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Abstract13

Recent advances in connectomics research enable the acquisition of increasing amounts of data14

about the connectivity patterns of neurons. How can we use this wealth of data to efficiently15

derive and test hypotheses about the principles underlying these patterns? A common approach16

is to simulate neural networks using a hypothesized wiring rule in a generative model and to17

compare the resulting synthetic data with empirical data. However, most wiring rules have at18

least some free parameters, and identifying parameters that reproduce empirical data can be19

challenging as it often requires manual parameter tuning. Here, we propose to use20

simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a21

single rule to fit the empirical data, SBI considers many parametrizations of a wiring rule and22

performs Bayesian inference to identify the parameters that are compatible with the data. It uses23

simulated data from multiple candidate wiring rules and relies on machine learning methods to24

estimate a probability distribution (the ‘posterior distribution over rule parameters conditioned25

on the data’) that characterizes all data-compatible rules. We demonstrate how to apply SBI in26

connectomics by inferring the parameters of wiring rules in an in silicomodel of the rat barrel27

cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule28

parameters that reproduce the measurements. We show how access to the posterior distribution29

over all data-compatible parameters allows us to analyze their relationship, revealing biologically30

plausible parameter interactions and enabling experimentally testable predictions. We further31

show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out32

invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used33

in connectomics, providing a quantitative and efficient way to constrain model parameters with34

empirical connectivity data.35

36
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Author summary37

The brain is composed of an intricately connected network of cells—what are the factors that con-38

tribute to constructing these patterns of connectivity, and how? To answer these questions, amass-39

ing connectivity data alone is not enough. We must also be able to efficiently develop and test our40

ideas about the underlying connectivity principles. For example, we could simulate a hypothetical41

wiring rule like “neurons near each other are more likely to form connections” in a computational42

model and generate corresponding synthetic data. If the synthetic, simulated data resembles the43

real, measured data, then we have some confidence that our hypotheses might be correct. The44

challenge, however, lies in finding all the potential wiring rules, or equivalently, all the parameters45

of the computational model that can reproduce the observed data, as this process is often idiosyn-46

cratic and labor-intensive. To tackle this challenge, we introduce an approach that combines com-47

putational modeling in connectomics, deep learning, and Bayesian statistical inference in order to48

automatically infer a probability distribution over the model parameters likely to explain the data.49

We demonstrate our approach by inferring wiring rules in a detailed model of the rat barrel cortex50

and find that the inferred distribution identifies multiple data-compatible model parameters, re-51

veals biologically plausible parameter interactions, and allows us to make experimentally testable52

predictions.53

Introduction54

Connectomics investigates the structural and functional composition of neural networks to distill55

principles of the connectivity patterns underlying brain function (Chklovskii et al., 2004; Sporns56

et al., 2005). Over the last years, advances in imaging and tracing techniques enabled the acquisi-57

tion of increasingly detailed connectivity data (Osten and Margrie, 2013; Kornfeld and Denk, 2018;58

Macrina et al., 2021) and led to significant insights (Motta et al., 2019; Valdes-Aleman et al., 2021;59

Loomba et al., 2022). These advances in data acquisition necessitate new computational tools for60

analyzing the data and testing hypotheses derived from it (Jain et al., 2010; Sporns and Bassett,61

2018; Peyser et al., 2019). A recent computational approach for testing hypotheses in connectomics62

has been to use so-called generative models (Betzel and Bassett, 2017; Váša and Mišić, 2022; Luppi63

et al., 2022). The idea of generative modeling is to develop a computational model capable of gen-64

erating synthetic connectivity data according to a specific hypothesis, e.g., a wiring rule (Fig. 1a,65

left). Subsequently, one can validate and refine the wiring rule (or the underlying computational66

model) by comparing the simulated with measured connectivity data (Fig. 1a, right). Examples for67

this approach range from large-scale generative models of functional connectivity in the human68

cortex (Vértes et al., 2012; Betzel et al., 2016), system-level network models of the mouse visual69

cortex (Billeh et al., 2020), and generative models of cortical microcircuits (Reimann et al., 2015).70

As a specific example, we here consider a generative model for simulating hypothesized wiring71

rules in the rat barrel cortex (Udvary et al., 2022). The model is based on reconstructions of axon72

and dendrite morphologies from in vivo recordings (Narayanan et al., 2015) and reconstructions73

of the barrel cortex geometry, cytoarchitecture, and cellular organization (Meyer et al., 2010, 2013).74

These anatomical features were combined into a 3D model to obtain a quantitative and realistic75

estimate of the dense neuropil structure for a large volume of the rat barrel cortex (Egger et al.,76

2014; Udvary et al., 2022). Thus, by applying a hypothesized wiring rule to the structural features77

of the model, one can generate a corresponding synthetic barrel cortex connectome and compare78

it to empirical data to test the validity of the wiring rule. For example, Udvary et al. (2022) used79

the barrel cortex model to show that a wiring rule that only takes into account neuronmorphology80

predicts connectivity patterns that are consistent with those observed empirically in the barrel81

cortex.82

However, building generative models that accurately reproduce connectivity measurements83

can be challenging: Suppose a hypothesized wiring rule does not reproduce the data. In that case,84

a common approach would be manually refining the rule, e.g., by introducing parameters and85
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Figure 1. Enhancing generative modeling in connectomics with simulation-based inference. (a) Generative modeling is a common
approach for testing hypotheses about the connectome: One implements a hypothesized wiring rule as a computational model that simulates
connectivity data x (left) and then tests and manually refines the rule by comparing simulated with measured data xo (right). (b) Our goal is to
make this approach more efficient using simulation-based Bayesian inference (SBI): By equipping the generative model with parameters �, we
define a space of multiple a-priori hypotheses (left) from which we can generate multiple simulated data x (middle). We then use the simulated
data to perform density estimation with artificial neural networks to estimate the posterior distribution over model parameters conditioned on
the measured data, i.e., p(�|xo). The inferred posterior distribution characterizes all wiring rule parameters compatible with the measured data,
replacing the manual refinement of single wiring rules in the conventional approach (bottom).

repeating the simulate-and-compare-to-measurements loop (Fig. 1a), which can be laborious and86

inefficient. Additionally, identifying one specific wiring rule configuration for which simulated and87

empirical data match might not be enough: Given that the available empirical connectivity data88

is sparse compared to the structural and functional complexity of the connectome, it is likely that89

there are many data-compatible wiring rules and we would need to repeat the search to identify90

them all.91

To address these challenges, we propose a new approach that employs Bayesian inference to92

replace the manual comparison of individual wiring rules (Fig. 1a) with the automated inference of93

multiple wiring rules (Fig. 1b). We achieve this by taking two conceptual steps: First, we equip the94

generativemodel with parameters � and interpret different parameter combinations as variants of95

the underlying hypothesis, e.g., variants of the wiring rule. Second, we define a probability distribu-96

tion over themodel parameters such that each parameter configuration corresponds to a different97

candidate wiring rule, i.e., a prior distribution p(�) (Fig. 1b, left), and use Bayesian inference to infer98

all data-compatible parameters. Given measured connectivity data xo and a parametrized genera-99

tive model, we infer the conditional probability distribution over the model parameters given the100
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measured data, i.e., the posterior distribution p(�|xo). The posterior distribution characterizes all101

parameter configurations (wiring rules) likely to explain the measured data, in contrast to conven-102

tional approaches that often optimize for one best-fitting parameter. For example, by sampling103

different parameters from the inferred posterior we would obtain different wiring rule configura-104

tions all of which are likely to generate data similar to themeasured data (Fig. 1b, bottom). Addition-105

ally, the posterior distribution also allows us to quantify the correlations between the parameters,106

which can help to reveal parameter interactions and potential compensation mechanisms in the107

model.108

On a technical level, standard Bayesian inference methods usually require access to the like-109

lihood function of the model. However, generative models employed in computational connec-110

tomics are often defined as computer simulations forwhich the likelihoodmaynot be easily accessi-111

ble. Therefore, we propose using simulation-based inference (SBI, Cranmer et al., 2020; Gonçalves112

et al., 2020; Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). SBI113

enables Bayesian inference using only simulated data from the model, i.e., without requiring ac-114

cess to the likelihood. In particular, SBI performs conditional density estimation with artificial neu-115

ral networks: It uses data simulated from the model to train an artificial neural network that takes116

data as input and predicts an approximation to the posterior distribution. Once trained on simu-117

lated data, the neural network can be applied to themeasured data to obtain the desired posterior118

distribution p(�|xo) (Fig. 1b, right).119

We demonstrate our approach using the example of constraining wiring rules in the structural120

model of the rat barrel cortex introduced above. First, we show how to reformulate wiring rules121

as parametrized models to make them amenable to Bayesian inference. The resulting generative122

model consists of the parametrized wiring rule applied to the structural model to generate a sim-123

ulated connectome of the rat barrel cortex. Second, we show that SBI can identify all parameter124

configurations that agree with measured connectivity data. When testing our approach in a sce-125

nario with simulated data and a known reference solution, we find that SBI performs accurately. In126

the realistic setting withmeasured connectivity data, SBI identifies a large set of rule configurations127

that reproduce observed and predict unobserved features of the connectome. Importantly, ana-128

lyzing the inferred posterior reveals that this set of plausible rules is highly structured and reflects129

biologically interpretable interactions of the parameters. Finally, we illustrate the flexibility of the130

SBI approach by inferring two proximity-based wiring rules at different spatial scales to quantita-131

tively show that Peters’ rule cannot explain connectivity measurements in the barrel cortex.132

Our approach provides a new quantitative and efficient tool for constraining model parame-133

ters with connectivity measurements and is applicable to many generative models used in connec-134

tomics. For example, it sets the stage for building generative models based on dense reconstruc-135

tions of brain tissue (e.g.,MICrONS-Consortium et al., 2021; Shapson-Coe et al., 2021; Turner et al.,136

2022) and inferring underlying connectivity principles using SBI. We are making all software tools137

required for applying SBI available in an open-source software package (sbi, Tejero-Cantero∗ et al.,138

2020), facilitating its use by researchers across the field.139

Results140

Formulating wiring rules in the rat barrel cortex as simulation-based models141

To demonstrate the potential of simulation-based inference (SBI) for connectomics, we selected142

the problem of constraining wiring rules in the rat barrel cortex with empirical connectivity data.143

Applying SBI requires three ingredients: a simulation-based model with free parameters, a prior144

distribution over the parameters, and measured data (see Methods & Materials for details). Our145

analyses are based on a digital model of the dense neuropil structure of the rat barrel cortex (Eg-146

ger et al., 2014; Udvary et al., 2022), which we extended to obtain a simulation-based model. The147

model contains reconstructions of the number and distribution of somata, axon and dendrite mor-148

phologies, and subcellular features like pre-synaptic boutons and post-synaptic dendritic spines.149
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parametrized modelprior over parameters simulated data

θi ∼ p (θ )

+ =

Poisson(DSO( ))c (θi) ∼ θi

c simulated connectome

Figure 2. Formulating wiring rules in the rat barrel cortex as simulation-based models. (a) The structural model of the rat barrel cortex
contains digital reconstructions of position, morphology, and subcellular features of several neuron types in the barrel cortex and the ventral
posterior medial nucleus (VPM) of the thalamus. (b) We formulate a wiring rule that predicts the probability of a synapse between two neurons
from their dense structural overlap (DSO), i.e., the product of the number of pre- and postsynaptic structural features, normalized by all
postsynaptic features in a given subvolume (postAll). (c) By applying the wiring rule to every neuron-pair subvolume combination of the model to
connection probabilities and then sampling corresponding synapse counts from a Poisson distribution (left), we can simulate a barrel cortex
connectome. To compare the simulated data to measurements, we calculate population connection probabilities between VPM and barrel
cortex cell types as they have been measured experimentally (right). (d) To obtain a simulation-based model, we introduce parameters to the
rule and define a prior distribution over parameters (left) such that each parameter combination corresponds to a different rule. Simulating
data with random parameters from the prior covers the entire range of probabilities (right, gray), including the measured data (black, Bruno and
Sakmann, 2006; Constantinople and Bruno, 2013).

These anatomical features were collected for several neuron types in the barrel cortex and pro-150

jecting neurons from the ventral posterior medial nucleus (VPM) of the thalamus and arranged151

in 3D model (Fig. 2a, see Methods & Materials for details). Thus, by applying a wiring rule that152

predicts the connectivity of each neuron pair in the model from the structural features, one can153

construct a simulated connectome of the entire barrel cortex (Egger et al., 2014). Udvary et al.154

(2022) proposed a parameter-free wiring rule acting solely on structural features of themodel, e.g.,155

the pre-synaptic boutons and postsynaptic dendritic spines. Here, we extended this wiring rule156

to a parameterized version that allows systematic analysis of how such structural features could157

interact and be predictive of connectivity.158

A wiring rule for the rat barrel cortex159

The parameter-free wiring rule introduced by Udvary et al. (2022) proposes that the probability of160

two neurons forming a synapse is proportional to a quantity called dense structural overlap (DSO).161

The DSO is defined as the product of the number of presynaptic boutons and postsynaptic contact162

sites (e.g., dendritic spines), normalized by the number of all postsynaptic targets in the neighbor-163

hood (denoted as prei, postj and postAllk for each neuron i, neuron j and subvolume k in the164

model, Fig. 2b):165
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DSOi,j,k =
prei ⋅ postj
postAllk

. (1)

To simulate a connectome corresponding to the DSO wiring rule, one applies the rule to every166

subvolume-neuron-pair combination of the structural model and then samples synapse counts167

from a Poisson distribution using the calculated synapse probabilities (Fig. 2c, left, see Methods &168

Materials for details). The resulting simulated connectome can then be used to calculate summary169

statistics in the format recorded in experiments, e.g., in vitro or in vivo paired recordings or dense170

reconstructions at electron microscopic levels (Fig. 2c, right).171

Udvary et al. (2022) showed that the DSO wiring rule can reproduce measured network charac-172

teristics at different scales. However, in its current form, the DSO rule assumes that the pre- and173

postsynaptic features have the same relative weight in determining the probability of a synapse174

and that these weights are the same across all barrel cortex cell types. Is this specific combination175

of pre- and postsynaptic features in the DSO rule is the only valid choice? A common approach to176

testing this question would be to iteratively modify the rule, e.g., by adding a scaling factor to the177

postsynaptic features or introducing different scaling factors for every cell type. However, this ap-178

proach can be inefficient because any changes to the rule would require rerunning the procedure179

of generating simulated data and manually comparing it to measured data.180

Defining a wiring rule simulator181

In order to test different variations of the DSO rule efficiently, we introduced three parameters to182

the DSO rule: �pre for scaling the presynaptic bouton counts, �post for scaling the postsynaptic target183

density, and �postAll for scaling the normalizing feature (Fig. 2d, left). The parametrized DSO rule for184

a presynaptic neuron i and postsynaptic neuron j positioned in a subvolume k is then given by185

DSOi,j,k(�) =
pre�prei ⋅ post�postj

postAll�postAllk

, (2)

(see Methods & Materials for details). The three parameters represent the relative weight with186

which each local subcellular feature contributes to forming connections.187

The next step towards applying SBI is selecting measured data xo to constrain the rule param-188

eters. We selected seven connection probabilities of neuronal populations mapping from the ven-189

tral posterior medial nucleus (VPM) of the thalamus to different layers and cell types in the barrel190

cortex, as proposed by Udvary et al. (2022): layer four (L4), layer four septum (L4SEP), layer four191

star-pyramidal cells (L4SP), and layer four spiny stellate cells (L4SS) (Bruno and Sakmann, 2006),192

layer five slender-tufted intratelencephalic cells (L5IT), layer five thick-tufted pyramidal tract cells193

(L5PT), and layer six (Constantinople and Bruno, 2013).194

Overall, one simulation of the wiring rule consisted of three steps: First, applying the rule with a195

given set of parameters to the structural features of every combination of neuron-pair-subvolume196

to obtain connection probabilities; second, sampling synapses from the Poisson distribution given197

the probabilities; and third, calculating the summary statistics matching the measured VPM-barrel198

cortex population connection probabilities (Fig. 2a-d; seeMethods &Materials for details). As prior199

over the parameters p(�), we selected a Gaussian distribution such that sampling random parame-200

ter values from the prior resulted in simulated population connection probabilities that covered a201

broad range of possible values, including the measured values (Fig. 2d, right). This set of sampled202

model parameter values and their corresponding simulated connection probabilities constituted203

the training dataset for running SBI.204

SBI performs accurately on simulated data205

Before applying SBI to infer the parameters of the DSO rule given measured data, we validated its206

accuracy. As a first step, we considered a variant of the DSO rule simulator for which it was possi-207

ble to obtain a ground-truth reference posterior distribution (see section Methods & Materials for208
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Figure 3. SBI posterior reveals parameter interactions and predicts unseen data. (a) The posterior over the three wiring rule parameters
scaling the DSO features (see inset) inferred with SBI (blue) and the initial prior distribution over parameters (gray). The corner plot shows the
one-dimensional marginal distribution of each parameter on the diagonal and the pairwise two-dimensional marginals on the off-diagonal
(contour lines show the 34%, 68% and 95% credible regions). (b) Comparison of measured connection probabilities (black, Bruno and Sakmann,
2006; Constantinople and Bruno, 2013) with those simulated with parameter values sampled from the inferred posterior (blue) versus from the
prior (gray). (c) Each panel shows the predictions for one held-out measurement generated from a posterior that was trained and conditioned
only on the other six measurements, i.e., each panel refers to a different posterior.

details). Using this reference solution, we checked whether SBI infers the posterior accurately and209

how many training simulations it requires. We compared three SBI algorithms: Sequential Neural210

Posterior Estimation (SNPE, Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg211

et al., 2019), which performs SBI sequentially over multiple rounds focusing inference on one par-212

ticular observation; its non-sequential variant NPE; and a classical rejection-sampling-based ap-213

proach called Sequential Monte Carlo (SMC, Sisson et al., 2007; Beaumont et al., 2009). We found214

that all three methods can accurately infer the reference posterior distribution (Suppl. Fig. S1a,b)215

but that they differ in terms of simulation efficiency: SNPE was slightly more efficient than NPE,216

and both were substantially more efficient than SMC (Suppl. Fig. S1b). As a second step, we per-217

formed two checks to validate SBI on the realistic version of the simulator for which no reference218

solution was available. First, we used simulated-based calibration (SBC, Talts et al., 2020) to check219

whether the variances of posterior distributions inferred with SBI were well-calibrated, i.e., neither220

too narrow (overconfident) nor too wide (conservative). We found that SNPE and NPE run with sim-221

ulated observed data inferred well-calibrated posteriors for all three parameters (Suppl. Fig. S1c).222

Second, we checked the predictive performance of SBI by generating simulated data using param-223

eter values sampled from the inferred posterior. We found that the predicted data resembles the224

(simulated) observed data (Suppl. Fig. S1d, see Methods & Materials for details).225

SBI identifies many possible wiring rules and reveals parameter interactions226

After evaluating SBI with simulated data, we applied it to infer the posterior over DSO rule param-227

eters given the seven measured VPM-barrel cortex connection probabilities (Bruno and Sakmann,228

2006; Constantinople and Bruno, 2013). Our analysis of the inferred posterior distribution revealed229

three key insights.230
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The posterior identifies many data-compatible wiring rule configurations.231

We found that the inferred posterior distribution was relatively broad, suggesting many param-232

eter combinations with a high probability of explaining the measured data (Fig. 3a): The one-233

dimensional posterior marginal distributions of the three parameters (Fig. 3a, blue in diagonal sub-234

plots) showedmaxima at parameter values of �pre = 1.57, �post = 1.51 and �postAll = 1.38, andmarginal235

variances of �̂2pre = 0.26, �̂2post = 0.35 and �̂2postAll = 0.07. These values indicated that � = [1.57, 1.51, 1.38]236

was the most likely weighting of the DSO rule features (see Fig. 3a, inset) but that there are also237

several other parameter combinations with a high posterior probability. For example, sampling238

parameter values from the posterior for �post would return values lying mostly in an interval as239

broad as [0.33, 2.69] (95% posterior credible interval). Despite this relatively broad range of plausi-240

ble parameters values, we still found that simulating these parameters with the DSO rule resulted241

in connection probabilities close to the measured data and substantially different from those sim-242

ulated with the prior (Fig. 3b, blue versus gray). How can so many parameter configurations from243

such broad ranges all result in similar data?244

Posterior analysis reveals biologically plausible parameter interactions.245

Having access to the full posterior distribution and its covariance structure allowed us to answer246

this question. Inspection of the two-dimensional marginals of each parameter pair indicated a247

correlation structure substantially different from the uncorrelated prior distribution (Fig. 3a, off-248

diagonal subplots). To quantify this, we estimated the Pearson correlation coefficients of 10, 000249

parameter values sampled from the posterior distribution. We found a negative correlation be-250

tween �pre and �post (Pearson correlation coefficient � = −0.23) and positive correlations between251

�postAll and �pre as well as �post (� = 0.35 and � = 0.81, respectively). These correlations are plausible252

given the design of the DSO rule (see equation 2). For example, the negative correlation between253

�pre and �post indicated that when increasing the value of �pre, we would have to decrease �post in254

order to obtain the same overall number of connections for a particular cell type. This suggests255

that a stronger influence of presynaptic boutons on the connection probability requires a weaker256

influence of postsynaptic target targets on the connection probability.257

The correlations further suggested that all three structural features are relevant in predicting258

the connection probabilities: Once one parameter is fixed, the values of the other parameters are259

strongly constrained. Having access to the full posterior distribution allowed us to quantify this260

by calculating the conditional correlations between the parameters. We obtained the conditional261

correlations by conditioning the posterior on one parameter dimension—i.e., holding it at a fixed262

value—and calculating the correlation between samples drawn from the resulting two-dimensional263

conditional posterior, once for each of the three parameters �pre, �post and �postAll (see Methods &264

Materials for details). The resulting correlation coefficients were substantially higher than without265

conditioning: −0.99 between �pre and �post and 0.99 between the other two parameter combinations266

(see Suppl. Fig. S3 for a visualization of the conditional posteriors). This result confirmed that while267

the overall range of data-compatible wiring rule parameters is relatively large (Fig. 3a), once one268

parameter is fixed, the other two are constrained to a very small range of values. Furthermore,269

the strong conditional posterior correlations indicated that the DSO rule with three parameters is270

overparametrized, i.e., a parametrization of theDSO rulewith only two parameters likely suffices to271

explain the measured data (see Supplementary material for details). Collectively, the inferred pos-272

terior suggested that the number of presynaptic boutons and the number of postsynaptic contact273

sites (and, by extension, axonal and dendritic path length) are sensitive and strongly interdepen-274

dent structural features for predicting synaptic connectivity.275

SBI posterior predicts unobserved connection probabilities.276

To demonstrate the utility of SBI-enabled generative models as a tool for hypothesis generation,277

we investigated how one can make predictions on unobserved data. Above, we used SBI to con-278

strain thewiring rule parameters with only the sevenmeasured connection probabilities. However,279
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in principle, the structural model provides access to the entire (simulated) connectome of one bar-280

rel cortex column. Thus, it allows us to make predictions about other features of the connectome281

that were not measured yet. To test this approach, we repeated the SBI training procedure seven282

times, holding out each connectivity measurement once from the training data set, i.e., we trained283

the posterior estimator on pairs of parameters and data, (�, x), where x has six entries instead284

of seven. After training, we obtained seven different posteriors, each conditioned on six of the285

seven measured connection probabilities. We then sampled parameter values from every poste-286

rior, simulated the corresponding barrel cortex connectomes, and calculated all seven connection287

probabilities.288

The predictions for held-out measurements clustered around the actual measurement values289

for most of the seven connection probabilities (Fig 3c) and closely resembled the predictive distri-290

butions of the posterior inferred given all measurements (Fig 3b). Quantitatively, we found that291

the predictions were within one standard deviation of the measurements (given the sample size292

used in the experiments, see Methods & Materials for details). A classifier trained to distinguish293

between the predictions of the posterior inferred from all measurements and predictions for held-294

out measurements achieved an accuracy of 0.68 for L4SS, 0.58 for L5PT, and < 0.55 accuracy for295

all other measurements (0.5 being the chance level). This cross-validation approach indicated that296

the structural model paired with the SBI-enabled wiring rule enables us to make experimentally297

testable predictions. For example, one could predict connection probabilities of cell types different298

from the seven measured here or other connectivity features of the rat barrel cortex available in299

the structural model (see below).300

Using SBI to rule out invalid wiring hypotheses301

Above, we demonstrated that SBI provides a quantitative way to identify valid wiring rule configu-302

rations from a large set of hypothesized wiring rules. SBI can also be used to rule out invalid hy-303

potheses, e.g., to show that an existing hypothesis does not agree with empirical data. One such304

debated hypothesis in connectomics is the so-called Peters’ rule (Peters and Feldman, 1976; Brait-305

enberg and Schüz, 1991). According to this hypothesis, neurons form connections whenever their306

axons and dendrites are in close proximity, i.e., Peters’ rule can be formulated as “axo-dendritic307

proximity predicts connectivity” (Udvary et al., 2022). However, several empirical and theoretical308

approaches found substantial evidence against Peters’ rule (e.g.,Mishchenko et al., 2010; Kasthuri309

et al., 2015; Rees et al., 2017; Udvary et al., 2022).310

Here, we show that SBI provides an alternative, quantitative way to discard this hypothesis for311

the rat barrel cortex. We formulated two wiring rules that implement the proximity hypothesis in312

the structural model of the barrel cortex at two spatial scales: one predicting connections on the313

neuron-to-neuron level (Fig. 4) and one predicting synapse counts at the subcellular level (Fig. 5).314

Bothwiring rules have one free parameter, i.e., they incorporatemany different proximity hypothe-315

ses, but there is one particular parameter value corresponding to Peters’ rule. We used SBI to infer316

the posterior distribution over the rule parameters given the seven measured VPM-barrel cortex317

connection probabilities. Subsequently, we compared inferred parameter values and their predic-318

tions with those corresponding to Peters’ rule.319

Neuron-level rule320

At the neuron-to-neuron level, we defined the proximity of two neurons as the number of subvol-321

umes v they share in the structural model and introduced a threshold parameter acting on the322

proximity: Neurons i and j form a connection ci,j if the number of subvolumes vij that contain323

presynaptic structures of neuron i and postsynaptic structures of neuron j, exceeds a threshold324

parameter �tℎres:325

ci,j(�tℎres) = 1 if vij > �tℎres else 0. (3)
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a b cFigure 4. Neuron-level wiring rule inferred with SBI differs from Peters’ rule. We used SBI to infer a proximity-based wiring rule at different
spatial resolutions of the rat barrel cortex model and compared its predictions to that of Peters’ rule. (a) Distributions of the shared subvolumes
v between neurons in the barrel cortex model for each spatial resolution (subvolume edge length, see legend in (b)). (b) SBI posteriors inferred
over the connection threshold parameter of the wiring rule (�tℎres, number of shared subvolumes required to form a connection), shown for
each spatial resolution (colors), and for Peters’ rule assuming �tℎres = 1 (gray). (c) Connection probabilities simulated from the inferred posterior
(orange) and Peters’ rule (gray) compared to the measured connection probabilities (black).

To compare the resulting pair-wise connections between neurons in the barrel cortexmodel to the326

measured connection probabilities, wemapped them to the corresponding population connection327

probabilities as described above (see section Methods & Materials for details).328

The structural feature used in this rule is the number of shared subvolumes between two neu-329

rons (in contrast to the subcellular features used in the DSO rule above). This feature directly de-330

pends on the spatial resolution of the structural model, i.e., the edge length of the subvolume used331

to construct themodel. Therefore, we calculated the structural features at five different spatial res-332

olutions: 50, 25, 10, 5, and 1 µm. We found that the overall number of shared subvolumes among333

neurons increased with edge length, reflecting the increase in subvolume size (Fig. 4a).334

When applying Peters’ rule to the barrel cortex model at the neuron level, a connection oc-335

curs whenever two neurons share at least one subvolume, i.e., the connection threshold would be336

�tℎres = 1. Does this assumption hold for the barrel cortex at the neuron-to-neuron level as well? To337

answer this question quantitatively, we used SBI to infer the threshold parameter �tℎres of the neu-338

ron level rule for each edge length. We observed that the inferred threshold parameters shifted339

to larger values with increasing edge length, e.g., the higher spatial resolution, the fewer common340

subvolumes were required to obtain a connection (Fig. 4b). This was in line with our observation341

that the overall number of shared subvolumes available in the structural model increased with in-342

creasing edge length (Fig. 4a). However, irrespective of the spatial resolution, all inferred threshold343

parameters were substantially larger than the �tℎres = 1 of Peters’ rule, reaching from �tℎres ≈ 3 (pos-344

terior mean) for the 1 µm-subvolume model (Fig. 4b, orange) to �tℎres ≈ 28 for the 50 µm-subvolume345

model (Fig. 4b, violet). Accordingly, the comparison of the predictive performance of the inferred346

rule and Peters’ rule showed that only the data simulated from the inferred rule centered around347

the measured data (Fig. 4c, orange and gray, respectively).348

Synapse-level rule349

We repeated this test of Peters’ rule at the subcellular level as well. Here, we defined a probabilistic350

rule: Whenever a presynaptic structure of neuron i and a postsynaptic structure of neuron j are351

present within the same subvolume k, they form a synapse with probability �prob:352

ci,j,k(�prob) ∼ Bernoulli(�prob) if axon of i and dendrite of j are present in k. (4)

This rule predicts synapses for every neuron-pair-subvolume combination using the structural353

model with subvolumes of 1 µm edge length. To compare the simulated synapse counts to the354

measured connection probabilities, we calculated simulated connection probabilities as described355

above. The posterior distribution over the connection probability parameter �prob inferred with SBI356
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Figure 5. Synapse-level wiring rule inferred with SBI differs from Peters’ rule. We compared an SBI-inferred parametrized wiring rule
predicting synapse counts on the subcellular level with a corresponding formulation of Peters’ rule. (a) SBI posterior for the wiring rule
parameter � (probability of forming a synapse if two neurons are close), compared to Peters’ rule assuming � = 1 (gray). (b) Number of synapses
predicted by the inferred posterior (blue) and Peters’ rule (gray) compared to the number of presynaptic boutons realistically available in the
structural model (dashed black), plotted over the entire cortical depth of the barrel cortex column. (c) Connection probabilities simulated from
the inferred synapse level posterior (blue) and Peters’ rule (gray) compared to the measured connection probabilities (black).

centered around �prob ≈ 0.3 (Fig. 5a). This result suggests that in only thirty percent of the loca-357

tions where axon and dendrite are close to each other (shared 1 µm subvolume), the rule predicts358

a synapse, which is substantially lower than the value of �prob = 1 corresponding to Peters’ rule.359

Accordingly, simulating parameter values sampled from the posterior resulted in connection prob-360

abilities closer to the measured ones than those predicted by Peters’ rule (Fig. 5c, blue vs. gray).361

For another comparison of Peters’ rule with the inferred wiring rule at the synapse level, we362

leveraged the predictive properties of the structural model and the SBI posterior. In particular,363

the structural model provides access to estimates of the number of biologically available boutons364

across the cortical depth of the barrel cortex column (Udvary et al., 2022). The SBI posterior al-365

lowed us to simulate data according to the inferred wiring rule parameters. Thus, it was possible366

to compare the estimate of the number of empirically available boutons of each presynaptic VPM367

neuron with the number of simulated synapses from the inferred wiring rule and Peters’ rule. We368

found that the inferred rule predicted synapses close to or below the total number of available369

boutons (Fig. 5b), in contrast to Peters’ rule, which predicted more synapses than biologically plau-370

sible.371

Our results demonstrate how SBI can be applied to different wiring rules to quantitatively rule372

out a specific invalid hypothesis: One incorporates the hypothesis into a parametrized model and373

compares the SBI-inferred parameters to those corresponding to the hypothesis. In the case of Pe-374

ters’ rule, the inferred posteriors showed that axo-dendritic proximity alone cannot predict connec-375

tivity observed empirically in the rat barrel cortex—it consistently predicts too many connections376

(Fig. 4c,d). This finding is in line with previous results showing that the number of dendrites and377

axons close to each other exceeds the number of synapses by 1-2 orders of magnitude (Udvary378

et al., 2022). Thus, we can conclude that to explain connectivity in the rat barrel cortex, wiring rules379

cannot be based solely on axo-dendritic proximity. They also have to take into account subcellular380

features like pre- and post-synaptic structures along axons and dendrites.381

Discussion382

What principles are behind the complex connectivity patterns of neural networks that shape brain383

function? Connectomics aims to answer this question by acquiring detailed data about the struc-384

tural and functional composition of the brain. Over the last few years, the development of new385

computational approaches for analyzing the resulting large amounts of data and testing the de-386

rived hypotheses gained momentum (Triesch and Hilgetag, 2016; Peyser et al., 2019). One compu-387

tational approach is to leverage generative models for testing hypotheses about the connectome,388

e.g., to implement a hypothesized wiring rule in a computational model and ask whether model389
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simulations can reproduce themeasured connectivity patterns of a specific brain region (Váša and390

Mišić, 2022). However, identifying the free parameters in the wiring rule that reproduce measured391

connectivity data can be challenging.392

We introduced amethod that renders the generativemodeling approach to connectomicsmore393

efficient, enabling us to systematically infer all data-compatible parameters of a given compu-394

tational model. Instead of manually refining a specific generative model to match the data, we395

equipped it with parameters such that it represents several candidate hypotheses. We then used396

Bayesian parameter inference to infer the posterior distribution over model parameters condi-397

tioned on the measured data. The inferred distribution represents all candidate parameter con-398

figurations, i.e., hypotheses, capable of reproducing the measured data. By relying on simulation-399

based inference (SBI) methods that do not require access to the likelihood function of the model,400

we were able to apply our approach to the simulation-based generative models commonly used401

in computational connectomics.402

To demonstrate the utility of this approach, we employed it to constrain several wiring rules—403

at different spatial scales—with connectivity measurements from the rat barrel cortex. We first404

showed that the inferencemethod is accurate in a scenario with a ground-truth reference solution.405

Next, in the realistic setting with measured connectivity data, we retrieved many different wiring406

rule configurations that could explain the measured data equally well. Analyzing the geometrical407

structure of the inferred posterior distribution revealed strong correlations between wiring rule408

parameters that are in line with their biological interpretations. Importantly, we were able to accu-409

rately predict held-out connectivity measurements, demonstrating the method’s utility in making410

experimentally testable predictions. Finally, we used our approach to quantitatively show that a411

wiring rule based solely on axo-dendritic proximity cannot explain barrel cortex connectivity mea-412

surements. Overall, these results demonstrate the potential benefits of the Bayesian inference413

approach, i.e., having access to the full posterior distribution over model parameters rather than414

manually optimizing for individual parameters one hypothesis at a time and the flexibility of SBI in415

requiring only simulated data to perform inference.416

Related work417

The problem of identifying parameters of computational models that reproduce experimentally418

observed data has been addressed in computational connectomics before. For example, Vértes419

et al. (2012) built a model of functional connections between brain regions and used optimiza-420

tion methods to find single best-fitting parameters capturing the functional MRI data measured in421

humans. Klimm et al. (2014) and Betzel et al. (2016) used Monte Carlo sampling methods for op-422

timizing the parameters of synthetic networks of structural connectivity to match the topological423

properties of human connectomes recorded with MRI. In contrast to our approach, these studies424

do not perform Bayesian inference but rely on optimization techniques that identify single best-425

fitting solutions, potentially ignoring other parameters that fit the data equally well.426

While there have been Bayesian approaches to computational connectomics, they differed427

from the approach we proposed here. Jonas and Kording (2015) built a probabilistic model of428

cell type-dependent connectivity in the mouse retina and proposed a non-parametric Bayesian al-429

gorithm that automatically predicts cell types and microcircuitry from connectomics data. Klinger430

et al. (2021) performed Bayesian model comparison using a rejection-sampling approach (Toni431

et al., 2009) to compare a set of competing local circuit models in layer 4 of the mouse primary432

somatosensory cortex based on purely structural connectomics data. In contrast to our approach,433

they inferred the probabilities of several models whose parameters are fixed (i.e., model com-434

parison) and did not infer the parameter of individual models. Moreover, their approach relied on435

classical rejection-sampling techniques, which are less simulation-efficient compared to the neural-436

network-based SBI we employed andwill likely not scale to higher-dimensional inference problems437

(Figure S1b; for a detailed comparison, see Lueckmann et al., 2021). However, combining both ap-438

proaches, e.g., using more efficient neural-network-based model comparison techniques (Boelts439
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et al., 2019; Radev et al., 2021) followed by parameter inference with SBI, would be a promising440

direction for future research.441

Aside from the above examples, computationalmodels in connectomics are often implemented442

as complicated computer simulations that can generate simulated data but for which the underly-443

ing likelihood functions are not accessible, thus limiting our ability to perform Bayesian inference.444

To account for this limitation, we employed simulation-based inference (SBI, Cranmer et al., 2020)445

methods which only require simulations from the model to perform Bayesian inference. SBI has446

been applied previously in various fields, ranging from genomics (Bernstein et al., 2021), evolution-447

ary biology (Ratmann et al., 2007; Avecilla et al., 2022), computational and cognitive neuroscience448

(Gonçalves et al., 2020; Oesterle et al., 2020; Deistler et al., 2022b; Groschner et al., 2022; Sab-449

bagh et al., 2020; Hashemi et al., 2022), to robotics (Marlier et al., 2021), global health (de Witt450

et al., 2020) and astrophysics (Alsing et al., 2018; Dax et al., 2021). For the wiring rule exam-451

ples presented here, we used sequential neural posterior estimation (SNPE, Papamakarios and452

Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019), which performs neural-network-453

based conditional density estimation to estimate the posterior distribution from simulated data.454

Neural-network-based SBI approaches build on recent advances in probabilistic machine learning455

(Papamakarios and Murray, 2016; Le et al., 2017; Papamakarios et al., 2021) and exhibit several456

advantages compared to more classical rejection-sampling-based techniques, commonly termed457

Approximate Bayesian Computation (ABC, Sisson et al., 2018). For example, in contrast to ABC458

approaches, they do not require selecting a criterion for quantitatively comparing simulated with459

measured data. Furthermore, they can leverage the ability of neural networks to exploit continu-460

ities in the parameter space or automatically learn informative summary features from raw data.461

As a consequence, they are often more simulation-efficient (Suppl. Fig. S1b) and scale better to462

problems with more model parameters and high-dimensional data (Lueckmann et al., 2021).463

Applicability and limitations464

In this work, we applied SBI to the specific problem of inferring wiring rules that can generate ob-465

served connectivity data. A key advantage of SBI is that only data simulated from the model are466

required to infer the posterior distribution over model parameters. Thus, it is generally applicable467

to any computational model capable of simulating data from a set of parameters. To give spe-468

cific examples, one could make the algorithms for generating synthetic functional connectomes469

proposed by Vértes et al. (2012), Klimm et al. (2014), or Betzel et al. (2016) amenable to SBI by470

introducing parameters of interests and then use SBI to efficiently identify all data-compatible pa-471

rameter values.472

Posterior-targeting SBI approaches, like the NPE algorithm we used, have the additional ad-473

vantage that they can obtain the posterior distribution for new data points without retraining the474

underlying artificial neural networks, i.e., they perform amortized inference (see Papamakarios475

and Murray, 2016; Gonçalves et al., 2020, for details). Another advantage of SBI is that it can476

leverage the ability of neural networks to automatically learn informative summary features from477

observations (see Lueckmann et al., 2017; Chan et al., 2018; Greenberg et al., 2019; Gonçalves478

et al., 2020; Ramesh et al., 2022, for examples). While we did not exploit this feature for the low-479

dimensional measured data in the wiring rule examples presented here, we believe that it will480

be essential for future applications of SBI in computational connectomics, e.g., when dealing with481

high-dimensional dense reconstructions of electron-microscopy data (Shapson-Coe et al., 2021;482

MICrONS-Consortium et al., 2021; Turner et al., 2022).483

SBI’s dependency on simulated data and neural network training also entails several limitations:484

the inferred posterior distributions are only approximations of the unknown actual posterior distri-485

bution. Therefore, applying SBI requires careful evaluation of every problem at hand. In theory, SBI486

does recover the unknown posterior distribution when given enough training data (Papamakarios487

and Murray, 2016). In practice, however, the complexity and dimensionality of the posterior dis-488

tribution determine how many training simulations are required for an accurate approximation489
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of the posterior. Previous studies have successfully applied SBI in scenarios where the simulator490

has a runtime on the order of seconds and with up to thirty parameters (Gonçalves et al., 2020;491

Deistler et al., 2022b; Ramesh et al., 2022), but these numbers strongly depend on the problem492

and available computational resources.493

Another limitation of SBI is the problem of model misspecification. SBI generally assumes that494

the generative model is well-specified, i.e., that it can simulate data that is very similar to the mea-495

sured data. If this is not the case, then the inferred posterior can be substantially biased (Frazier496

et al., 2019; Cannon et al., 2022). We recommend performing prior predictive checks to detect497

model misspecification, i.e., generating a large set of simulated data with parameters sampled498

from the prior distribution and checking whether the measured data lies inside the distribution499

of simulated data, as demonstrated in the wiring rule example (Fig. 2d, see Supplementary mate-500

rial for details). Recent methodological work in SBI addresses this problem, e.g., by automatically501

detectingmodel misspecification (Schmitt et al., 2022) or by explicitly incorporating themodel mis-502

match into the generative model (Ward et al., 2022).503

More generally, applying SBI to new inference problems requires several choices by the prac-504

titioner, from prior predictive checks and model-checking to selecting suitable neural network ar-505

chitectures and validating the inferred posterior distribution. As a general guideline, we recom-506

mend following the steps we performed for the wiring rule example: First, we investigated the ac-507

curacy of SBI and estimated the required number of training simulations by testing it in a scenario508

with a known reference solution. Second, we ensured that the inferred posterior distribution has509

well-calibrated uncertainty estimates using simulation-based calibration (Talts et al., 2020). Third,510

we checked whether the parameter values identified by SBI accurately reproduced the measured511

data (see Methods & Materials for details). Additionally, we recommend guiding hyperparameter512

choices by resorting to well-tested heuristics and default settings available in open-source soft-513

ware packages developed and maintained by the community. We performed all our experiments,514

evaluation steps, and visualization using the sbi toolkit (Tejero-Cantero∗ et al., 2020).515

Conclusion516

We present SBI as a method for constraining the parameters of generative models in computa-517

tional connectomics with measured connectivity data. The key idea of our approach is to initially518

define a probability distribution over many possible model parameters and then use Bayesian pa-519

rameter inference to identify all those parameter values that reproduce the measured data. We520

thereby replace the iterative refinement of individual model configurations with the systematic521

inference of all data-compatible solutions. Our approach will be applicable to many generative522

modeling scenarios in computational connectomics, providing researchers with a quantitative tool523

to evaluate and explore hypotheses about the connectome.524

Methods & Materials525

Code availability526

Data and code for reproducing the results are available at https://github.com/mackelab/sbi-for-527

connectomics, including a tutorial on how to apply SBI in computational connectomics in general.528

For running SBI using SNPE, posterior visualization, and posterior validation, we used the sbi pack-529

age at https://github.com/mackelab/sbi (Tejero-Cantero∗ et al., 2020). The benchmarking of SNPE530

and SMC-ABCmethods, including the generation of reference posteriors, was performed using the531

sbibm package at https://github.com/sbi-benchmark (Lueckmann et al., 2021).532

Bayesian inference for computational connectomics533

We introduced Bayesian inference as a tool to identify model parameters of generative models534

in computational connectomics, given experimentally observed data. Bayesian inference takes a535

probabilistic view and defines themodel parameters and data as random variables. It aims to infer536
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the conditional probability distribution of themodel parameters conditioned on the observed data,537

i.e., the posterior distribution. Bayes’ rule defines the posterior distribution as538

p(�|xobs) =
p(xobs|�) p(�)

p(xobs)
, (5)

where p(xobs|�) is the likelihood of the data given model parameters, p(�) is the prior distribu-539

tion over model parameters and p(x) = ∫� p(x|�)p(�)d� is the so-called evidence. Thus, performing540

Bayesian inference requires three components:541

1. Experimentally observed data xobs.542

2. A likelihood p(xobs|�), which defines the relationship between model parameters and data.543

In our setting, the likelihood is implicitly defined by the computational model, i.e., by the544

simulator generating connectomics data x given model parameters �. The simulator needs545

to be stochastic, i.e., when repeatedly executed with a fixed parameter �, it should generate546

varying data. Technically, given a fixed parameter value �, the likelihood defines a probability547

distribution over x, and simulating data corresponds to sampling x ∼ p(x|�).548

3. A prior distribution p(�). The prior incorporates prior knowledge about the parameters �, e.g.,549

biologically plausible parameter ranges or known parameter correlations.550

The posterior distribution p(�|xobs) inferred through Bayes’ rule characterizes all model parameters551

likely to reproduce the observed data. For example, model parameters with a high probability un-552

der the posterior distribution will result in data close to the observed data. In contrast, parameters553

from low probability density regions will likely generate data different from the observed data.554

In most practical applications, it is hard to obtain an analytical solution to Bayes’ rule because555

the evidence p(x) = ∫ p(x|�)p(�)d� is challenging to calculate. There exists a large set of methods to556

perform approximate inference, e.g., Markov ChainMonte Carlo sampling (MCMC, Rosenbluth and557

Rosenbluth, 1955; Hogg and Foreman-Mackey, 2018). MCMC methods can be used to obtain sam-558

ples from the posterior distribution. However, they require evaluation of the likelihood function of559

the model, and computational models in connectomics are usually defined as scientific simulators560

for which no analytical form of the underlying likelihood is available or numerical approximations561

are computationally expensive.562

Simulation-based inference563

Simulation-based inference (SBI, Cranmer et al., 2020) allows us to perform Bayesian inference564

without numerical evaluation of the likelihood by requiring only access to simulations from the565

model. The idea of SBI is to generate a large set of pairs of model parameters and corresponding566

simulated data and use it as training data for artificial neural networks (ANN). The employed ANNs567

are designed to approximate complex probability distributions. Thus, they can be used to approxi-568

mate the likelihood to then obtain posterior samples via MCMC (Papamakarios et al., 2017; Lueck-569

mann et al., 2019; Hermans et al., 2020; Boelts et al., 2022) or the posterior distribution directly570

(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). Once trained,571

the neural networks are applied to the experimentally observed data to obtain the approximate572

posterior. In our work, we used an SBI approach called sequential neural posterior estimation (SNPE,573

Papamakarios and Murray, 2016; Greenberg et al., 2019).574

Neural posterior estimation575

Neural posterior estimation (NPE) uses an artificial neural network F (x) to learn an approximation576

of the posterior from training data pairs {(�i, xi)}Ni=1, where � is sampled from a prior �i ∼ p(�), and577

x is simulated from the model xi ∼ simulator(�i). The density estimator F (x) is trained to construct578

a distribution that directly approximates the posterior. It is usually defined as a parametric family579

q� with parameters �, e.g., a mixture density network (MDN, Bishop, 1994), or a normalizing flow580

(Papamakarios et al., 2021). For example, suppose q is a mixture of Gaussians, then F would581
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take the data as input and predict the parameters �, � = F (x), where � contains the means, the582

covariance matrix, and the mixture weight of each mixture component. F (x) is trained to predict583

the parameters � from x by minimizing584

− 1
N

N
∑

i=1
log q�=F (xi)(�i|xo).

This training loss implicitly minimizes the Kullback-Leibler divergence between the true poste-585

rior and the approximation q�(�|x). It will converge to zero, i.e., NPE will infer the true posterior, in586

the limit of infinite training data and given density estimator that is flexible enough (Papamakar-587

ios and Murray, 2016; Le et al., 2017). Algorithm 1 summarizes the algorithmic steps of NPE; see588

Greenberg et al. (2019) for details.589

Once NPE is trained on simulated data, it can be applied to the actual observed data xobs, e.g.,590

� = F (xobs), to obtain an approximation to the desired posterior:591

q�(�|xobs) ≈ p(�|xobs). (6)

Importantly, NPE applies to any newly observed data without retraining the density estimator, i.e.,592

the inference with NPE is amortized. There is also a sequential variant of NPE called SNPE, where593

the training is performed over several rounds to focus the density estimator on a specific obser-594

vation xobs. In each new round of SNPE, the new training data is not generated with parameters595

sampled from the prior but from the posterior estimate of the previous round. While the sequen-596

tial approach can be substantially more sampling-efficient compared to NPE, i.e., requiring fewer597

training simulations to obtain a good posterior approximation for a given xobs (Lueckmann et al.,598

2021), it comes with two caveats. First, it requires retraining for every new xobs. Second, using a pro-599

posal distribution different from theprior for simulating newdata requires a correction, resulting in600

additional algorithmic choices and challenges. Over the last few years, different approaches have601

been proposed to perform this correction (Papamakarios and Murray, 2016; Lueckmann et al.,602

2017; Greenberg et al., 2019; Deistler et al., 2022a). We used SNPE with the correction proposed603

by Greenberg et al. (2019).604

Algorithm 1: Single round Neural Posterior Estimation as in Papamakarios and Murray
(2016)
input simulator p(x|�), prior p(�), observed data xobs
for j = 1 ∶ N do

Sample �i ∼ p(�)
Simulate xi ∼ p(x|�i)

end
� ← argmin−1∕N

∑N
i log qF (xi ,�)(�i)

Set p̂(�|xo) = qF (xobs ,�)(�)
return Samples from p̂(�|xobs); density estimator qF (x,�)(�)

Posterior validation605

In theory and with unlimited training data, NPE will converge to the true (unknown) posterior dis-606

tribution. However, training data is limited in practice, and the underlying posteriors can be high-607

dimensional and complex. Thus, it is essential to validate the approximate posterior. There are608

two common techniques for validating SBI even in the absence of a reference posterior: predictive609

checks (Gelman et al., 2020) and calibration checks, e.g., simulation-based calibration (SBC, Cook610

et al., 2006; Talts et al., 2020).611

Boelts et al. 2023 | Simulation-based inference for computational connectomics bioR� iv | 16 of 30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.01.31.526269doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.31.526269
http://creativecommons.org/licenses/by/4.0/


Predictive checks612

Predictive checks can be applied to either the prior or the posterior. The prior predictive check is613

applied before the inference. It checks whether the model can produce data close to the experi-614

mentally observed data xobs, i.e., that the distribution obtained by sampling from the prior and sim-615

ulating the corresponding data contains xobs. If this is not the case, the model or the prior could be616

misspecified and should be refined before applying SBI. We performed the prior predictive check617

for the DSO rule simulator by sampling 100,000 parameters from the prior and ensuring that the618

resulting distribution of simulated connection probabilities covers the sevenmeasured values (see619

Prior predictive checks for details).620

The posterior predictive check tests the predictive performance of the posterior. It should be621

applied after the inference by simulating data using parameters sampled from the posterior:622

xp ∼ simulator(�p) where �p ∼ p(�|xobs).

The simulated data should cluster around the observed data with a variance on the order of the623

variance expected from the simulator. We performed this check for all inferred wiring rules by sim-624

ulating 1,000 data points using 1,000 parameters sampled from the corresponding SBI posterior.625

Simulation-based calibration626

The variance of the posterior distribution expresses the uncertainty in the parameters. Simulation-627

based calibration (SBC) provides a way to check whether these uncertainties are, on average, well-628

calibrated, i.e., that the posterior is (on average) neither too broad (under-confident) nor too nar-629

row (over-confident). The basic idea of SBC is the following. Suppose one uses an SBI method630

to obtain i = 1,… , N different posteriors p(�|xi) for different observations xi generated from dif-631

ferent parameters �i sampled from the prior. If one determines the rank of each parameter �i632

among samples from its corresponding posterior p(�|xi), then the posteriors obtained with this633

SBI method have well-calibrated uncertainties if the collection of allN ranks follows a uniform dis-634

tribution (Talts et al., 2020). To check whether the posterior obtained with SBI is well-calibrated,635

we repeated the inference with NPEN = 1000 times (no retraining required), using data generated636

from the simulator with parameters sampled from the prior. Subsequently, we performed a vi-637

sual check for uniformity of the corresponding SBC ranks by comparing their empirical cumulative638

density function against that of a uniform distribution.639

A generative structural model of the rat barrel cortex640

We demonstrated the utility of SBI for computational connectomics by constraining wiring rules in641

a structural model of the rat barrel cortex with connectivity measurements. To fulfill the prereq-642

uisites of Bayesian inference defined above, we set up a simulation-based model for simulating643

wiring rules in the barrel cortex model. The wiring rule simulator has three components:644

1. a structural model that provides features (Fig.2a),645

2. a parametrized wiring rule that is applied to the features to simulate a connectome (Fig.2b),646

3. calculation of summary statistics from the simulated connectome to match the available mea-647

surements (Fig.2c).648

The structural model649

The structural model is a digital reconstruction of the rat barrel cortex constructed from detailed650

measurements of cell types and their morphologies, locations, and sub-cellular features, includ-651

ing single boutons and dendrites, obtained from several animals (Meyer et al., 2010, 2013; Egger652

et al., 2012, 2014; Narayanan et al., 2015; Udvary et al., 2022). These measurements and their653

digital reconstructions were copied and arranged according to measured cell type distributions654

in all cortical layers to obtain a realistic estimate of the structural composition of a large part of655
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the entire barrel cortex. The model contains around 477,000 excitatory and 77,000 inhibitory neu-656

rons, resulting in more than 5.5 billion synaptic sites. Furthermore, it incorporates the projections657

from the ventral posterior medial nucleus (VPM) of the thalamus to all cortical layers. The model658

gives access to several cellular and subcellular structural features, including presynaptic boutons659

and postsynaptic target counts (spine densities). These features were collected for every neuron660

segment in every subvolume of the model. The model does not contain synaptic connections but661

only the structural features. Thus, it allows to simulate the effect of different wiring rules by apply-662

ing the rule to the structural features and comparing the resulting connectome to experimental663

measurements (Udvary et al., 2022).664

Dense structural overlap wiring rule665

We applied a wiring rule to the structural model to turn it into a simulation-based model that can666

generate simulated connectomes of the rat barrel cortex. As a wiring rule, we used the dense struc-667

tural overlap (DSO) rule introduced by (Egger et al., 2014; Udvary et al., 2022), which proposes that668

two neurons form a synapse depending on their locally available structural subcellular features669

summarized as DSO. The DSO is the product of the numbers of pre- and postsynaptic structures,670

pre and post, that a presynaptic neuron i and a postsynaptic neuron j contribute to a subvolume k671

relative to the total number of postsynaptic structures contributed by all neurons, postAll (Fig.2b):672

DSOi,j,k =
prei ⋅ postj
postAllk

. (7)

We assumed that the number of connections between any neuron pair (i,j) within a subvolume k673

is given by a Poisson distribution with the DSO as the rate parameter (Egger et al., 2014, Fig.2c):674

cijk ∼ Poisson(DSOi,j,k).

The DSO rule is stochastic, i.e., it samples different synapse counts every time it is applied to the675

structural model. However, the contribution of each structural feature to the DSO is fixed. To676

allow for more flexibility in the relative weighting of each feature, we generalized the DSO rule by677

introducing three scaling parameters for the three structural features, �pre, �post, and �postAll:678

DSOi,j,k(�) =
pre�prei ⋅ post�postj

postAll�postAllk

. (8)

We rewrote the parametrized rule as a Poisson generalized linear model (GLM, Nelder and Wedder-679

burn, 1972) by transforming the features to the logarithmic space, stacking them as column vectors680

in a feature matrixXijk = [log pre(i, k); log post(j, k); − log postAll(k)] and arranging the scaling param-681

eters in a vector �:682

DSOi,j,k(�) = exp
⎛

⎜

⎜

⎝

log
⎛

⎜

⎜

⎝

pre�prei ⋅ post�postj

postAll�postAllk

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

= exp
(

�pre log prei + �post log postj − �postAll log postAllk
)

= exp(�⊤Xijk)

cijk(�) ∼ Poisson(exp(�⊤Xijk)).

The generalized version of the DSO rule takes parameter combination � and generates simulated683

connectomes in the format of synapse counts. Each new parameter setting corresponds to a dif-684

ferent variant of the DSO rule that could have generated the measured data. Note that setting685

� = [1, 1, 1]⊤ would result in the expression introduced in equations 7 and 8.686
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Mapping from simulated connectomes to measured connectivity data687

The generalized DSO rule and the chosen prior distribution jointly define a space of simulated con-688

nectomes associated with the DSO rule. The last step for constructing a simulation-based model689

is to map the simulated connectomes to the type of data that can be measured empirically. The690

measurements available for the barrel cortex are connection probabilities estimated from pair-691

wise recordings between neurons in the ventral posterior medial nucleus (VPM) of the thalamus692

and different layers and cell types in the cortex: to layer 4 (L4), layer 4 septum (L4SEP), layer 4 star693

pyramidal cells (L4SP), and layer 4 spiny stellate cells (L4SS) (all measured by Bruno and Sakmann,694

2006), layer 5 slender-tufted intratelencephalic cells (L5IT), layer 5 thick-tufted pyramidal tract cells695

(L5PT), and layer 6 (all measured by Constantinople and Bruno, 2013).696

While the simulated connectome provided access to all neuron-pair-subvolume combinations697

in the structural model, the measurements were given only as estimated connection probabilities698

for different cell types. To calculate these connection probabilities from the simulated connectome,699

we identified the pairs from the presynaptic and postsynaptic neuron populations used in the ex-700

periments and calculated the connection probabilities from the corresponding simulated synapse701

counts. The number of probed neuron pairs was relatively small in the experiments, e.g., around702

50 (Bruno and Sakmann, 2006). We tried to mimic this experimental setting in the simulation by703

selecting a random sample of 50 pairs from the thousands of possible pairs available in the simu-704

lated connectome. We then checked how many of those neuron pairs connected with at least one705

synapse for each of the seven populations. Algorithm 2 summarizes the steps for calculating the706

summary statistics.707

Algorithm 2:Wiring rule simulator and summary statistics calculation
input structural model S, wiring rule R(�), parameter � ∼ p(�), measured connectivity data
xobs

Simulate:
generate synapse counts for each neuron-pair i, j in each subvolume k:
cijk ∼ simulator(S,R,�)

Summarize:
for each population mmeasured in xobs do

Find index set of neuron pairs Πm belonging to population m
Sample 50 random neuron-pair indices � ∼ Πm
Estimate population connection probability as average over connected pairs:
∑

(i,j)∈�
I(i→j)
|�|

end
return simulated connectivity data x

Overall, this provided us with a setup to perform Bayesian inference as defined above, to con-708

strain the parameters of a hypothesized wiring rule in the rat barrel cortex:709

1. observed data xobs given by seven measured connection probabilities between VPM and bar-710

rel cortex711

2. a stochastic simulation-based model that generates simulated data x according to the hy-712

pothesized DSO rule, given parameters �713

3. a prior over model parameters �714

This setup readily extends to other observed data, other simulation-based models, or priors.715
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Experimental settings716

Simulation and SBI settings717

For performing SBI on the DSO rule parameters, we used a Gaussian prior over the three parame-718

ters:719

� ∼ (�0 = [1, 1, 1]⊤,Σ0 = 0.5 I). (9)

We chose the variance of the prior such that the distribution of simulated connection probabilities720

covered the range [0, 1] densely (see Supplementary material for details).721

For the inference on the distance-based wiring rules, we used a uniform prior over the shared722

subvolume threshold parameter �tℎres of neuron-level rule723

�tℎres ∼  (0, 100),

and a Beta distribution prior over the synapse probability parameter �prob of the synapse level rule724

�prob ∼ Beta(� = 2, � = 2).

The settings for generating training simulations for SBI were the same for all results: We drew725

1,000,000 parameter values from the prior and simulated the corresponding synapse counts or726

neuron-level connections, followed by the summary step (except for the simulator used for bench-727

marking, see below).728

To perform SBI, we used (S)NPE with Neural Spline Flows (NSF, Durkan et al., 2019) as den-729

sity estimator. The NSF hyperparameters were: five transforms, two residual blocks of 50 hidden730

units each, ReLU non-linearity, and ten spline bins, all as implemented in the public sbi toolbox731

(Tejero-Cantero∗ et al., 2020). The training was performed with a training batch size of 1, 000, a732

validation set proportion of 10%, and a convergence criterion of 20 epochs without improvement733

of validation loss. We used the different versions of NPE or SNPE as follows: For the benchmark of734

SBI against the MCMC reference posterior, we compared the non-sequential (NPE) and sequential735

version (SNPE). For evaluating SBI with simulated data, we used the NPE to leverage its ability to736

perform inference repeatedly for many different observations without retraining as needed for737

running simulation-based calibration. For the inference on the DSO rule, we used SNPE with ten738

rounds to focus the posterior on themeasured data. For the inference on the distance-based rules,739

we used NPE.740

Validating SBI on the wiring rule simulator741

We performed two validation steps to ensure that SBI performs reliably when inferring wiring rules742

in the structural model of the rat barrel cortex. First, we set up a simplified version of the DSO743

rule simulator for which it was possible to obtain a high-quality reference posterior. In particu-744

lar, we reduced the number of neuron-pair-subvolume combinations from 130 million available745

in the original structural model to only ten. Additionally, we omitted the summary step, such that746

running one simulation corresponded to applying the rule to the structural features of the ten747

neuron-pair-subvolume combinations and sampling synapse counts from the corresponding Pois-748

son distribution. As a consequence, the likelihood of this simplified simulator was accessible, i.e., it749

was given by the Poisson distribution, and it was possible to obtain accurate posterior samples us-750

ing standard approximate Bayesian inference MCMC sampling (Hogg and Foreman-Mackey, 2018).751

We implemented this reduced simulator in the SBI benchmarking framework sbibm (Lueck-752

mann et al., 2021) and obtained references posterior samples via slice sampling MCMC (Neal,753

2003) using ten parallel chains and sequential importance reweighting (Rosenbluth and Rosen-754

bluth, 1955; Lueckmann et al., 2021), all as implemented in sbibm. We compared three algorithms:755
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SNPE, which estimates the posterior in multiple rounds focusing on one specific observation; the756

single-round variant NPE, which works formany observations without retraining; and a classical se-757

quential rejection-sampling-based algorithm called SMC-ABC (Sisson et al., 2007; Beaumont et al.,758

2009). As a measure of posterior accuracy, we used the classifier-2-sample-test score (C2ST Lopez-759

Paz and Oquab, 2018), defined by the classification accuracy of an artificial-neural-network clas-760

sifier trained to distinguish the approximate and reference posterior samples. For running SNPE761

and NPE, we used the sbi toolbox (Tejero-Cantero∗ et al., 2020), and for SMC-ABC, we used the im-762

plementations provided in sbibm. Generating the training data for the SBI algorithm by simulation763

data from themodel can be a crucial computational factor. To investigate the simulation efficiency764

of different SBI algorithms for our inference problem, we performed a quantitative comparison of765

the number of training simulations and the resulting accuracy of the approximate posterior by re-766

peating inference with SMC-ABC, NPE, and SNPE for a simulation budget of 1,000; 10,000; 100,000767

and 1,000,000 simulations.768

As a second validation step, we applied SBI to the original version of the DSO rule for which769

no reference posterior was available. For this setting, we tested the validity of NPE applied to770

simulated observed data. First, we performed simulation-based calibration (SBC) to check the771

calibration of the posterior uncertainties inferred by NPE. To run SBC, we trained NPE once on772

1,000,000 simulations and then obtained 1,000 different posteriors p(�|xi) for different observa-773

tions xi, where xi was generated from different parameters tℎetai sampled from the prior. We774

then collected the individual ranks of the underlying parameter �i under their posterior and tested775

whether these ranks were uniformly distributed by visually inspecting their empirical cumulative776

density functions. Second, we checked whether the parameters identified by the NPE posterior777

distribution could reproduce the (simulated) observed data. To perform this check, we sampled778

1,000 parameters from the posterior inferred given a simulated example observation, simulated779

corresponding connection probabilities using the DSO rule simulator, and compared them to the780

observed data.781
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Supplementary Figure S1. Validating SBI over wiring rule parameters with simulated data. (a) Comparison of the posterior over wiring
rule parameters inferred with SBI (using the SNPE algorithm, blue) and the reference solution (ground-truth parameters in black). (b) Inference
accuracy in terms of classifier-2-sample-test accuracy (C2ST) between reference solution and three SBI algorithms, plotted as a function of
training simulations (0.5 is best, error bars show standard error over ten different observations). (c) Distributions of posterior ranks from
Simulation-based calibration, obtained for each parameter separately from NPE applied to the full version of the DSO rule simulator. A
well-calibrated posterior should have uniformly distributed ranks, as indicated by the area shaded gray. (d) Comparison of data simulated with
samples drawn from the NPE posterior (posterior predictive distribution, orange) and the underlying observed data (simulated, black).
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Supplementary Figure S2. Predictive distributions. Comparison of connection probabilities simulated from the prior (gray), the SBI posterior
(colors), and the measured data (black). Shown for the dense structural overlap rule (DSO) (see Results) in (a) and for the proximity-based wiring
rules on the neuron level and the synapse level in (b). The prior predictive distributions cover a wide range of values, whereas the posterior
predictive distributions cluster around the measured connection probabilities taking into account the measurement noise.

Supplementary material1015

Prior predictive checks1016

An essential requirement for a generative model is that it can actually generate the measured1017

data, i.e., that the model is not misspecified. The prior predictive distribution shows all data that1018

can be generated by the model when sampling parameters from the prior. Thus, this distribution1019

provides a tool to check for misspecification. For the wiring rule simulator, the prior predictive is a1020

seven-dimensional distribution (Fig. S4b).1021

We found that with the chosen setting of the prior, simulator, and summary statistics (see Al-1022

gorithm 2), the prior predictive distribution covers a large range of plausible values, including the1023

experimental measurements (Fig. S4b). The two-dimensional marginals show strong positive cor-1024

relations between all seven connection probabilities and additional blocks of stronger correlations1025

within layer 4 (L4, L4SEP, L4SP, L4SS) and layer 5 (L5PT, L5IT), visible in the correlations matrix1026

(Fig. S4a). These correlations are plausible because all populations share the same source popula-1027

tions in the thalamus, and the blocks of stronger correlations correspond to connection probabili-1028

ties within the same target layer in the cortex. Furthermore, depending on the number of neuron1029

pairs used to calculate connection probabilities (seeMapping from simulated connectomes tomea-1030

sured connectivity data), the simulator accurately matches the empirical variance expected from1031

the measured data (Fig. S4c). These results indicated that a subsampling of 50 pairs was adequate1032

to model the experiments.1033

Alternative parametrizations of the dense structural overlap rule1034

The strong conditional correlations between the three parameters of the dense structural overlap
rule (DSO, see Posterior analysis reveals biologically plausible parameter interactions) indicated
that an alternative parametrization of the DSO rule, e.g., using only two parameters, could also be
able to explain the measured data. We tested this hypothesis by changing the DSO rule as follows.
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Supplementary Figure S3. Conditional posterior distributions. We obtained conditional posterior distributions for the DSO rule (see Results)
by conditioning one of the three parameters to a value drawn from the posterior. The resulting two-dimensional posterior over �pre and �post (a),
�pre and �postAll (b) and �post and �postAll (c), showed strong correlations as visible on the off-diagonal two-dimension marginals.

The initial formulation of the rule is given by

DSOi,j,k(�) =
pre�prei ⋅ post�postj

postAll�postAllk

. (10)

The postAll structural feature in the denominator contains the post-synaptic target densities of all
post-synaptic structures in a given subvolume k of the structuralmodel, including the postj features.
It acts as a normalizing factor for the rule, e.g., when the weight �post increases, a corresponding
increase in �postAll can maintain a similar overall DSO value. We changed the DSO rule by removing
the parameter �postAll, but including the scaled features post�postj into postAll, instead of only taking
post. By taking the scaled version, we maintained the normalizing property of the denominator of
the DSO rule: If �post was high, in the initial three-parameter formulation of the DSO rule, this could
be compensated by a corresponding increase in �postAll. While this was not possible anymore in the
two-param version, the compensation occurred implicitly by including the scaled postj features:

DSOi,j,k(�) =
pre�prei ⋅ post�postj

(post�postj + postAllk,¬j)
. (11)

We performed SBI using the same settings as before to obtain the posterior distribution over1035

the two parameters of the reduced DSO rule (Fig. S5a). The resulting posterior predictive distri-1036

bution showed similar accuracy to the one of the three-parameter DSO rule (compare Fig. S5b1037

versus Fig. 3b). This result indicates that the two-parameter DSO rule provides an alternative to1038

the three-parameter rule.1039
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Supplementary Figure S4. Prior predictive distribution for the DSO rule. (a) Estimated correlation matrix of the seven connection
probabilities generated from the model (note the restricted range of the color map). (b) Marginal plot of the prior predictive distribution
showing data simulated from 10k samples from the prior; one-dimensional marginal as histograms on the diagonal and two-dimensional
marginals as scatter plots on the upper triangular subplots; literature data in black. (c) Size of the random subset of neuron pairs used to
calculate the connection probabilities plotted against the resulting standard deviation (std) in the simulated connection probabilities. Calculated
from 1,000 simulations given the same parameters, averaged over the seven connection probabilities (blue); compared with the empirical
variance expected from the sample sizes used in the experiments in the literature (black).
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Supplementary Figure S5. SBI results for the two-parameter DSO rule. (a) Posterior distribution (blue) over the two parameters of the
reduced DSO rule, inferred with SBI given the seven measured connection probabilities and the corresponding prior distribution (gray). (b)
Connection probabilities simulated with parameters sampled from the posterior (blue) and the prior (gray), compared to the measured
connection probabilities (black, Bruno and Sakmann, 2006; Constantinople and Bruno, 2013). (c) Distribution of posterior ranks for every rule
parameter, calculated with simulation-based calibration (orange), compared to the desired uniform distribution (gray area on the diagonal).
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