumed to arise from nuisance mechanisms that are separate from the perceptual decision-making42

process and are often imputed to ad-hoc noise sources such as inattention, motor errors etc.43

However, several recent results suggest that these two suboptimalities may be linked in their44

origin. In primates, learning reduces dependence on recent trial history (Gold, Law, et al., 2008)45

as well as lapse probabilities (Law and Gold, 2009). Intriguingly, mice trained on a visual detec-46

tion task showed higher levels of history dependence on sessions with higher lapse probabilities47

(Busse et al., 2011). Moreover, lapses occur in runs (i.e. display Markov dependencies), rather48

than occurring with the traditionally assumed independent probabilities across trials (Ashwood et49

al., 2022). Furthermore, lapses have been proposed to reflect forms of exploration (Pisupati et al.,50

2021) that are sensitive to trial-by-trial updates of variables such as action value. Likewise, neural51

perturbations of secondary motor cortex and striatum in rodents have been shown to substantially52

impact both lapses (Erlich, Bialek, et al., 2011; Erlich, Brunton, et al., 2015; Yartsev et al., 2018;53

Guo et al., 2019; Pisupati et al., 2021; Sindreu et al., 2021) and trial-history influences on deci-54

sions (Siniscalchi et al., 2019; Sindreu et al., 2021). Together, these observations challenge the55

assumption that history biases and lapses have independent causes and raises the possibility that56

some of the variance ascribed to lapses emerges from history dependence.57

We explore the idea that history biases reflect a misbelief about non-stationarity in the world,58

and demonstrate that normative decision-making under such beliefs gives rise to choices that are59

both history-dependent and appear to be evidence-independent (i.e. akin to lapses). This corre-60

sponds to an accumulation to bound process with a history dependent initial state. We fit this model61

to a large dataset of choices made by 152 rats trained on an auditory decision-making task. Despite62

heterogeneity in history biases and lapse rates in this population, we show that the a substantial63
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fraction of lapses can be explained by the presence of history dependence during evidence accu-64

mulation. Further, our model predicts the time it takes to make decisions. We test these predictions65

in a novel task in rats with reaction time reports, and show that it captures patterns of choices, reac-66

tion times, and their history dependence. This model significantly improves our ability to predict67

the temporal dynamics of decision variables within and across trials in perceptual decision making68

tasks, rendering choices that were previously thought to be stochastic, predictable.69

Results70

A common mechanism produces history biases and apparent lapses It is often assumed that71

well trained subjects in two-alternative forced choice (2AFC) tasks have faithfully learnt the like-72

lihood function and priors that determine the structure of the task (Bogacz et al., 2006; Gold and73

Shadlen, 2007). Under this assumption, the optimal decision making strategy entails combining74

any knowledge about prior prevalence of available options with the stream of incoming evidence75

until a desired threshold of confidence is reached in favor of one of the options 1 (Gold and Shadlen,76

2007; Dayan and Daw, 2008; Drugowitsch, Moreno-Bote, et al., 2012); Fig 1B top). This strategy77

converges to a drift diffusion model (DDM) when evidence is sampled continuously (Bogacz et al.,78

2006). In a DDM, one’s belief about the correct option maps onto a diffusing particle that drifts79

between two boundaries, where the first boundary the particle crosses determines the decision (Fig80

1B). Correspondingly, the initial state of this particle encodes the prior belief, and the drift rate is81

set by the likelihood of incoming evidence (Fig 1B). We refer to the evolving state of the particle82

in this model as ‘accumulated evidence’.83

However, in general, subjects may not know that the task structure is stationary, and might84

incorrectly assume that it is constantly changing (Yu and Cohen, 2009). In this case, even ex-85

perienced subjects would not converge to a static estimate of prior probabilities and likelihood86

functions, but would instead continually update them from trial to trial. Here we consider choice87

behavior that results from non-stationary beliefs about priors, which result in trial-to-trial updates88

to the initial accumulator states2.89

1In tasks where the reliability of incoming evidence (controlled by stimulus strength) varies from one trial to the
next, it has been shown that ideal observers should have time-varying bounds on the posterior (Drugowitsch, Moreno-
Bote, et al. 2012. However under certain circumstances, stationary bounds over the summed stimulus have been shown
to implement close-to-optimal collapsing bounds on the posterior, which is the regime we assume here for simplicity.

2For a treatment of non-stationary likelihood functions which yield variability in drift rate, see (Drugowitsch,
Mendonça, et al., 2019; Mendonça et al., 2020)
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Figure 1: Trial history-dependent initial states give rise to apparent lapses (A) Schematic of two com-
monly observed suboptimalities in decision-making: history biases (top) and lapses (bottom). (Left): Rat
performing a perceptual decision making task, where it has to make one of two decisions (left, right) based
on accumulated sensory evidence (auditory clicks on either side). Caption continued on next page.
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Figure 1: (Previous page.) (Top left): History biases i.e. a tendency for the decision on the current trial
(n) to be inappropriately influenced by what happened on the previous trial (n-1) in addition to the accumu-
lated sensory evidence. In this example, a previously rewarding leftward decision is likely to be repeated.
(Top right): Typically assumed effect of history bias on the psychometric curve, which is the proportion of
rightward decisions as a function of the stimulus strength. History biases are thought to most strongly affect
decisions when the sensory evidence is weak i.e. around the inflection point of the curve (threshold param-
eter), shifting it horizontally. (Bottom left): Lapses i.e. a tendency to make seemingly random choices on
some trials, irrespective of the accumulated sensory evidence. (Bottom right): Typically assumed effect of
lapses on the psychometric curve is vertically scaling the endpoints or asymptotes of the curve. (B) Standard
normative model of within-trial processing during evidence accumulation. (Top) Decision rule that produces
the most accurate decisions in the shortest amount of time, in which a decision is made when the summed
log-ratios of category priors and likelihoods exceeds one of two decision bounds. This corresponds to a
drift-diffusion process where the prior term sets the initial state (I) and the rate of accumulating evidence
sets the drift rate (µ). (Bottom left): Schematic of the generative model, where one of two hypotheses (H1,
H2) produce noisy samples of evidence over time (ϵt). (Bottom right): Schematic of the aforementioned
drift-diffusion process, showing a sample trajectory based on noisy evidence (bold line) that leads to a right-
ward decision when the positive bound is hit. Thin lines depict alternate trajectories based on different noisy
instantiations of the same drift rate (black arrow). (C) Model of across trial processing that can accommo-
date several forms of prior updates. Past choices and outcomes can additively affect the initial state with
different magnitudes (η) and exponentially decaying timescales (β) depending on whether they were wins
(top left) or losses (top right). (Bottom): Example sequence of trials, labelled by whether they follow a
previous win (triangles) or previous loss (circles) on right (R) or left (L) choices, showing the cumulative
effect of trial history on initial state updates. Colors denote different initial state biases, same as (C). (D)
Effect of initial state values on psychometric functions. Colors denote different initial state levels, towards
the positive (blue) or negative (pink) decision bounds. Small deviations from 0 in the initial state (grey) lead
to largely additive, horizontal biases in the psychometric curve whereas larger deviations (saturated colors)
have more complex effects, additionally reducing its effective slope (dotted black lines) or “sensitivity” to
the stimulus. (E) Pooling different initial state biases gives rise to apparent lapses. Psychometric function
(black) pooled across trials with different initial state biases (due to history-based updating) has apparent
lapses (purple arrow), moreover conditioning the psychometric curve on whether the previous trial was a
rightward (blue) or leftward (pink) win reveals a modulation of these apparent lapses by trial history.

We assume that the initial state of the accumulator (I) is set based on the exponentially90

filtered history of choices and outcomes on past trials. Each unique choice-outcome pair (denoted91

by h; Fig 1C) is tracked by its own exponential filter (ih). On each trial n, each filter ih decays by92

a factor of βh and is incremented by a factor of ηh depending on the choice-outcome pair on the93

previous trial:94

ih(n) = βhih(n− 1) + ηh1h(on−1) where h = {Rw,Lw,Rl, Ll} (1)

{Rw,Lw,Rl, Ll} represent the possible choice-outcome pairs: right-win, left-win, right-loss, and95

left-loss respectively. on−1 is the choice-outcome pair observed on trial (n− 1) and 1h(on−1) is an96
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indicator function that is 1 when on−1 = h and is 0 otherwise. The initial state of accumulation, I97

on trial n is given by the sum of these individual exponential filters:98

I(n) = iRw(n) + iLw(n) + iRl(n) + iLl(n) (2)

Such a filter can approximate optimal updating strategies under a variety of non-stationary beliefs.99

As an example, we show that this exponential filter can successfully approximate initial state up-100

dates during Bayesian learning of priors under the belief that the prior probabilities of the two101

hypotheses can undergo unsignaled jumps (Supp Fig. 1; Yu and Cohen 2009; Zhang et al. 2014).102

Nevertheless, we use this more flexible parameterization to allow for asymmetric learning from103

different choices and outcomes, which could be beneficial under generative models where one be-104

lieves that one category persists for longer than another (requiring different decay rates), or correct105

and incorrect outcomes are not equally informative (requiring different update magnitudes). For106

instance, in a prior-tracking experiment where previous correct choices had a cumulative effect,107

but errors had a resetting effect (Hermoso-Mendizabal et al., 2020), this could be captured in the108

exponential filter by faster decay rates for errors.109

What are the consequences of such trial-by-trial updating of initial accumulator states for
choice behavior? In a DDM, for a given initial state I and drift rate µ, the probability of choosing
the option corresponding to bound B+ is given by:

P (B+) =
1− e−2µ(B+I)/σ2

1− e−4µB/σ2 (3)

where B is the magnitude of the bound and σ2 is the squared diffusion coefficient (derived from110

Palmer et al. 2005). The resultant psychometric curves for different values of initial accumulator111

states are plotted in Fig 1D. This expression reduces to a logistic function of µB/σ2 only when112

I = 0. Small deviations in the initial state largely manifest as additive biases to the evidence,113

shifting psychometric curves horizontally towards the option favored by the initial state. This114

corresponds to a change in the psychometric “threshold”, i.e. the x-axis value at its inflection point115

(Fig 1D lighter colors). Interestingly, large deviations in the initial state produce qualitatively116

different effects on choices (Fig 1D darker colors). They not only bias the choices towards the117

option consistent with the initial state but additionally reduce the effective “sensitivity” to evidence.118

This can be seen as reduction in slope at the inflection point of the psychometric curve (Fig 1D119

dashed lines). Therefore, trial to trial deviations in the initial state produce history-biased choices120

which have differently diminished dependence on the evidence.121
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The average choice behavior obtained by pooling choices with different history-biased ini-122

tial states is a mixture of psychometric curves with varying thresholds and sensitivity to perceptual123

evidence. Such a psychometric curve is heavy-tailed (Shen and Ma, 2019; Nguyen, Josić, et al.,124

2019) and appears to have asymptotic errors or “lapse rates” (Fig 1E, black curve). These asymp-125

totic errors are not truly evidence-independent, random decisions or true lapses, rather they are126

“apparent lapses” arising from evidence accumulation with deterministic history-based updates to127

the initial accumulator state. In such a setting, the psychometric curves obtained by conditioning on128

past trials’ choice and outcome, or history conditioned psychometric curves, are both horizontally129

and vertically shifted, i.e. they show history-dependent modulations in both threshold and lapse130

rate parameters (Fig 1E, Supp Fig. 2B). In this formulation, trial-history modulated lapse rates131

are uniquely produced by history-biased initial accumulator states (and therefore reflect apparent132

lapses), in contrast to lapse rates observed in the unconditioned psychometric curve which might133

have additional extraneous causes (Wichmann and Hill, 2001; Ashwood et al., 2022; Pisupati et134

al., 2021), and therefore reflect both apparent and true lapses.135

In this model, because history modulations of psychometric thresholds and lapse rates arise136

from one unified process, they are not allowed to vary independently of the decision-making pro-137

cess, or of each other. Rather their relative magnitudes are intimately coupled with and constrained138

by accumulation variables. For instance, increased magnitudes or timescales of initial state updat-139

ing produce large fluctuations in the initial accumulator state across trials. This in turn reduces the140

effective sensitivity of the accumulation process to evidence, giving rise to more apparent lapses141

and history biases (Supp Fig. 2A). Similarly, changes in within-trial parameters of accumulation142

can dramatically influence these history modulations (Supp Fig. 2C). Decisions made with smaller143

accumulator bounds are more sensitive to initial state modulations, and therefore give rise to more144

apparent lapses and higher modulations of lapse rates and thresholds. Higher levels of sensory145

noise have a similar effect, yielding more apparent lapses, consistent with recent reports of lapse146

rates being modulated by sensory uncertainty (Pisupati et al., 2021). Finally, impulsive integration147

strategies that overweigh early evidence rather than accumulating uniformly (Bogacz et al., 2006)148

exaggerate the influence of initial states, producing more apparent lapses and history biases.149

Some definitions:150

• Lapse rate: Lapse rates capture the difference between perfect performance and151

observed performance at the asymptotes, measured through sigmoidal fits to the152
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psychometric curves.153

• True lapse: A true lapse is an independent cognitive process through which154

agents generate stochastic evidence-independent choices.155

• Apparent lapses: Apparent lapses are deterministic evidence-dependent choices,156

that nonetheless contribute to lapse rates.157

Rats display varying degrees of history-dependent threshold and lapse rate modulation We158

sought to test if the co-modulations posited by our model are present in rat decision-making159

datasets, in order to ascertain whether a unified explanation could underlie the links between his-160

tory biases and lapses.161

We first examined whether and how rat decision-making strategies were affected by trial162

history. We analyzed choice data from 152 rats (37522 ± 22090 trials per rat, mean ± SD; Supp163

Fig.3A) trained on a previously developed task that requires accumulation of pulsatile auditory164

evidence over time (‘Poisson Clicks’ task, Brunton et al. 2013). In this task, the subject is presented165

with two simultaneous streams of randomly-timed discrete pulses of evidence, one from a speaker166

to their left and the other to their right (Fig 2A). The subject must maintain fixation throughout167

the stimulus, and subsequently orient towards the side which played the greater number of clicks168

to receive a water reward. The trial difficulty, stimulus duration, and correct answer were set169

independently on each trial. Because this task delivers sensory evidence through randomly but170

precisely timed pulses, it provides high statistical power to characterize decision variables that171

give rise to the choice behavior.172

Rats performed this task accurately (0.79 ± 0.04, mean accuracy ± SD, Supp Fig.3B). Per-173

formance was stable with little to no change in accuracy across trials (mean slope ± SD across rats174

of linear fit to hit rate over trials: 1.13×10−7± 8.90×10−7; Supp Fig.3C) reflecting asymptotic175

behavior rather than task acquisition. Rats showed history dependence in their choices, largely176

tending towards a “win-stay, lose-switch” dependence (Supp Fig.3E). We found substantial indi-177

vidual variability in the dependence of rats’ choices on history in the dataset. Some rats were178

weakly influenced by history (Fig 2B left) while others showed a history-dependent modulation of179

the psychometric threshold parameter (Fig 2B middle) or a history-dependent modulation of both180

threshold and lapse rate parameters (Fig 2B right). The population as a whole most closely resem-181

bles the Example rat 3, with both threshold and lapse rate parameters being significantly different182

following left and right wins while sensitivity is not affected (p = 0.8 for sensitivity, 3 × 10−17
183
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Figure 2: History-dependent threshold and lapse rate modulations in a large-scale rat dataset (A)
Schematic of evidence accumulation task in rats: (Top): Phases of the ‘Poisson clicks’ task, including
trial initiation in center port (left), evidence accumulation based on two streams of Poisson-distributed au-
ditory clicks (middle) and choice report in one of two side ports followed by water reward for correct
choices (right). (Bottom): Time-course of trial events in a typical trial. (B) Individual differences in history-
dependence: Psychometric functions of three example rats from a large-scale dataset, displaying different
kinds of history modulation. Choices are plotted conditioned on previous left (blue), right (pink) or all
wins (black). (Left): Example rat with no history-dependence in choices, resembling the ideal observer.
(Middle): Example rat with modulations of the threshold parameter alone, resembling the dominant con-
ceptualization of history bias. (Right): Example rat with history-dependent modulation of both threshold
and lapse rate parameter, similar to the majority of the population. (C) Dataset displays significant modu-
lations of both threshold and lapse rate parameters: Scatters showing parameters of psychometric functions
following leftward wins (post left, blue) or rightward wins (post right, pink). Each pair of connected gray
points represents an individual animal, solid colored dots represent average parameter values across ani-
mals. Trial history does not significantly affect the sensitivity parameter (top left) but significantly affects
left, right lapse rate and threshold parameters (top right and bottom panels). (D) Scatter comparing thresh-
old and lapse rate modulations in the entire population. Each dot is an individual animal, error bars are
±95% bootstrap CIs. Black points represent example rats. The majority of the population lies in the top left
quadrant, showing co-modulations of both threshold and lapse rate parameters by history.

for bias, 8 × 10−8 for left lapse, 6 × 10−7 for right lapse, Mann-Whitney U-test, Fig 2C). As pre-184

dicted by our model (Fig 1E), trial-history biased both threshold and lapse rate parameters in the185
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same direction (e.g. both biased toward rightward choices following right rewards). Moreover,186

the vast majority of rats show co-modulations of both parameters by history (Pearson’s correlation187

coefficient: r = −0.35, p = 7.28 × 10−6; Fig 2D). Across rats, on average 17 ± 12% of total lapse188

rates are modulated by trial history and therefore could potentially reflect apparent rather than true189

lapses (Supp Fig.3D). These findings support the conclusion that rat decision-making strategies,190

while idiosyncratic, largely show history-dependent effects consistent with our model. Next, we191

tested the model more directly using trial-by-trial model fitting.192
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Figure 3: History-dependent initial states capture comodulations in thresholds and lapse rates in the
data (A) Schematic of the model (accumulator with HISt) used to fit rat data in the Poisson Clicks task.
(Top): Schematic of accumulation-to-bound model whose initial states are modulated by trial history pro-
ducing history-dependent apparent lapses and threshold modulations. The model consists of sensory noise
(σ2

s ) in click magnitudes, adaptation of successive click magnitudes based on an adaptation scale (ϕ) and
timescale (τϕ), accumulator noise (σ2

a) added at each timestep, leak in the accumulator (λ), and decision
bounds +/-B. We refer to this accumulator model with History-dependent Initial States as ‘HISt’ (Bottom):
On κ fraction of trials, the model occasionally chooses a random action irrespective of the initial state and
stimulus, with some bias (ρ) reflecting a motor errors or random exploration. These true lapses are not
modulated by history, such that any history modulations arise from the initial states alone. (B) Model fits
to individual rats: Psychometric data from 3 example rats conditioned on previous rightward (blue) or left-
ward (wins), overlaid on model-predicted psychometric curves (solid line) from the accumulation with HISt
model. The three example rats were chosen to illustrate the diversity of history effects in the dataset, ranging
from no history effects (left) - to history effects that largely created horizontal biases (center) and history
effects that additionally affected lapse rates (right). Caption continued on next page.
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Figure 3: (Previous page.) (C): Psychometric curves (solid line) from the same example rats conditioned on
model-inferred initial states (colors from pink to blue), showing a similar pattern to analytical predictions in
Fig 1D. (D) Distribution of best fitting models for individual rats: Overall bar height for each model denotes
the total number of rats for which that model scored the lowest BIC score. (E) Model comparison using
BIC by pooling per trial BIC score across rats and computing mean. Lower scores indicate better fits. Mean
of per trial BIC scores across rats were significantly lower for model with HISt (p = 9.85 × 10−18, paired
t-test). Error bars are SEM. (F) Individual variations in history modulations captured by the accumulator
model with HISt: History modulations of threshold parameters measured from psychometric fits to the raw
data (x-axis) v.s. model predictions (y-axis). Individual points represent individual rats, point sizes indicate
number of trials. The model captures a majority of the variability as evidenced by the points lying close
to the unity line. (G) same as (F) but for history dependent lapse rate modulations. The model captures a
majority of the variability in lapse rate modulations, implying that the magnitude of threshold and lapse rate
modulations are coupled as predicted by our model, and that history-dependent initial accumulator states
contribute to apparent lapses in this dataset.

History-dependent initial states capture comodulations in thresholds and lapse rates in the193

data To test whether the observed history modulations in thresholds and lapse rates arise from194

trial-by-trial updates to the initial accumulator state, we extended an accumulator model previ-195

ously adapted to this pulsatile task (Brunton et al., 2013) to incorporate History-dependent Initial196

States (abbreviated as HISt, Fig 3A). As before, we model this history-dependence using an expo-197

nential filter over past trials’ choices and outcomes (Fig 1C). Hence, across trials the accumulator198

model with HISt produces apparent lapses, as well as coupled history modulations in psychometric199

threshold and lapse rate parameters.200

Within a trial, our accumulator model leverages knowledge of the timing of each evidence201

pulse to model the sensory adaptation process as well as to estimate the noise and drift of the202

accumulator variable (Fig 3A top bubble, Methods). The model includes a feedback parameter203

that controls whether integration is leaky, perfect, or impulsive. Following Brunton et al. 2013,204

this model also includes (biased) random choices independent of the accumulator value on a small205

fraction of trials (κ) - we consider decisions arising from this process to be “true lapses” because206

they are evidence independent, unlike apparent lapses which still retain some evidence-dependence207

(Fig 3A bottom bubble).208

We performed trial-by-trial fitting of the accumulator model with and without History- de-209

pendent Initial States (HISt) to choices from each rat using maximum likelihood estimation (Meth-210

ods). We find that the accumulator model with HISt captures both psychometric curve threshold211

and lapse rate modulations well across different regimes of rat behavior, as evident from fits to212
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example rats (Fig 3B). Moreover, conditioning rats’ psychometric curves on model-inferred initial213

state values reveals that the initial state captures a large amount of variance in choice probabil-214

ities (Fig 3C), resembling theoretical predictions (Fig 1C). This shows that the initial state is a215

key explanatory variable underlying choice variability both across and within individuals, that216

jointly modulates multiple features of the empirical psychometric curves in a parametric fashion.217

We used Bayes Information Criterion (BIC) to determine whether adding HISt to the accumula-218

tor model was warranted (Fig 3D-E). Individual BIC scores recommended that adding HISt was219

warranted in 147/152 rats (Fig 3D). This model also best captured choices across the population220

as a whole, with significantly lower mean BIC scores across rats (Mean per trial BIC score for221

HISt: 0.91 ± 0.01 vs no HISt: 0.93 ± 0.01, p = 9.85 × 10−18, paired t-test; Fig 3E). Next, we222

compared the psychometric threshold and lapse rate modulations produced by this model to the223

modulations in the data, as determined by conditioning the psychometric functions on trial-history224

(Fig 3B). As predicted, the model successfully accounted for modulations in both these distinct225

psychometric features via the singular process of trial-by-trial history-dependent updates to the226

initial accumulator state. Across individuals, the model with HISt captured a substantial amount227

of variance [R2 = 0.72 (threshold parameter), R2 = 0.69 (lapse rate parameter)] and showed good228

correspondence to the empirical modulations in data [slope= 1.02 (threshold parameter), slope229

= 0.70 (lapse rate parameter)].230

In our model, apparent lapses show history modulations since they are produced by history-231

dependent initial accumulator states, while true lapses do not since they result from an occasional232

flip in the final choice and are independent of the accumulator value (following Brunton et al.,233

2013). Such kinds of true lapses could reflect errors in motor execution or random exploratory234

choices made despite successful accumulation (Supp Fig 4B). However true lapses could also occur235

due to inattention, i.e. an occasional failure to attend to the stimulus. In such cases, the optimal236

strategy devoid of sensory evidence is to deterministically choose the side favored by the initial237

accumulator state (Supp Fig 4C). Therefore, inattentional true lapses, while remaining evidence238

independent, may nevertheless be modulated by history due to their initial state dependence. In239

order to account for this possibility, we fit an additional “inattentional” variant of the accumulator240

model with HISt (Supp Fig 4A,C), and found that it was closely matched on BIC scores with241

the previous model which we label as the “motor error” variant (Supp Fig 4E,F). Moreover, the242

inattentional variant, which additionally allows true lapses to depend on history, only captured243

slightly more variance in history modulations of lapse rates, at the expense of history modulations244

of thresholds (Supp Fig 4D). These minor improvements support the hypothesis that apparent245
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lapses produced by history-dependent initial states (rather than true lapses due to motor error or246

inattention) are the major driver of history-dependent co-modulations in psychometric thresholds247

and lapse rates in the dataset.248

To summarize, our model predicted that the initial accumulator state should be the under-249

lying variable that jointly drives history-dependence in thresholds and lapse rates – implying that250

our accumulator model with HISt should be able to simultaneously capture variability in both251

these parameters across rats. Our rat dataset strongly supports this prediction, lending evidence to252

the hypothesis that history-dependent initial states give rise to apparent lapses, and are the com-253

mon cognitive process that underlie links between these two suboptimalities that were previously254

thought to be distinct from each other.255

Reaction times support history-dependent initial state updating In our model with history-256

dependent initial accumulator states, the time it takes for the accumulation variable to hit the bound257

determines the duration that the subject deliberates for, before committing to a choice. Therefore258

in addition to choices the model makes clear predictions about subjects’ reaction times (RTs). We259

sought to test if these predictions are borne out in subject RTs.260

To this end, we trained rats (n = 6) on a new variant of the auditory evidence accumulation261

task (Fig 2A), with two key modifications that allowed us to collect reaction time reports (Fig 4A).262

First, in this new task the stimulus is played as long as the rat maintains their nose in the center263

port (or “fixates”) and stops immediately when this fixation is broken. Second, in this task the264

rat has to correctly report which speaker’s auditory click train is sampled from a higher Poisson265

rate to receive a water reward (unlike the non-reaction time task where subject has to report the266

side which played the greater number of clicks). Rats perform this task with high accuracy (Fig267

4B left panel, average accuracy: 0.75 ± 0.02, number of trials 37205 ± 14247, mean ± SD).268

Similar to the previously analyzed data, their choices are impacted by recent trial history (Fig 4B269

right panel). Moreover, trial-history dependent modulation of psychometric function parameters270

(Fig 4C) resembles that of the non-reaction time task (Fig 2C; p = 0.69 for sensitivity, 0.004 for271

threshold, 0.02 for left lapse rate, 0.02 for right lapse rate, Mann-Whitney U-test). Once again,272

this history modulation of both psychometric threshold and lapse rate parameters in tandem is273

consistent with our singular accumulator model with history-dependent initial states.274

Moreover, reaction times (RTs) of these rats display several signatures predicted by our275
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model (Fig 4D-F). First, trial-to-trial variability in the initial state of the accumulator is expected to276

give rise to shorter RTs on error trials compared to correct trials (Fig 4E, left; Ratcliff and Rouder277

1998). This is because trials in which the initial state is closer to the incorrect bound are more278

likely to be errors, but because of the closer bound they are also likely to hit it faster. This is unlike279

a standard DDM with no trial-to-trial variability in parameters, where RTs for correct and error280

trials are of similar magnitudes (Fig 4D, left). Indeed in the rat dataset, error RTs are consistently281

shorter than correct RTs across rats (Fig 4F, left). Second, initial state updates towards previously282

rewarded choices (such as in a win-stay agent) are expected to produce shorter RTs when the cur-283

rent stimulus favors the previously rewarded choice (Fig 4E, middle; Yu and Cohen 2009; Goldfarb284

et al. 2012). We find that this signature is also present in the dataset across rats (Fig 4F, middle).285

Finally, variability in the initial state is most influential early in the decision process, predicting286

that the majority of history dependence in choices occurs on trials with fast RTs (Fig 4E, right;287

Urai et al. 2019). Indeed, the data displays this pattern as well, with repetition bias being most288

prominent for short RTs, disappearing and turning into a weak alternation bias for long RTs (Fig289

4F, right). Taken together, these three signatures offer strong, complementary evidence from RTs290

for the prevalence of history-dependent initial states in rats performing this evidence accumulation291

task.292

We directly test if our model can simultaneously capture reaction time patterns and history-293

modulation of psychometric threshold and lapse parameters by jointly fitting choices and RTs294

of individual subjects in a trial-by-trial fashion (see Methods). We find that the history-dependent295

initial state model jointly captures patterns of choices, reaction times, and their history modulations296

in the data (Fig 4G - fits from example rat, Supp Fig. 5 - fits from all rats). This model accounts297

for substantial variance in history-dependent threshold and lapse rate modulations (Fig 4H). We298

also fit a hybrid variant of the accumulator model with HISt that flexibly allows true lapses to be299

motor-error like and unaffected by history, or inattention-like and additionally be modulated by300

history (Supp Fig. 6A,B). While this model has a better BIC and leads to a slight improvement in301

correspondence to the history modulation of psychometric lapse rates, it does so at the cost of302
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Figure 4: Model predictions about reaction times are borne out in data (A) Schematic of reaction time
task in rats, with similar structure to (Fig 2A), with two modifications: rats are allowed to break “fixation”
anytime during the trial and make a choice, and are rewarded for choosing the side with the higher Poisson
rate, encouraging longer sampling for more accurate estimates. Caption continued on next page.
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Figure 4: (Previous page.) (B) Average choice behavior on all trials (left) and following previous right or left
wins (right) of 6 rats on the reaction time task (solid line), overlaid on individual rat behavior (translucent
lines) (C) Average parameters (solid points) of history-conditioned psychometric curves, overlaid on indi-
vidual parameters (translucent points) showing significant history modulations in threshold and lapse rate
parameters (p < 0.05, Mann-Whitney U-test) (D-F) Reaction time signatures D) expected from accumula-
tor models with no history dependence in initial states, E) expected from accumulator models with history
dependent initial states and F) observed in data. First, error reaction times are expected to be shorter if
initial states are history dependent, as seen in data (Left column, red curves are below green curves in E,F).
Second, reaction times on trials following right wins are expected to be lower on rightward stimuli (positive
half of x-axis), and similarly following left wins (Middle column, blue (pink) curves on the right (left) are
lower than dotted lines in E,F). Finally, repetition biases in choices are expected to occur more frequently
for short reaction times, when the effect of initial states is strong (Right column, curves are above dotted
line for smaller RTs in E,F). (G) Joint fits of the accumulator model with history-dependent initial states to
choices (left) and reaction times (right) of an example rat show good correspondence to data. Data repre-
sented by points (circles: choices, squares: reaction times) and model fits represented by lines (choices) or
shaded bars (reaction times, thickness represents 95% bootstrap prediction intervals). Reaction times (right)
are split by wins (green) or errors (red). (H) Scatter plot showing correspondence between history modu-
lations in threshold (left) or lapse rate (right) parameters derived from data (x-axis) and model fits (y-axis).
Individual points represent individual rats.

correspondence to modulations in psychometric thresholds (Supp Fig. 6C-E), once again largely303

implicating HISt and its resultant apparent lapses (rather than true lapses) in the co-modulation of304

both parameters.305

Overall, these results show that the history-dependent initial state updates that we invoked to306

explain apparent lapses in rodent data are corroborated by their reaction times, and accounting for307

them can help render a sizable fraction of decisions — that would have been otherwise attributed308

to noise — more predictable both within and across trials.309

Discussion310

History biases and lapses have both long been known to impact perceptual decision-making across311

species. However, they have largely been assumed to be distinct from each other, despite their312

frequent co-occurrence and co-modulation. Here, we propose that normative accumulation under313

misbeliefs of non-stationarity can produce both history biases and apparent lapses, offering an ex-314

planatory link between the two suboptimalities. This corresponds to history-dependent trial-to-trial315

updates to the initial state of an evidence accumulator. We show that such updates produce choices316

with varying biases in psychometric thresholds as well as varying sensitivities to evidence, yield-317
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ing apparent, history-modulated lapse rates when choices are averaged across trials (Fig 1). Our318

model postulates that the initial state of the accumulator is a key underlying variable that jointly319

modulates psychometric thresholds and lapse rate parameters, with the exact nature of this comod-320

ulation determined by the within and across trial parameters governing evidence accumulation. We321

tested this model in a large rat dataset consisting of choices from 152 rats (Fig 2) and confirmed its322

predictions using detailed model-fitting. We found that the singular process of history-dependent323

initial states successfully captured a substantial amount of variance in history modulations of both324

thresholds and lapse rates in the dataset (Fig 3). Finally, we tested the reaction time predictions325

of the model in a novel task in rats, and confirmed that the data showed signatures of initial state326

updating. The model could successfully capture choices, reaction times, and history modulations327

in psychometric thresholds and lapse rates (Fig 4). Altogether, our results suggest that history bi-328

ases and a substantial amount of variance attributed to lapses may reflect a common mechanistic329

process, whose evolution can be precisely tracked both within and across trials.330

History biases in perceptual decision making tasks have been modeled using initial state up-331

dates to DDMs in humans and non-human primates (Gold, Law, et al., 2008; Goldfarb et al., 2012;332

Zhang et al., 2014). These studies tended to have relatively small magnitudes of history bias, and333

miniscule lapse rates, hence being well captured by small deviations in the initial state of a DDM,334

which largely yield horizontal shifts in the psychometric function. This regime of initial state335

updates is well approximated by a logistic function with additive biases, which is the dominant336

descriptive model used to characterize history-dependent psychometric curves (Busse et al., 2011;337

Carandini and Churchland, 2013; Fründ et al., 2014; Abrahamyan et al., 2016; Gardner, 2019;338

Pinto et al., 2018; Odoemene et al., 2018; Urai et al., 2019; Hermoso-Mendizabal et al., 2020;339

Roy et al., 2021; Ashwood et al., 2022; Bolkan et al., 2022). However, as we demonstrate, when340

deviations in the initial state are large, this logistic approximation breaks down. This fact has been341

overlooked in much of the literature. Consequently, even in datasets with large history biases and342

lapses, the logistic formulation continues to be favored (Odoemene et al., 2018; The International343

Brain Laboratory et al., 2021; Roy et al., 2021; Ashwood et al., 2022), albeit requiring additional344

components. Our demonstration predicts that the full range of initial state effects should resem-345

ble concurrent, trial-by-trial changes in both threshold and sensitivity parameters of the logistic346

function. Indeed, Ashwood et al. 2022 found that apparent lapses in several rodent datasets can be347

better captured by runs of trials with such concurrent modulations, yielding biased “disengaged”348

states.349
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In our treatment, we only considered history-dependent updates to the initial state of a DDM.350

Such a mechanism is normative under non-stationary beliefs about the prior 3, which is our fa-351

vored interpretation as it aligns with other studies of history biases (Gold, Law, et al., 2008; Yu352

and Cohen, 2009; Summerfield and Koechlin, 2010; Goldfarb et al., 2012; Mulder et al., 2012;353

Abrahamyan et al., 2016; Molano-Mazon et al., 2021). Nevertheless, these updates may also re-354

flect other heuristic strategies (Gigerenzer and Gaissmaier, 2011) which we accommodate using355

our flexible parameterization of initial state updates. Animals may entertain non-stationary be-356

liefs about other elements of the decision process, such as the rewards or likelihoods (Dayan and357

Daw, 2008; Mendonça et al., 2020; Lak et al., 2020; Pisupati et al., 2021). Normative updating358

in such situations still reduces to initial state updates in simple settings (for e.g. non-stationary359

rewards for a single difficulty; Simen et al. 2009; Rorie et al. 2010), but in more complex ones360

it additionally affects drift rates (Palmer et al., 2005; Eckhoff et al., 2008; Hanks, Mazurek, et361

al., 2011; Drugowitsch, Mendonça, et al., 2019; Fan et al., 2018; Urai et al., 2019; Mendonça362

et al., 2020). Trial-to-trial variability in drift rates is known to give rise to longer error RTs than363

correct RTs (Ditterich, 2006a; Ditterich, 2006b; Drugowitsch, Moreno-Bote, et al., 2012; Nguyen364

and Reinagel, 2020), which is a signature often reported in monkeys and humans (Roitman and365

Shadlen, 2002; Shevinsky and Reinagel, 2019). Although we don’t see this reaction time signature366

of drift rate variability in our dataset – instead we see signatures of initial state variability, with367

error RTs being shorter than correct RTs, rather than longer – drift rate updates may be another368

potential mechanism by which history-modulated apparent lapses could arise.369

Lapse rates are often considered to be a mixed bag comprising several different noise pro-370

cesses, yet most studies so far have focused on one or more of these component processes in371

isolation (Pisupati et al., 2021; Ashwood et al., 2022). In this work, we have attempted a more372

expansive approach of considering multiple processes at once, in an attempt to partition lapse rate373

variance into mixtures of deterministic and stochastic components. We distinguished apparent374

lapses that interact with sensory evidence from two models of “true” lapses that are both evidence375

independent — motor error or exploration, which does not interact with the accumulator, and inat-376

tention, which may still depend on its initial state. While we find that the behavior of our rats is377

best described by a mixture of apparent lapses and the latter two true lapse variants, it is primarily378

the apparent lapses (rather than either true lapse variant) that captures the links between the sub-379

optimalities i.e. the history-dependent comodulations in psychometric thresholds and lapse rates.380

3Note that this is the case if the agent assumes that a shift in the prior over stimulus categories maps onto an overall
shift in the prior over stimulus difficulties — see (Drugowitsch, Mendonça, et al., 2019) for a detailed treatment
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A previous study proposed an evidence-dependent model of true lapses, uncertainty-guided explo-381

ration (Pisupati et al., 2021), in order to account for the scaling of lapse rates with sensory noise.382

Although we don’t explicitly consider this model, our model of apparent lapses already displays383

this property, with higher levels of sensory noise leading to more frequent apparent lapses.384

Our model predicts that an increased reliance on history (i.e., larger shifts of the initial states)385

should produce more apparent lapses. Indeed, this could provide an explanation that links disparate386

sets of observations from previous studies: while some studies have reported that perturbations387

of secondary motor cortex and striatum give rise to higher lapse rates (Erlich, Brunton, et al.,388

2015; Yartsev et al., 2018; Guo et al., 2019; Sindreu et al., 2021; Pisupati et al., 2021), others389

have shown that the effects of perturbing these regions seems to resemble an increased history-390

dependence (Sindreu et al., 2021; Luo et al., 2021). Interpreting these results through the lens391

of our model, we’d conclude that these regions play a crucial role in the interaction of history-392

dependent initial states with sensory evidence. Indeed, Luo et al. 2021 find that this increased393

history dependence upon perturbation is mediated by increased bias in initial value of the neurally394

derived accumulator variable. Our model could also help explain why Busse et al. 2011 found395

that mice with higher lapse probabilities showed higher history dependence, or results from The396

International Brain Laboratory et al. 2021 who observed a modulation in lapse rates in addition to397

horizontal biases upon explicit manipulation of category priors.398

One interesting future line of investigation is to probe the precise nature of the model of non-399

stationarity over priors assumed by animals in such tasks. The range of parameter values inferred400

using our flexible formulation could offer a useful starting point for this line of investigation. For401

instance, Dynamic Belief Models (Yu and Cohen, 2009; Ryali et al., 2018), a popular class of402

generative models over priors, correspond to a narrowly constrained set of parameter values in our403

model. Such an understanding would not only afford more reliable control of behavior and more404

accurate interpretation of neural correlates in stationary tasks, but could also yield insight into the405

inductive biases that allow animals to learn quickly and efficiently in non-stationary, naturalistic406

settings.407

Methods408

Subjects Animal use procedures were approved by the Princeton University Institutional Animal409

Care and Use Committee (IACUC #1853). All subjects were adult male Long Evans rats, typically410
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housed in pairs. Rats that trained during the day were housed in a reverse light cycle room. Rats411

had free access to food but in order to to motivate them to work for water reward, they were placed412

on a controlled water schedule: 2-4 hours per day during task training, usually 7 days a week and413

between 0 and 1 hour ad lib following training.414

Drift diffusion model of decision-making We use a standard formulation of sequential decision-
making based on (Bogacz et al., 2006; Drugowitsch, Moreno-Bote, et al., 2012), in which an
agent is faced with a stream of noisy sensory evidence ϵ1:t coming from one of two hypotheses
H1 and H2. The agent has to decide between sampling for longer or choosing one of two actions
L,R (reaction time regime) or has to choose one of two actions after a fixed amount of evidence
(fixed duration regime). Such a problem can be formulated as one of finding an optimal policy πt

in a partially-observable markov decision process (Rao, 2010; Drugowitsch, Moreno-Bote, et al.,
2012), whose solution can be written as a pair of thresholds on the log-posterior ratio log( g(t)

1−g(t)
),

where g(t) = p(H1|ϵ1:t):

πt =


choose L, −B ≥ log( g(t)

1−g(t)
)

sample, −B < log( g(t)
1−g(t)

) < B

choose R, log( g(t)
1−g(t)

) ≥ B

The log posterior ratio can be further broken down into a sum of log prior ratios and log
likelihood ratios, using Bayes rule:

log
p(H1|ϵ1:t)
p(H2|ϵ1:t)

= log
p(H1)

p(H2)
+ log

p(ϵ1:t|H1)

p(ϵ1:t|H2)

The optimal policy can equivalently be expressed in terms of the prior and sum of momentary sen-
sory evidence x(t) =

∑
t ϵt, which are sufficient statistics of the posterior (Drugowitsch, Moreno-

Bote, et al., 2012; Piet et al., 2018). In the continuous time limit, when the average rate of evidence
increments or drift rate is µ, and the standard deviation of sensory noise is σ, this corresponds to a
drift diffusion model that terminates when it reaches one of two bounds (Bogacz et al., 2006) and
whose initial state I is proportional to the log prior ratio:

dx = µdt+ σdW, x(0) = I = k · log p(H1)

p(H2)
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In this case, the probability of choosing rightward actions, i.e. hitting the upper bound can be
written analytically as follows (derived from Palmer et al. 2005):

P (B+) =
1− e−2µ(B+I)/σ2

1− e−4µB/σ2

In cases where trial difficulties (and hence drift rates) vary from trial to trial the optimal415

policy includes time-dependent, collapsing bounds on the posterior. However, under certain cir-416

cumstances, constant bounds on Xt =
∑

t ϵt implement close-to-optimal collapsing bounds on the417

posterior (Denève, 2012; Drugowitsch, Moreno-Bote, et al., 2012), which is the regime we assume418

for our analysis.419

Models of initial state updating We model initial state updating as a sum of exponential filters
over past choice-outcome pairs (Rw: right-wins, Lw: left-wins, Rl: right-loss, Ll: left-loss). So
the initial state I at trial n+ 1 is given by:

I(n+ 1) = iRw(n+ 1) + iLw(n+ 1) + iRl(n+ 1) + iLl(n+ 1)

where each filter ih decays by a factor of βh, and is incremented by a factor of ηh following the
observation of that particular choice-outcome pair, i.e

ih(n+ 1) = ηh1h(on) + βhih(n) where h = {Rw,Lw,Rl, Ll}

on is the choice-outcome pair observed on trial n and 1h(on) is an indicator function that is 1 when420

on = h and is 0 otherwise.421

When βh and ηh are the same ∀h, this rule reduces to an approximation of the Bayesian422

update for the Dynamic Belief Model (Yu and Cohen, 2009), which tracks a prior that undergoes423

discrete unsignaled switches at a fixed rate. We compared this unconstrained model to models424

with various constraints on the decay and magnitude parameters (same parameters for corrects425

v.s. errors, left v.s. right etc). While model comparison revealed that not every rat required all426

parameters to be different, the unconstrained model is the most general form that best captures427

behavior across rats.428
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Psychometric curves Psychometric curves model the probability of a subject choosing one of the
options (e.g. right) as a function of stimulus strength. We parametrize the psychometric curve as a
4-parameter logistic function:

P (choose Right) = κ0 +
κ1

1 + e−b(x−x0)

where x0 is the threshold parameter that additively biases the stimulus x, b measures sensitivity to429

the stimulus, κ0 is the left asymptote or left lapse rate and κ1 scales the logistic function. Therefore,430

the right asymptote is given by κ0 + κ1 and the right lapse rate itself is given by 1 − (κ0 + κ1).431

We fit all four of these parameters {κ0, κ1, x0, b} to choices generated by either the DDM (Fig 1),432

rats (Fig 2, 3, 4), or accumulator models adapted to the tasks (Fig 3, 4) using a gradient-descent433

algorithm (interior-point) to maximize the (Binomial) log likelihood of choices using MATLAB’s434

constrained optimization function fmincon. κ0 and κ1 were both constrained to lie within the435

interval [0, 1]. 95% confidence intervals on these parameters were generated using bootstrapping.436

History modulation of psychometric parameters: To summarize the effects of trial history437

on psychometric parameters we fit independent psychometric curves to choices conditioned on438

1-trial back choice-outcome history i.e. following rightward wins (Rw) and leftward wins (Lw).439

Modulation of the threshold parameter by history was then computed as xRw
0 −xLw

0 . To quantify the440

modulation of lapse rate parameter by history we first computed the difference in the left and right441

asymptotes following rightward and leftward wins: κRw
0 − κLw

0 and (κRw
0 + κRw

1 ) − (κLw
0 + κLw

1 )442

respectively. The net modulation of lapse rates with trial history is given by the sum of these443

differences: 2(κRw
0 − κLw

0 ) + (κRw
1 − κLw

1 ).444

Behavioral tasks445

Auditory evidence accumulation task: Rats were trained with previously established protocol446

(Brunton et al., 2013; Hanks, Kopec, et al., 2015; Erlich, Brunton, et al., 2015; Yartsev et al.,447

2018) using the BControl system. Briefly, rats were put in an operant chamber with three nose448

ports. They were trained to begin a trial by poking their nose into the middle port. This initiated449

two simultaneous streams of randomly-timed discrete auditory clicks for a predetermined duration450

after a variable delay (0.5-1.3s), one from a speaker to their left and the other to their right. Rats451

were required to maintain “fixation” throughout the entire stimulus (1.5s), failure to do so led to452
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a violation trial. At the end of the stimulus, rats had to poke towards the side which played the453

greater number of clicks to obtain a water reward. Stimulus difficulty was varied from trial-to-trial454

by changing the ratio of the generative Poisson rates of the two click streams. Trial difficulty and455

rewarded side were independently sampled on each trial.456

We analyzed rats which performed greater than 30,000 trials, at 70% or more accuracy.457

Sessions with less than 300 trials or less than 60% accuracy for either of the choices were excluded.458

Since rats typically perform this task for many months after having passed the final training stage,459

to minimize nonstationarities in the data (due to break in training because of holiday closures etc.)460

and ensure that we are analyzing asymptotic performance, we identified temporally contiguous461

sessions with stable accuracy by performing change-point detection on smoothed trial hit rate462

using MATLAB’s findchangepts function. The partition with most number of trials was included463

in the analysis. Since the animals neither made a choice nor received an outcome on violation464

trials, we ignore them while computing trial-history effects.465

Auditory evidence accumulation task with reaction time reports To measure rats’ reaction466

times in addition to choices we modified the auditory evidence accumulation task in two ways.467

First, we relaxed the “fixation” requirement and instead allowed rats to sample the stimulus for468

as long as they want. As soon as rats broke fixation by removing their nose from the center port,469

the stimulus stopped and the rats were required to report their decision by poking into one of the470

side ports. For any given trial, the time that the rat spent sampling the stimulus was its reaction471

time. Second, we rewarded rats if they correctly reported the side which had greater underlying472

Poisson rate rather than the side which played the greater number of clicks. This helped eliminate473

the trivial strategy of culminating a decision after the first click and having perfect accuracy by474

simply reporting the side of that click without any need for evidence accumulation.475

In practice, we followed the same training protocol as the interrogation task (Brunton et al.,476

2013) but with the modified reward rule. Once the rats were fully trained on the interrogation477

protocol we gradually reduced the duration of delay between stimulus onset and trial initiation as478

well as the fixation period. Most rats maintained high accuracy (>70%) upon this manipulation,479

if rats performance did not meet this criterion even after a week of training, they were excluded.480

Rats tended to have worse accuracy early in the session, so we omitted the first 50 trials from our481

analysis. After the first 50 trials, we confirmed that the accuracy in the first and second halves of482
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the session was comparable.483

Data modeling methods484

Accumulator model To model subjects choices and RTs, we used accumulation to bound model
modified to take into account the discrete nature of evidence in our behavioral tasks (Brunton et
al., 2013). In the model, the evolution of accumulated evidence a(t) in response to the left (δL)
and right (δR) click trains on trial n is given by:

da =

0, if |a| ≥ B

λadt+ (δR,tCR(t)ηR − δL,TCL(t)ηL)dt+ σadW otherwise

where
dC

dt
=

1− C

τϕ
+ (ϕ− 1)C(δR,t + δL,t) and

a(t = 0) = I(n)

where λ is the inverse time constant of the consistent drift in memory of a(t). CR(t) and CL(t) are485

the magnitudes of each right and left click respectively after undergoing sensory adaptation (with486

adaptation strength ϕ and adaptation time constant τϕ). The sensory noise that accompanies each487

click is represented by ηR, ηL which are Gaussian random variables with mean 1 and variance σ2
s .488

The accumulation variable a also undergoes Brownian diffusion through the addition of a Wiener489

process (W ) with variance σ2
a. B represents the absorbing decision bound that prevents a(t) from490

evolving further, if crossed. The initial value of the accumulator variable a varies from trial-to-trial491

and is set based on exponentially filtered history of previous choices and outcomes (see Methods492

section on Models of initial state updating). A choice is made by comparing the final value of the493

accumulator a(T ) to a side bias. A rightward choice is made if a(T ) > bias.494

Since the model quantifies noise sources on each trial, it requires estimating the evolution
of a noise-induced probability distribution P (a(t)). We compute P (a(t)) by solving the Fokker-
Planck equations that correspond to model dynamics (see Brunton et al. 2013; DePasquale et al.
2021 for numerical methods). The probability of making a rightward choice at the end time-point
T of a trial, given accumulation model parameters θacc is:

P (choose R|δR, δL, θacc) =
∫ ∞

a=bias
daP (a(T )|δR, δL, θacc)
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Models of true lapses We assume that some fraction of choices κ arise from processes extra-495

neous to evidence accumulation such as motor error/exploration or inattention. We parameterize496

these processes with θlapse and refer to them as “true lapses”:497

• In the motor error/exploration variant, the probability of making a choice towards the right -498

when lapsing - is given by ρ.499

P (choose R|θlapse) = ρ

• In the inattention variant (Supp Fig 4C), the subject lapses towards the side favored by the
initial state relative to a bias ρ. So the probability of a rightward choice due to inattention on
trial n is:

P (choose R|θlapse) =


1 if i(n)− ρ > 0

0.5 if i(n)− ρ = 0

0 if i(n)− ρ < 0

• In the hybrid variant (with motor error and inattention; Supp Fig 6), the probability of lapsing500

towards right depends on the initial state through a sigmoidal function whose slope m (or501

matching constant) as well as bias ρ is a free parameter:502

P (choose R|θlapse) = 1

1 + e−m(i(n)−ρ)

Hence the total probability of making a rightward choice due to accumulation and true lapses is:503

P (choose R|Θ) = (1− κ)P (choose R|δR, δL, θacc) + κP (choose R|θlapse)

where Θ = {θacc, θlapse, κ}.504

Model fitting The model parameters were fit to individual rats by maximizing the log likelihood
of the observed choices of the rat cobs, i.e. by maximizing

lnL(cobs|δR, δL,Θ) = Σn lnP (cobs,n|δR,n, δL,n,Θ)
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where n indexes trials. Constrained optimization was performed in Julia using Optim package. We505

computed gradients for parameter optimization using a forward-mode automatic differentiation506

package. The reported maximum likelihood parameters and likelihood values (used for model507

comparison) are from model fits to the entire dataset. We fit a random subset of 10 rats using 5-fold508

cross-validation (85% training dataset, 15% test dataset) but this yielded very similar maximum509

likelihood parameters and virtually identical test and training log-likelihoods. Hence, to save on510

computing time we fit the different model variants to each rat’s entire dataset. This agreement511

between test and training likelihoods is likely due to the large number of trials in our dataset and512

the modest number of parameters in our model.513

Simultaneous modeling of choices and RTs In decision-making tasks, observed reaction times
(RTs) are often thought of as comprised of stimulus sampling or decision times (DTs, the time it
takes for the subject’s accumulated evidence to hit the bound) and non-decision related processing
times (NDTs). In our datasets we observed that reaction times tended to be slower following in-
correct trials and that they grew longer over the course of a session. These effects could be isolated
just to RTs and were not observed in choice behavior. To model these trends we conceptualize
non-decision times as arising from a separate drift diffusion process whose drift ν is additionally
modulated by current trial number n and previous trial’s outcome. These non-decision time drift-
diffusion processes terminate when the bound ω is hit. We assume that the non-decision times for
each choice k ∈ {L,R} have independent bounds (ωk) and drifts (νk). So the non-decision times
for a trial n are samples from the following Wald or Inverse Gaussian (IG) distribution:

τNDT
n ∼ IG

(
ωk

νk − αn+ γo1
−
(n−1)

, ω2
k

)

where k ∈ {L,R} and 1−(n−1) is an indicator function which is 1 if the previous trial was incorrect514

and is 0 otherwise. α parameterizes the impact of trial number on NDTs and γo parameterizes the515

impact of previous trial’s outcome on current trial’s NDT.516

We fit the model by maximizing the joint log likelihood of the observed choices and RTs.
For any given trial, we can compute the likelihood of observing a particular reaction time RTobs

and choice cobs due to accumulation by marginalizing over possible decision or bound hitting times
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τcobs for the observed choice:

P (cobs, RTobs|δR, δL, θacc, θNDT ) =

∫ RTobs

0

P (τcobs|δR, δL, θacc)P (cobs, RTobs|θNDT , τcobs)dτcobs

On true lapse trials, RTs were assumed to arise from NDTs alone and therefore the joint likelihood
due to accumulation and true lapses is given by:

L(cobs, RTobs|δR, δL,Θ) = (1−κ)P (cobs, RTobs|δR, δL, θacc, θNDT )+κP (cobs, RTobs|θlapse, θNDT )

where Θ = {θacc, θNDT , θlapse, κ}.517
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[65] S. Denève, “Making Decisions with Unknown Sensory Reliability,” Frontiers in Neuro-741

science, vol. 6, 2012.742

[66] T. D. Hanks, C. D. Kopec, B. W. Brunton, C. A. Duan, J. C. Erlich, and C. D. Brody,743

“Distinct relationships of parietal and prefrontal cortices to evidence accumulation,” Nature,744

vol. 520, no. 7546, pp. 220–223, 2015.745

[67] B. DePasquale, J. W. Pillow, and C. Brody, “Neural population dynamics underlying ev-746

idence accumulation in multiple rat brain regions,” en, Tech. Rep., 2021, Company: Cold747

Spring Harbor Laboratory Distributor: Cold Spring Harbor Laboratory Label: Cold Spring748

Harbor Laboratory Section: New Results Type: article, p. 2021.10.28.465122. DOI: 10.749

1101/2021.10.28.465122.750

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.18.524599doi: bioRxiv preprint 

https://doi.org/10.1523/JNEUROSCI.22-21-09475.2002
https://doi.org/10.3389/fnins.2019.01211
https://doi.org/10.3389/fncom.2010.00146
https://doi.org/10.1038/s41467-018-06561-y
https://doi.org/10.1038/s41467-018-06561-y
https://doi.org/10.1038/s41467-018-06561-y
https://doi.org/10.1101/2021.10.28.465122
https://doi.org/10.1101/2021.10.28.465122
https://doi.org/10.1101/2021.10.28.465122
https://doi.org/10.1101/2023.01.18.524599
http://creativecommons.org/licenses/by-nc-nd/4.0/


[68] P. Mamassian, M. Landy, and L. T. Maloney, “Bayesian modelling of visual perception,” in751

Probabilistic models of the brain: Perception and neural function, ser. Neural information752

processing series, Cambridge, MA, US: The MIT Press, 2002, pp. 13–36. DOI: 10.7551/753

mitpress/5583.001.0001.754

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2023. ; https://doi.org/10.1101/2023.01.18.524599doi: bioRxiv preprint 

https://doi.org/10.7551/mitpress/5583.001.0001
https://doi.org/10.7551/mitpress/5583.001.0001
https://doi.org/10.7551/mitpress/5583.001.0001
https://doi.org/10.1101/2023.01.18.524599
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary materials755

A)

0 50 100 150 200
Trial numberTrial number

-2

-1

0

1

2

In
iti

al
ac

cu
m

ul
at

or
st

at
e

Bayesian learning
Exp-filter

0 50 100 150 200
0

0.5

1

Pr
ob

ab
ilit

y
P(H1)
P(H2)

B)

Supplementary Figure 1: Exponential filtering for initial state setting approximates Bayesian prior up-
dates under assumptions of non-stationarity A: Example of a mis-belief in a non-stationary prior. Traces
represent belief about prior probability of two hypotheses H1 and H2 inferred from a random sequence of
trials drawn from a stationary symmetric prior, under the misbelief that the prior is occasionally undergoing
unsignalled jumps. Such an assumed generative model is often referred to as the Dynamic Belief Model
(DBM; Yu and Cohen 2009). B: Initial state updates corresponding exactly to the fluctuating prior beliefs
in (A) that emerge from Bayesian learning (black line), plotted against approximate initial states derived
from exponential filtering (dotted red line) of past choices and outcomes. The exponential filter provides
a good approximation of exact Bayesian updates, while being more expressive and flexible to capture the
possibility of other generative models and corresponding update rules.
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Supplementary Figure 2: Influence of within- and across-trial parameters on history-dependent mod-
ulation of biases and lapses in the psychometric function. (A) Influence of across-trial parameters on
history-dependent modulation: Effects of varying magnitude of trial-by-trial updating (η - columns) and
timescale of updating (β - rows) on initial state trajectories (gray lines) and psychometric curves (black -
conditioned on all previous wins, blue - previous right wins, pink -previous left wins). (Top row) Small
timescales of updating lead to fast fluctuations in initial states, and mostly horizontal shifts in psychomet-
ric curves with trial history, for both small and large magnitudes of updating (A1 and A4). (Middle row)
Intermediate timescales of updating lead to slower fluctuations in initial state that have a cumulative effect
across trials. For large magnitudes of updating (A5) these can give rise to apparent lapses (black intervals)
as well as history-dependent modulation of these lapses (pink intervals). (Bottom row) Long timescales of
updating lead to stronger cumulative initial state biases across trials, yielding apparent lapses and lapse rate
modulations even for small magnitudes (A3). When combined with large magnitudes of updating (A6) lead
to initial states that sometimes exceed the bounds, leading to a combination of apparent lapses (initial states
within bounds) and deterministic, stimulus-independent decisions (initial states outside bounds). Caption
continued on next page.
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Supplementary Figure 2: (Previous page.) (B) Quantifying modulation of psychometric properties: The dif-
ference between psychometric curves conditioned on previous wins (blue) or losses (pink) can be quantified
using two metrics - the horizontal distance between the midpoints of psychometric curves (“threshold modu-
lation”) and the vertical distance between its asymptotes (“lapse rate modulation”) (C) Effects of varying the
parameters of the within-trial drift diffusion model (DDM) on history-dependent threshold (x-axis) and lapse
rate modulations (y-axis). Colors denote levels of sensory noise, size of dots denote values of the feedback
parameter of the DDM. The feedback parameter determines if the accumulation is leaky (λ < 0, ignores
early evidence), perfect (λ = 0, uses all evidence) or impulsive (λ > 0, ignores later evidence). Plots from
left to right are for low, intermediate and high values of bound respectively. High bounds predominantly
give rise to threshold modulations, however high positive values of feedback and higher levels of sensory
noise additionally produce lapse rate modulations. Lapse rate modulations are dramatically increased by
lower bounds for many different values of feedback and by higher values of sensory noise.
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Supplementary Figure 3: Performance measures across the rat dataset (A) Histogram of trial counts
for all rats in the population. Most rats completed on the order of 1e4 trials. (B) Histogram of mean
accuracy showing that rats showed good performance on the task (mean accuracy ± SD: 0.79± 0.04). (C)
Average change in mean accuracy every 10000 trials, showing that rats’ performance was stable over time,
reflecting asymptotic behavior rather than task acquisition. (D) Histogram of history-modulated lapse rates
as a fraction of total lapse rates. A sizeable portion of the population had non-zero fractions, suggesting
that history-dependence could potentially account for substantial lapse rate variance. (E) Scatter comparing
repetition bias following wins and losses. Each point is a rat, error bars are Wilson binomial CIs. Most of
the population occupied the bottom right quadrant, showing a “win-stay, lose-switch” bias i.e. repetitions
following wins and alternations following losses.
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Supplementary Figure 4: Two variants of the accumulator with HISt model with different kinds of true
lapses perform equally well (A) Schematic of accumulator with HISt (top), which produces apparent lapses
and thresholds that are both modulated by history, with two variants of true lapses (bottom) - those due to
motor errors/exploration, and those due to inattention. (B) Motor error/exploration variant, that occasionally
chooses a random action with some bias (ρ) irrespective of the initial state, reflecting an error in motor
execution or random exploration. This model produces true lapses that are not modulated by history, such
that any history modulations arise from HISt alone. Caption continued on next page.
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Supplementary Figure 4: (Previous page.) (C) Inattentional variant, that occasionally fails to attend to the
stimulus, and relies on the initial state to make an informed, deterministic decision based on the difference
between the initial state and a bias (ρ). In this model, true lapses are also modulated by history in addition
to apparent lapses and thresholds. (D) Individual differences in history effects captured by different mod-
els: History modulations of threshold (left) and lapse rate (right) parameters measured from psychometric
fits to the raw data (x-axis) v.s. model predictions (y-axis). (Top): Motor error/exploration model has no
history dependence in true lapses, yet captures a majority of the variance in both threshold and lapse rate
modulations [R2 = 0.72 (threshold parameter), R2 = 0.69 (lapse rate parameter)], and shows good cor-
respondence with both parameters, as evidenced by the points lying close to the unity line [slope= 1.02
(threshold parameter), slope = 0.70 (lapse rate parameter)]. This suggests that these modulations can be
captured by the comodulations in apparent lapses and thresholds produced by HISt. (Bottom): same as
Top but for Inattention model. The inattention model allows true lapses to additionally depend on history,
and captures slightly more variance in history modulations [R2 = 0.78 (threshold parameter), R2 = 0.83
(lapse rate parameter)]. However, it does so at the expense of correspondence with thresholds [slope= 0.86
(threshold parameter), slope = 0.95 (lapse rate parameter)]. This marginal improvement suggests that co-
modulations in thresholds and lapse rates largely reflect apparent lapses arising from HISt, rather than true
lapses of either kind. (E) Distribution of best fitting model variants for individual rats: Overall bar height for
each variant denotes the total number of rats for which that variant scored the lowest BIC score. Inattention
variant won in marginally more rats than motor error (inattention: 75/152 rats, motor error: 72/152 rats). (F)
Population model comparison using mean BIC score across rats. Lower scores indicate better fits. Scores
are comparable across variants, marginally favoring motor-error over inattention (Mean BIC score for motor
error/exploration: 33725.64, inattention: 33726.25 ).
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Supplementary Figure 5: Fits of the accumulator model with history-modulated initial states (and ad-
ditional true lapses arising from motor error) to choices and reaction times of individual rats. Each
horizontal set of 4 panels shows fits to an individual rat, and each of the 4 columns depicts a different behav-
ioral measure summarizing choices (first column, psychometric curve), reaction times (third column, win
RTs in green and error RTs in red), and history modulations in choices/reaction time (second/fourth column,
psychometric curves/RTs conditioned on previous right wins (blue) or left wins (pink)). Data represented
by points (circles: choices, squares: reaction times) and model fits represented by lines (choices) or shaded
bars (reaction times, thickness represents 95% bootstrap prediction intervals).
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Supplementary Figure 6: Accumulator model with HISt and true lapse variants fit to the RT dataset
(A) Flexible true lapse variant of the accumulator model with HISt, capable of producing both motor errors
and inattentional true lapses: in this model, the subject chooses stochastically on true lapse trials, with
a probability given by a sigmoidal function of the initial state (such a strategy is often called probability
matching and although suboptimal, has found empirical support in many perceptual tasks e.g. Mamassian
et al. 2002). The slope parameter of the sigmoid which is fit to the data – when this slope parameter goes
to infinity, this model picks deterministically based on the initial state, similar to the previous inattention
model. On the other hand when the slope goes to zero, choices on true lapse trials are no longer dependent
on initial states, reducing to the motor error/exploration model, with intermediate parameters interpolating
between these two extremes. This “hybrid true lapse” variant of the model can flexibly include many kinds
of true lapses. (B) Fits of the hybrid model to individual rats in the RT dataset, showing choice, RT and
history measures similar to Supp Fig. 5. C-D History modulations in psychometric thresholds (C) and lapse
rates (D) for motor error (blue) and hybrid (grey) models. Once again, allowing for the possibility of history-
modulated true lapses slightly improves correspondence to lapse rate modulations, at the cost of threshold
modulations. (E) Difference in BIC scores between the hybrid and motor error models, for individual rats
in the reaction time dataset. Negative values indicate that the more flexible hybrid model won, as is the case
for most rats.
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