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Abstract 11 

Background: Assembly algorithm choice should be a deliberate, well-justified decision when 12 

researchers create genome assemblies for eukaryotic organisms from third-generation sequencing 13 

technologies. While third-generation sequencing by Oxford Nanopore Technologies (ONT) and 14 

Pacific Biosciences (PacBio) have overcome the disadvantages of short read lengths specific to next-15 

generation sequencing (NGS), third-generation sequencers are known to produce more error-prone 16 

reads, thereby generating a new set of challenges for assembly algorithms and pipelines. Since the 17 

introduction of third-generation sequencing technologies, many tools have been developed that aim 18 

to take advantage of the longer reads, and researchers need to choose the correct assembler for 19 

their projects. 20 

Results: We benchmarked state-of-the-art long-read de novo assemblers, to help readers make a 21 

balanced choice for the assembly of eukaryotes. To this end, we used 13 real and 72 simulated 22 

datasets from different eukaryotic genomes, with different read length distributions, imitating 23 

PacBio CLR, PacBio HiFi, and ONT sequencing to evaluate the assemblers.  We include five commonly 24 

used long read assemblers in our benchmark: Canu, Flye, Miniasm, Raven and Redbean. Evaluation 25 
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categories address the following metrics: reference-based metrics, assembly statistics, misassembly 26 

count, BUSCO completeness, runtime, and RAM usage.  Additionally, we investigated the effect of 27 

increased read length on the quality of the assemblies, and report that read length can, but does not 28 

always, positively impact assembly quality. 29 

Conclusions: Our benchmark concludes that there is no assembler that performs the best in all the 30 

evaluation categories. However, our results shows that overall Flye is the best-performing 31 

assembler, both on real and simulated data. Next, the benchmarking using longer reads shows that 32 

the increased read length improves assembly quality, but the extent to which that can be achieved 33 

depends on the size and complexity of the reference genome. 34 

Key words: De novo assembly, Third-generation sequencing, Benchmarking, Eukaryote genomes. 35 

Introduction 36 

De novo genome assembly is essential in several leading fields of research, including disease 37 

identification, gene identification, and evolutionary biology [1–4]. Unlike reference-based assembly, 38 

which relies on the use of a reference genome, de novo assembly only uses the genomic information 39 

contained within the sequenced reads. Since it is not constrained to the use of a reference, high quality 40 

de novo assembly is essential for studying novel organisms, as well as for the discovery of overlooked 41 

genomic features, such as gene duplication [5], in previously assembled genomes.  42 

The introduction of Third Generation Sequencing (TGS) led to massive improvements in de novo 43 

assembly. The advent of TGS has addressed the main drawback of Next Generation Sequencing (NGS) 44 

platforms, namely the short read length, but has introduced new challenges in genome assembly, 45 

because of the higher error rates of long reads. The leading platforms in long-read sequencing are 46 

Pacific Biosciences Single Molecule, Real-Time sequencing (often abbreviated as "PacBio") and Oxford 47 

Nanopore (ONT) sequencing [6].  48 
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Since the introduction of TGS platforms, many methods have been developed that aim to take the 49 

most benefits from the longer read length and overcome the new challenges due to sequencing error. 50 

Recent studies have been conducted to compare long-read de novo assemblers. One such study was 51 

conducted by Wick and Holt [7], who focused on long-read de novo assembly of prokaryotic genomes. 52 

Eight assemblers were tested on real and simulated reads from PacBio and ONT sequencing, and 53 

evaluation metrics included sequence identities, circularisation of contigs, computational resources, 54 

as well as accuracy. Murigneux et al. [8] performed similar experiments on the genome of M. jansenii, 55 

although in this case, the focus was on comparatively benchmarking Illumina sequencing and three 56 

long-read sequencing technologies, in addition to the comparison of long-read assembly tools. Studies 57 

narrowed down to just one type of sequencing technology include those of Jung et al. [9], who 58 

evaluated assemblers on real PacBio reads from five plant genomes, and Chen et al. [10], who used 59 

Oxford Nanopore real and simulated reads from bacterial pathogens in their comparison. Except for 60 

the Wick and Holt study, which provides a compressive comparison on de novo assembly of 61 

prokaryotic genomes, other studies are either comparing the assemblers on single genome or using 62 

data from a single sequencing platform. Here, we provide a comprehensive comparison on de novo 63 

assembly tools on all TGS technologies and 7 different eukaryotic genomes, to complement the study 64 

of Wick and Holt. 65 

In this study, we are benchmarking these methods using 13 real and 72 simulated datasets (see Figure 66 

1) from both PacBio and ONT platforms to guide researchers to choose the proper assembler for their 67 

studies. Benchmarking using simulated reads allows us to accurately compare the final assembly with 68 

the ground truth, and benchmarking using the real reads can validate the results based on simulated 69 

reads. The assembler comparison presented in this manuscript complements the literature that has 70 

already been published, by introducing an analysis of not just assembler performance, but also of the 71 

effect of read length on assembly quality. Although increased read length is considered an advantage, 72 

we investigate if it is always a necessary advantage to have for assembly performance. To that end, 73 

the scope of the study extends to six model eukaryotes that provide a performance indication for 74 
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genomes of variable complexity, covering a wide range of taxa on the eukaryotic branch of the Tree 75 

of Life [11]. Complexity in genome assembly is determined by multiple variables, the most notable of 76 

which is the proportion of repetitive sequences within the genome of a particular organism. 77 

Complexity in eukaryotic genomes is further exacerbated by size and organization of chromosomal 78 

architecture, including telomeres and centromeres, and the presence of circular elements such as 79 

mitochondrial and chloroplast DNA.  80 

 81 

Figure 1: The benchmarking pipeline. We first select 6 representative eukaryotes from the Tree of Life (Letunic and Bork, 82 

2021) and use Badread’s error and QScore model generation feature (Wick, 2019) to create 3 models of state-of-the-art long 83 

sequencing technologies. This is input to the read simulation stage, where we simulate reads from all genomes, with four 84 
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different read length distributions. We then perform assembly of simulated and real reads, using five long-read assemblers. 85 

Lastly, we evaluate all assemblies based on several criteria. 86 

De novo genome assembly evaluation remains challenging, as it represents a process that must 87 

account for variables such as the goal of an assembly and the existence of a ground-truth reference. 88 

A standard evaluation procedure was introduced in the literature by the two Assemblathon 89 

competitions [12,13], which outlined a selection of metrics that encompasses the most relevant 90 

aspects of genome assembly, however, these metrics require a reference sequence. Most of these 91 

metrics are adopted in our benchmark.  92 

Consequently, this study addresses two main objectives. First, we provide a systematic comparison of 93 

five state-of-the-art long-read assembly tools, documenting their performance in assembling real and 94 

simulated PacBio Continuous Long Reads (CLRs), PacBio Circular Consensus Sequencing (CCS) HiFi 95 

reads, and Oxford Nanopore reads, generated from the genomes of S. cerevisiae, P. falciparum, C. 96 

elegans, A. thaliana, D. melanogaster, and T. rubripes. Our second objective is to investigate whether 97 

increased read length has a positive effect on overall assembly quality, given that increasing the length 98 

of reads is an on-going effort in the development of Third Generation Sequencing platforms [14]. 99 

Materials and methods 100 

Data 101 

In this study, we are using real and simulated data from various organisms to benchmark long read 102 

de novo assembly tools. 103 

Reference genomes 104 

We selected six reference genomes from eukaryotic organisms represented in the Interactive Tree Of 105 

Life (iTOL) v6 [11]: S. cerevisiae (strain S288C), P. falciparum (isolate 3D7), C. elegans (strain VC2010), 106 

A. thaliana (ecotype Col-0), D. melanogaster (strain ISO-1), and T. rubripes. Assembly accessions are 107 

included in Supplementary Table S1. 108 
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The reference assemblies for C. elegans, D. melanogaster, and T. rubripes included uncalled bases. In 109 

these cases, before read simulation, each base N was replaced with base A, as done by Wick and Holt 110 

[7]. This avoids ambiguity in the read simulation process and consequently simplifies the evaluation 111 

of the simulated-read assemblies. As such, we used this modified version as a reference when 112 

evaluating all assemblies of simulated reads from these four genomes. In the evaluation of real-read 113 

assemblies, the original assemblies were used as references. 114 

Simulated reads 115 

All simulated read sets were generated using Badread v0.2.0 [15]. To create read error and QScore 116 

(quality score) models in addition to the simulator’s own default models, Badread requires the 117 

following three parameters: a set of real reads, a high-quality reference genome, and an alignment 118 

file, obtained by aligning the reads to the reference genome. We used real read sets from the human 119 

genome to create error and QScore models that reflect the state-of-the-art for three sequencing 120 

technologies: PacBio Continuous Long Reads (CLRs), PacBio Circular Consensus Sequencing (CCS) HiFi 121 

reads, and Oxford Nanopore reads.  122 

To create the models, we used the real read sets sequenced from the human genome and aligned to 123 

the latest high-quality human genome reference assembled by [16]: assembly T2T-CHM13v2.0, with 124 

RefSeq accession GCF_009914755.1. The alignment was performed using Minimap2 v2.24 [17] with 125 

default parameters. The sources for these sequencing data are outlined in Supplementary Table S2, 126 

as well as the read identities for each technology, which are later passed as parameters for the 127 

simulation stage.  128 

For each of the six reference genomes, we simulated reads that imitate PacBio CLR, PacBio HiFi, and 129 

Oxford Nanopore sequencing, with four different read length distributions, using Badread. The first 130 

read simulation represents the current state of the three long-read technologies. The other three 131 

simulations reflect data points in-between technology-specific values and ultra-long reads, data points 132 

of a similar length as ultra-long-reads, and longer than ultra-long reads. Since Badread’s read length 133 
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models are parameterized by gamma distributions, we need to define the mean and standard 134 

deviation of the gamma distributions for these simulations. The values for the mean and standard 135 

deviation of these distributions were selected as follows. First, we calculated the read length 136 

distributions of the real read sets in Supplementary Table S2 and simulated an initial iteration of reads 137 

using these technology-specific values. For choosing these values for the other three iterations, we 138 

analysed a set of Oxford Nanopore Ultra-Long reads used in the latest assembly of the human genome 139 

(Nurk et al., 2022). We selected GridION run SRR12564452, available as sequence data in BioProject 140 

PRJNA559484, with a mean read length of approximately 35.7 kbp, and a standard deviation of 42.5 141 

kbp.  142 

A full overview of the mean and standard deviation of all four read length distributions is given in 143 

Table 1.  Note that, for each of the technologies, the standard deviation for the last three distributions 144 

was derived from the mean, using the ratio between the mean and standard deviation reflected by 145 

the technology-specific values. Hence, for the last three iterations, the mean read length is consistent 146 

across sequencing technologies, but the standard deviation varies. 147 

Table 1: The mean and standard deviation describing the read length distributions used in our simulations. Note that read 148 

length increases with each iteration, and the distribution parameters are different for each technology. 149 

  Read length distribution parameters (kbp), per technology 

 PacBio CLR PacBio HiFi Oxford Nanopore 

 Mean Stdev Mean Stdev Mean Stdev 

Iteration 1 

(technology-specific values) 

15.7 14.4 20.7 2.5 12.1 17.1 

Iteration 2 25 22.5 25 3 25 35 

Iteration 3 

(imitate ultra-long reads) 

35 31.5 35 4.2 35 49 

Iteration 4 75 67.5 75 9 75 105 

 150 

Consequently, we ran twelve simulations for each reference genome. As described above, we used 151 

our own models for each technology, and passed them to the simulator as the --error_model and 152 

--qscore_model. The read identities per technology were set to the values included in 153 
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Supplementary table S2. Across all simulations, we chose a coverage depth of 30x. Canu’s 154 

documentation [18] specifies a minimum coverage of 20 - 25x for HiFi data, and 20x for other types of 155 

data, while Flye’s guidelines [19] indicate a minimum coverage of 30x. As there is no minimum 156 

recommended coverage indicated for the other assemblers we used in our benchmark, we simulated 157 

reads following the stricter guideline among these two, that is, 30x coverage. 158 

A summary of the Badread commands used in our simulation can be found in Supplementary Table 159 

S3. Note that, in the case of simulated HiFi reads, we additionally lowered the rates of glitches, 160 

random, junk, and chimeric reads to reflect the higher accuracy of this technology. We set the 161 

percentage of chimeras to 0.04, as estimated by [20]. 162 

Real reads 163 

In support of our evaluation on simulated reads, we also performed a benchmark on real-read 164 

assemblies from Oxford Nanopore and PacBio reads sequenced from the reference genomes. These 165 

reads were sampled to approximately 30x coverage, to ensure a fair comparison with our simulated-166 

read assemblies. The data sources for all real sets are included in Supplementary Table S4. 167 

Assemblies 168 

Five long-read de novo assemblers are included in this benchmark: Canu v2.2 [18], Flye v2.9 [19], 169 

Redbean (also known as Wtdbg2) v2.5 [21], Raven v1.7.0 [22], and Miniasm v0.3_r179 [23].  170 

The assemblies were performed with default values for most parameters. Canu and Wtdbg2 require 171 

the estimated genome size as a parameter, and we set the following values: S. cerevisiae = 12 Mbp, P. 172 

falciparum = 23 Mbp, A. thaliana = 135 Mbp, D. melanogaster = 139 Mbp, C. elegans = 103 Mbp, and 173 

T. rubripes = 384 Mbp. All commands used in the assembly pipelines are available in Supplementary 174 

Table S6. We note that further polishing of assemblies using high-fidelity short reads, although 175 

common in practice [24–26], is omitted in this study, as the focus is exclusively on assembler 176 

performance on long-read data and not polishing tools.  177 
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We added a long-read polishing step for Miniasm and Wtdbg2, as their assembly pipelines do not 178 

include long-read  based polishing. Following Raven’s default pipeline, which performs two rounds of 179 

Racon polishing [27], we used two rounds of Racon polishing on Wtdbg2 and Miniasm. We note that 180 

for Miniasm, we used Minipolish [7], which simplifies Racon polishing by applying it in two iterations 181 

on the GFA (Graphical Fragment Assembly) files produced by the assembler. For both Miniasm and 182 

Wtdbg2, the alignments required for polishing were generated with Minimap v2.24. 183 

Evaluation 184 

We evaluated the assemblies in three different categories of metrics. The COMPASS analysis compares 185 

the assemblies with their corresponding reference genome and provides insight into their similarities. 186 

The assembly statistics provide some basic knowledge about the contiguity and misassemblies. Finally, 187 

the BUSCO assessment investigates the presence of essential genes in the assemblies. These three 188 

categories of metrics, next to each other, can provide a complete overview of the assembly's quality.  189 

COMPASS analysis 190 

For each assembly, we ran the COMPASS script to measure the coverage, validity, multiplicity and 191 

parsimony, to assess the quality of the assemblies, as defined in Assemblathon 2 [13]. These metrics 192 

describe several characteristics that were deemed important for comparing de novo assembly tools, 193 

and were computed using three types of data: (1) the reference sequence, (2) the assembled scaffolds, 194 

and (3) the alignments (sequences from the assembled scaffolds that were aligned to the reference 195 

sequences). Definitions and formulas for the metrics are reported in Supplementary Table S5.  196 

Assembly statistics and misassembly events 197 

We use QUAST v5.0.2 [28] is used to measure the NG50 [12] (Earl et al., 2011) of an assembly and the 198 

number of misassemblies. QUAST identifies misassemblies based on the definition outlined by [29]. 199 

The total number of misassemblies is the sum of all relocations, inversions, and translocations. 200 

Considering two adjacent flanking sequences, if they both align to the same chromosome, but 1 kbp 201 

away from each other, or overlapping for more than 1 kbp, this is counted as a relocation. If these 202 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526229
http://creativecommons.org/licenses/by-nc/4.0/


flanking sequences, aligned to the same chromosome, are on opposite strands, the misassembly is 203 

considered an inversion. Lastly, translocations describe events in which two flanking sequences align 204 

to different chromosomes. 205 

BUSCO assessment 206 

BUSCO v5.4.2 assessment [30,31] is performed to evaluate the completeness of the essential genes in 207 

the assemblies. This quantifies the number of single-copy, duplicated, fragmented and missing 208 

orthologs in an assembled genome. From the number of orthologs specific to each dataset, BUSCO 209 

identifies how many orthologs are present in the assembly (either as single-copy or duplicated), how 210 

many are fragmented, and how many are missing.  We ran these evaluations with a different OrthoDB 211 

lineage dataset for each genome: S. cerevisiae - saccharomycetes, P. falciparum - plasmodium, A. 212 

thaliana - brassicales, D. melanogaster - diptera, C. elegans - nematoda, and T. rubripes - 213 

actinopterygii.   214 

Results and discussion 215 

Overview of the benchmarking pipeline 216 

Figure 1 shows an overview of the benchmarking pipeline. We begin with the selection of six 217 

representative eukaryotes from the interactive Tree of Life [11]: S. cerevisiae, P. falciparum, A. 218 

thaliana, D. melanogaster, C. elegans, and T. rubripes. We also use three read sets from the latest 219 

human assembly project [16] to generate Badread error and Qscore models [15] for PacBio 220 

Continuous Long Reads (CLRs), PacBio High Fidelity reads, and Oxford Nanopore reads (see 221 

Supplementary Table S2). The reference sequences and models become input to the Badread 222 

simulation stage. For each genome, we simulate reads with four different read length distributions 223 

and three sequencing technologies (see Table 1), amounting to a total of 12 simulated read sets per 224 

reference genome. These reads, as well as 13 real read sets, are assembled with five assembly tools: 225 

Canu, Flye, Miniasm, Raven, and Wtdbg2.  226 
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Next, the resulting assemblies are evaluated using COMPASS, QUAST, and BUSCO, and based on the 227 

reported metrics we distinguish six main evaluation categories: sequence identity, repeat collapse, 228 

rate of valid sequences, contiguity, misassembly count, and gene identification. The selected 229 

COMPASS metrics are the coverage, multiplicity, and validity of an assembly, which provide insight on 230 

sequence identity, repeat collapse, and the rate of valid sequences, respectively. In this regard, an 231 

ideal assembly has coverage, multiplicity and validity close to 1. This suggests that a large fraction of 232 

the reference genome is assembled, repeats are generally collapsed instead of replicated, and most 233 

sequences in the assembly are validated by the reference. Among others, QUAST reports the number 234 

of misassemblies and the NG50 of an assembly. A high NG50 value is associated with high contiguity. 235 

In order to assess contiguity across genomes of different sizes, we report the ratio between the 236 

assembly’s NG50 and the N50 of the references. Lastly, gene identification is quantified in terms of 237 

the percentage of complete BUSCOs in an assembly. 238 

The search for an optimal assembler is influenced by read sequencing technology, 239 

genome complexity, and research goal 240 

To select an assembler that is most versatile across eukaryotic taxa, we simulate PacBio Continuous 241 

Long Reads (CLRs), PacBio High Fidelity (HiFi) reads, and Oxford Nanopore reads from the genomes of 242 

six model eukaryotes, assemble these reads, and evaluate the assemblers in the six main categories 243 

mentioned in the previous section. The results for each evaluation category are normalized in the 244 

range given by the worst and best values encountered in the evaluation of all assemblies of reads with 245 

default length. This highlights differences between assemblers, as well as between genomes and 246 

sequencing technologies. 247 

The results of the benchmark on the read sets with default lengths, namely those belonging to the 248 

first iteration (see Table 1), are illustrated in Figure 2. A full report of the evaluation metrics in this 249 

figure is included in the Supplementary Tables S7 – S24, under “Iteration 1”.  We note that no 250 

assembler unanimously ranks first in all categories, across different sequencing technologies and 251 
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eukaryotic genomes, although our findings highlight some of their strengths and thus their potential 252 

for various research aims. The runtime and memory usage of the assembly tools on all of the simulated 253 

datasets are reported in Supplementary Tables S25 – S30, since this can also be a deciding factor next 254 

to the quality of the assembly for the researchers to choose the suitable assembler for their purpose. 255 

We note that all assemblies were run on our local High Performance Computing Cluster, and the 256 

runtime and RAM usage may have been affected by the heterogeneity of the shared computing 257 

environment in which the assembly jobs executed. 258 

Miniasm, Raven and Wtdbg2 are all well-rounded choices for the simpler S. cerevisiae, P. falciparum 259 

and C. elegans genomes, with a balanced trade-off between assembly quality and computational 260 

resources. For PacBio HiFi reads, Raven is generally qualitatively outperformed by other assemblers 261 

like Canu, Flye, and Miniasm, likely as a consequence of the fact that its pipeline is not customized for 262 

all long-read sequencing technology. Nonetheless, if computational resources are a concern, Raven is 263 

a more suitable choice, since Miniasm and Wtdbg2 do not scale well for larger genomes.  264 

We can single out Flye as the most robust assembler across all six organisms, although for larger 265 

genomes such as T. rubripes, Canu is a better tool. Both produce assemblies with high sequence 266 

identity and validity, as well as good gene prediction, but Flye assemblies generally rank first when we 267 

compute the average score across all six metrics. For Canu, we notice more variation in assembly 268 

quality across different genomes, particularly for P. falciparum and A. thaliana, while Flye maintains 269 

more consistent results. Nonetheless, on the T. rubripes genome, Canu assemblies have higher 270 

sequence identity and contiguity, as well as more accurate gene identification.  271 

 272 
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 273 

Figure 2: The performance of the five assemblers on the read sets with default read lengths, from iteration 1 (see Table 1), 274 

generated from six eukaryotic genomes. Six evaluation categories are reported for each assembler, and the results are 275 
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normalized among all assemblies included in the figure. Ranges for each metric are reported as the best and worst values 276 

computed for these assemblies. The best performing assembler is highlighted for each read set, and marked with a star. 277 

Evaluation of real-read assemblies supports our rankings on simulated-read 278 

assemblies 279 

To determine assembler performance on real reads and validate the rankings of the simulated-read 280 

assemblies, we assemble several real read sets from the six reference eukaryotes (Supplementary 281 

Table S4). The evaluation results on the real-read assemblies, summarized in Figure 3, indicate that 282 

assemblers which perform well on simulated reads perform similarly well in assembling the sets of 283 

real reads. The full report of metrics on the real read assemblies is included in Supplementary Table 284 

S31. We conclude that, overall, the assembler rankings remain consistent. This illustrates that 285 

benchmarking using simulated data is similar to real read sets. For reference-based metrics, we used 286 

the reference genomes given in Supplementary Table S1. 287 

Notably, reference-based metrics in the evaluation of real-read assemblies rely on comparisons with 288 

an assembly, and not the genome from which the reads were initially sequenced. In contrast to the 289 

evaluation of simulated-read assemblies, the existence of a ground truth reference is not available in 290 

this case, but reference-based metrics are included for the sake of consistency with the simulated-291 

read evaluation. 292 

In the evaluation of real-read assemblies, Flye ranks first for nearly all datasets, with the exception of 293 

the T. rubripes and C. elegans PacBio reads, for which Raven performs better overall. However, even 294 

in C. elegans, Flye performance is close to the best values in all metrics other than contiguity. As 295 

expected, overall assembler performance decreases for reference-based metrics like sequence 296 

identity, repeat collapse and validity, but surprisingly the misassembly count is considerably lower. 297 
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 298 

Figure 3: The performance of the five assemblers on the real reads (see Supplementary Table S4), sequenced from six 299 

eukaryotic genomes. As in Figure 2, six evaluation categories are reported for each assembler, and the results are normalized 300 

among all assemblies included in the figure. Ranges for each metric are reported as the best and worst values computed for 301 

these assemblies. The best performing assembler is highlighted for each read set, and marked with a star. 302 

Longer reads lead to more contiguous assemblies of large genomes, but do not always 303 

improve assembly quality 304 

To investigate the effect of increased read length on assembly quality, we use Badread to simulate 305 

Oxford Nanopore, as well as PacBio CLR and HiFi reads with different read length distributions (Table 306 

1) from the genomes of S. cerevisiae, P. falciparum, C. elegans, A. thaliana, D. melanogaster, and T. 307 
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rubripes. We assemble these reads with five state-of-the-art long-read assemblers, and evaluate 308 

assembly quality based on six evaluation categories (see Overview of the benchmarking pipeline). It is 309 

worth mentioning that Canu iteration 4 assemblies (the longest reads) of A. thaliana and T. rubripes 310 

did not finish within reasonable time and are excluded from the evaluation. 311 

Figure 4 shows a summary of the assemblers’ performance on all simulated read sets, highlighting 312 

changes in performance for each read length distribution. All six evaluation metrics are normalized 313 

given the maximum and minimum metric values per genome, per sequencing technology, and 314 

combined to obtain an average score. We then average these three scores again and report a score 315 

between 1 and 10 for each assembler, per read length distribution. The results on all computed 316 

metrics are fully described in Supplementary Tables S7 – S24.  317 

The results imply that there is a correlation between the size and complexity of the reference genome 318 

and the extent of the improvement in assembly quality that can be achieved by increasing the length 319 

of the reads. While we observe no trend in assembly quality improvement on the assemblies of smaller 320 

genomes, the results on the T. rubripes assemblies are more conclusively in favour of the longer reads. 321 

For instance, on the shorter and simpler S. cerevisiae and P. falciparum genomes, identification of 322 

repetitive and complex regions is not aided by increased read length, likely as these regions are already 323 

spanned by the reads with default lengths. However, the benchmark results suggest that more 324 

complex and repetitive regions within the A. thaliana, D. melanogaster and, most notably, T. rubripes 325 

genomes are better captured by longer reads. 326 

As recorded in Supplementary Table S22 – S24, for larger genomes, longer reads generally lead to 327 

significantly higher assembly contiguity and a lower misassembly count. The latter implies that the 328 

resulting assemblies are more faithful to the references, although this is not necessarily supported by 329 

other metrics. We cannot report any compelling improvements in sequence identity, multiplicity, 330 

validity, and gene identification. 331 
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 332 

Figure 4: The performance of the five assemblers on all simulated read sets, with four different read length distributions (as 333 

previously described in Table 1). A score of 1 - 10 is reported for each assembler. The results are normalized for each genome, 334 

per sequencing technology. An average score for each read length distribution is first computed per technology (ONT, PacBio 335 

CLR, PacBio HiFi), and then these three scores are averaged to obtain an overall score per read length distribution. 336 

Conclusion 337 

In fulfilment of the first objective of this study, we conclude that Flye is the highest performing 338 

assembler when considering the overview of all evaluation categories in this benchmark, which 339 

include the sequence identity, repeat collapse, rate of valid sequences, contiguity, misassembly count, 340 

and gene identification. Rankings are mostly consistent for all three sequencing platforms included in 341 
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the study: PacBio CLR, PacBio HiFi and ONT. However, no assembler ranks first in all evaluation 342 

categories, suggesting that the choice of assembler is often a trade-off between certain advantages 343 

and disadvantages. Therefore, we have corroborated the conclusion of Wick and Holt [7], who 344 

benchmarked long-read assemblers on prokaryotes, for eukaryotic organisms, and recommend that 345 

these benchmarking parameters are considered in relation to the desired outcome of an assembly 346 

experiment.   347 

Additionally, the tests performed on real reads validate our rankings of simulated-read assemblies. 348 

Flye, the assembler that scored consistently well in most evaluation categories for assemblies of 349 

simulated reads, also ranks first when evaluated on several sets of real reads sequenced on long-read 350 

platforms. 351 

Regarding our second objective, which addressed the effect of increased read length on assembly 352 

quality, the benchmarking of assemblers on read sets with different read length distributions suggests 353 

that longer reads have the potential to improve assembly quality. However, this depends on the size 354 

and complexity of the genome that is being reconstructed. We found that improvements in contiguity 355 

were most significant among all metrics, as also supported by the conclusion of [8], who showed that 356 

using third generation sequencing considerably improves contiguity in assembling a plant genome (M. 357 

jansenii).  However, we did not find significant improvements in other aspects of assembly quality, 358 

such as sequence identity or gene identification.  359 

Data availability 360 

All accessions to the reference genomes used in this study are included in Supplementary Table S1. 361 

The read sets that were used for the creation of error and QScore models for the simulator are 362 

included in Supplementary Table S2. These models are available at 363 

https://github.com/AbeelLab/long-read-assembly-benchmark. The accessions for the real reads we 364 
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assembled are included in Supplementary Table S4. All other data is reproducible as per the 365 

commands in Supplementary Tables S3 and S6.  366 

Code availability 367 

Our evaluations were produced with QUAST v5.0.2 [28], BUSCO v5.4.2 [30, 31], and COMPASS [13]. 368 

We also provide the scripts we used on https://github.com/AbeelLab/long-read-assembly-369 

benchmark.  370 
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