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Statistically inferring neuronal connections from observed spike train data is a standard procedure
for understanding the structure of the underlying neural circuits. However, the inferred connections
seldom reflect true synaptic connections, being skewed by factors such as model mismatch, unob-
served neurons, and limited data. On the other hand, spike train covariances, sometimes referred
to as “functional connections,” make no assumption of the underlying neuron models and pro-
vide a straightforward way to quantify the statistical relationships between pairs of neurons. The
main drawback of functional connections compared to statistically inferred connections is that the
former are not causal, whereas statistically inferred connections are often constrained to be. How-
ever, we show in this work that the inferred connections in spontaneously active networks modeled
by generalized linear point process models strongly reflect covariances between neurons, not causal
information. We investigate this relationship between the neuronal connections inferred with model-
matched maximum likelihood inference and the corresponding spike train covariance in a nonlinear
spiking neural network model. Strong correlations between inferred neuronal connections and spike
train covariances are observed when many neurons are unobserved or when neurons are weakly cou-
pled. This phenomenon occurs across different network structures, including random networks and
balanced excitatory-inhibitory networks. A theoretical analysis of maximum likelihood solutions in
analytically tractable cases elucidates how the inferred filters relate to ground-truth covariances of
the neurons, and opens the door for future investigations.

INTRODUCTION

Identifying the strength and timescales of synaptic transmission between neuron pairs offers enormous opportunities
to study how the computational properties of a network are shaped by its structure, which is of great interest not
only to neuroscience and network science in general. Therefore, statistical methods to infer interactions between
neuron pairs in simultaneously recorded spike train data become extremely valuable for understanding the encoding
and decoding properties of many biological neural networks [1], although the inferred connections are oftentimes
called “functional” or “effective” interactions to distinguish it from the true synaptic interactions. In the past decade,
“shotgun” and “perturbation” based paradigms have been proposed with the hope that causal connection can be
measured or inferred [2, 3], to overcome the fact that experimentally determining the true underlying dynamics of
neuron pairs in large networks is still challenging and computationally expensive.

While it is desirable to map out the relationship between network properties and the true underlying network struc-
ture, it is generally difficult, if not impossible, to recover the true neuronal connections from recorded spike trains
alone. This difficulty is exacerbated by the fact that only a fraction of neurons in a circuit can be recorded simultane-
ously in practice [4, 5]. Spike train covariance, on the other hand, offers an easy and straightforward way to quantify
how neuron activities co-vary and makes no assumption of the underlying neuron model. While previous work has
established the analytical relationships between the hidden neuron connections and the effective neuronal connections
for observed neurons [4], how the statistically inferred effective connections from common inference procedures relate
to the true causal connections and the spike train covariances is largely unknown.

To better understand how the synaptic interactions between neurons inferred in a statistical relate to the ground
truth connections in the underlying generative model, we build a generalized linear point process model (GLM) to
simulate spike trains in a 64 neuron network, and infer the effective neuronal connections between pairs of neurons
using maximum likelihood estimation (MLE). We focus on the effect that subsampling neurons in the network has on
the inferred connections, minimizing other possible artifacts by using the GLM as both our generative model and the
model we use for inference.

This paper is organized as follows: in Results we first study how using different numbers of observed neurons and
different amounts of spike train data in MLE affects the inferred filters, as compared to the ground-truth coupling
filters, in MLE inferred filters vary as the number of observed neurons and data volume vary. We then show that the
inferred filters strongly correlate with the empirically estimated covariances, with the correlation growing stronger
as fewer neurons are observed or when synaptic connections are weak, in Spike train covariances strongly correlate
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with MLE inferred filters in sub-sampled networks. This finding is shown to hold for both random networks and
networks with a more realistic balanced excitatory-inhibitory (EI) structure. As detailed in Analytic analysis of
maximum likelihood inference using a Gaussian process approximation, for the specific case of a GLM with exponential
nonlinearity, we are able to show analytically that the synaptic filters only have access to information about the
statistical moments of the spike train process, which are non-causal, as opposed to response functions that encode
causal information about network responses. We explicitly solve the maximum likelihood equations for the filter of a
single observed neuron in some example networks, and contrast the result with the filters predicted by marginalizing
out unobserved neurons [4]. We conclude in Discussion by addressing the interpretation of our results in the context
of neuronal connection inference (Interpretation of the results) and comparing our results to those of related studies
(Comparison to other work), as well as discussing the limitations of our approach and future directions for extensions
of this work (Limitations of the study and future directions).

RESULTS

We build a generalized linear point process model (GLM) to simulate the spiking activities in an Erdős-Réyni
(random) network of 64 neurons. This GLM can be interpreted as a model for the spike trains of a stochastic
leaky integrate-and-fire model [6]. We use this as our generative model because this family of GLMs has been used
extensively to fit neuron spike train data [1, 7]. In this model, the number of spikes a neuron i fires within a small
window [t, t+ dt], ṅi(t)dt, follows a Poisson process conditioned on its past history,

ṅi(t)dt ∼ Poiss

Φ
µi +

∑
j

Jij ∗ ṅj

 dt

 , (1)

where Φ(x) is a nonlinear activation function, µi is the baseline drive for neuron i that sets the baseline firing rate,

Jij(t) is the interaction or coupling filter from neuron j to neuron i, and Φ
(
µi +

∑
j Jij ∗ ṅj

)
gives the instantaneous

firing rate of neuron i at time t, with Jij ∗ ṅj =
∫ t

−∞ dt′ Jij(t − t′)ṅj(t
′). We choose an exponential nonlinearity

Φ(x) ∝ exp(x), both for the mathematical simplifications it offers and following previous work fitting neural spike
trains [1].

There are few situations in which all neurons in a circuit can be recorded all at once; in most cases, such as in
vivo recordings, only a subset of the neurons is observed. For example, in Fig. 1A, 3 neurons are observed out of a
64-neuron network, and the observed spike trains are displayed in Fig 1B. Thus, with the recorded spike train data
we will only be able to statistically infer the neuronal connections between observed neuron pairs (though see [8–10]
for attempts to infer unobserved units). To do so, we partition neurons into “observed” and “hidden” groups, and fit
the model above only for the neurons in the observed group:

ṅi(t)dt ∼ Poiss

Φ
µ̂i +

∑
j∈obs

Ĵij ∗ ṅj

 dt

 ,

where neuron indices i, j are only in the group of observed neurons and Ĵij(t) and µ̂i are to be inferred. We numerically
infer these unknowns with our simulated spike train data by maximum likelihood estimation (MLE). The procedures
of simulating the spike trains and inferring the neuronal connection with MLE are discussed in depth in Spike train
simulation with a linear-nonlinear Poisson cascade model and Neuronal connection inference with maximum likelihood
estimation.

In order to infer the synaptic filters Ĵij(t), one must parametrize the function, either by inferring the value of
the filter at each time point (requiring as many parameters as the number time-bins used to represent the filter) or
by representing them as weighted sums of basis functions and inferring the unknown weights. The basis function
approach reduces the number of unknowns to the number of basis functions used, which requires less data than
inferring each time point. However, the families of filter shapes that can be inferred are constrained by one’s choice of
basis functions, whereas inferring each time-point can represent any function given enough temporal resolution and
data. In practice, the basis function representation is preferred, but for our analyses the time-point inference will
reveal interesting relationships between the inferred filters and ground truth properties of the network.

In Fig. 1C, we show an example of the inferred coupling filters of the 3 observed neurons, both with and without
using basis functions, in red solid lines and dots, respectively. As expected, the two approaches yield similar results,
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although the filters inferred without basis functions tend to be noisier. Notably, the inferred filters differ from the
ground truth filters because only 3 out of 64 neurons in the network are observed, and interactions from the rest
of the 61 hidden neurons to these 3 observed neurons are generally significant. We also show the normalized spike
train covariances in grey bars along with the inferred filters. Surprisingly, the spike train covariances follow the
filters inferred without basis functions fairly closely. This observation leads to our study of when and how those two
seemingly different quantities correlate to each other.
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FIG. 1. Schematics of the hidden neuron problem and effective neuronal connection inference. A. A network of
interconnected neurons with three observed and others hidden. B. Neuron spike trains recorded from three observed neurons,
shown only for 500 s window. C. Neuronal connection/coupling filter inference with maximum likelihood estimation based on
recorded spike trains. Filters inferred with and without using basis functions are shown, which are compared to the ground-
truth coupling filters in blue dashed lines. Normalized spike train covariance is shown in gray bars with the scale on the right.
The 0 lag correlation is suppressed for visualization purposes. The spike train correlations closely match the filters inferred
without using basis functions.

MLE inferred filters vary as the number of observed neurons and data volume vary

It is expected that the inferred filters will not accurately recover the ground-truth filters when the inference model
differs from the true underlying neuron models or if there exist unobserved neurons [4, 5]. In this work, we focus on
model-matched inference where the inference model is the same as the ground-truth neuron model. Fig. 2A shows how
the inferred filters change when different numbers of neurons are observed in the network, ranging from only 2 neurons
to 64, the fully observed case. In this example, inferred filters in the fully observed case match the ground truth,
while the inferred filters with fewer observed neurons differ more and more from ground-truth. It is worth noting that
neither model-matched inference nor observing all neurons in a biological neural network is easily achievable in real
experiments, thus understanding what role the subsampling plays in statistically inferred filters is important.

In addition to the number of observed neurons, the inference procedure is also constrained by the amount of spike
train data available in the inference. In Fig. 2B, we inferred the 4 pairwise coupling filters for the first 2 neurons in
the network using different amounts of spike train data. Our results confirm the intuition that using less data for
inference leads to noisier inferred filters. However, it is also important to note that a coupled GLM is unlikely to be
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identifiable. This means that it is not guaranteed that the ground truth synaptic interactions are recovered in the
fully observed network in the limit of infinite data.
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FIG. 2. Maximum-Likelihood estimation (MLE) of coupling filters change as observed neurons and spike train
data volume change. A. The MLE inferred coupling filters for 2 neurons out of the 64 neurons network with 2 million
spike train data, when different amounts of neurons are observed. MLE inferred coupling filters without using basis functions
approach the ground truth filters in the fully observed case (64 neurons observed). However, when hidden neurons exist, the
MLE inferred coupling filters differ from the ground truth as expected, as it differs more with fewer observed neurons. B. MLE
inferred filters in the fully observed case, with different amounts of spike train data used in MLE inference. When more spike
data is used, the inferred filters become less noisy, and vice versa.

Spike train covariances strongly correlate with MLE inferred filters in sub-sampled networks

As shown in Fig. 1C, the inferred filters strongly correlate with their corresponding spike train covariances. We use
Pearson correlation to quantify how close these two quantities correlate and how their correlation change in different
sampling and network conditions.

Since the MLE inferred filters and spike train covariances were estimated using two independent methods, it is
surprising to observe such a strong correlation between them. This correlation persisted across many cases, varying
the number of observed neurons, data volume, synaptic coupling strength, and even network architecture, as shown
in Fig. 3A-E. We find the correlations are weaker in fully observed or nearly fully observed cases with large amounts
of data, but otherwise our results did not seem to be dependent on, e.g., a weak coupling assumption, as the strong
correlations persist for synaptic strengths close to the values for which the network would become unstable. Fig. 3F
summarizes the median Pearson correlation between the MLE inferred filters and the corresponding spike train
covariances, which clearly show the transition of correlation from high to low as more neurons in the network being
observed or as more spike train data volume is used (however the latter happens consistently only when over 25%
of neurons are observed). We focus here on the self-coupling filters and spike train auto-covariances in Fig. 3, but
we show in Appendix Fig. 1 that the correlations of randomly sampled cross-coupling filters and their corresponding
cross-covariances are also strong.

In the GLM neuron model used to generate spike trains in this work, the weight matrix coefficient J0 controls the
coupling strength of all of the neuron pairs. The previous results were derived with J0 = 3, close to the largest possible
coupling strength we can set to get a stable network for our choice of parameters. As we decreased J0, the network
entered a weaker coupling regime. Fig. 4A shows the change of the mean firing rates of 64 neurons in the random
network as the weight matrix coefficient J0 changes. Smaller J0 confined the network to a noise-driven regime, where
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each neuron’s firing rate is dominated by the same baseline drive set in the generative model, and a higher J0 led
the network into a strong coupling regime with more variable firing rates across neurons. As shown in Fig. 4B, in
the weak coupling limit the Pearson correlations between the MLE inferred filters and the spike train covariances are
high even if all the neurons in the network are observed.

To demonstrate that our results are not a quirk of random networks, we also consider balanced networks of excitatory
and inhibitory (EI) populations, which are generally considered to be a more realistic network model [11, 12] because
the synaptic strengths of excitatory neurons are all positive and the strengths of inhibitory neurons are all negative, as
typically observed in real tissue. In Fig. 4D-F we show the strong correlations between inferred filters and spike-train
covariance holds for these balanced excitatory-inhibitory networks. Here we use a 64-neuron EI network with 20%
inhibitory neurons and 80% excitatory neurons and the details of the network generation process are discussed in
Spike train simulation with a linear-nonlinear Poisson cascade model. We tune the weight matrix coefficient J0 of
the EI network from 1 to 7, beyond which the network becomes unstable. Our results also confirm that when the EI
network is tuned to a weak coupling regime, as J0 decreases, the correlations between the MLE inferred filters and
the spike train covariances grow in strength, qualitatively similar to the behaviors observed in random networks in
Fig. 4A-C.

Analytic analysis of maximum likelihood inference using a Gaussian process approximation

Our simulation results demonstrate a high degree of correlation between the inferred synaptic filters (inferred
without using basis functions) and the empirically estimated spike-train covariances. As these quantities are computed
by independent methods, some property of the network statistics or maximum likelihood inference procedure must
give rise to these strong correlations when the network is subsampled. To better understand what may be going on
here, we model the maximum likelihood estimation approach analytically, focusing on the effect that subsampling the
network has. We will first derive the MLE equations for the spiking network model with an exponential nonlinearity,
and then approximate the spike trains as a Gaussian process to analytically solve the MLE equations for some simple
networks, which elucidates how the inferred filters are related to the spike train covariances.

Using the log-likelihood of the generative GLM model described in Eq. 13, we can analytically derive equations
the maximum likelihood estimates must satisfy in the limit of infinite data. In the limit of infinitely many trials, the
log-likelihood of the model is given by

L({µ}, {J}) =

〈
Nobs∑
i=1

∫ ∞

−∞
dt

{
ṅi(t) lnΦi(t)− Φi(t)− (ṅi(t)dt)!

}〉
, (2)

where the angled brackets ⟨. . . ⟩ indicate expectation over the true spike-train process produced by the generative
model; this expectation arises as the limit of an average over trials. The parameters to be inferred are µ̂i and Ĵij(t),
which occur inside the rate nonlinearity,

Φi(t) = λ0 exp

µ̂i +
∑
j

∫
dt′ Ĵij(t− t′)ṅj(t

′)

 ,

where λ0 is a constant and was set to 1 in all simulations. The maximum likelihood equations are obtained by taking
derivatives of the log-likelihood with respect to µ̂i and Ĵij(t). (We abuse notation and write the log-likelihood in
continuous time here, but in practice we take the continuous time limit after deriving the MLE equations).

The resulting equations comprise a system of integral equations for the synaptic filters and baselines. We first derive
the general relationship between spike trains and the unknown neuronal coupling filters in this model as follows:

⟨ṅi(t)⟩ = ⟨Φi(t)⟩ (3)

⟨ṅi(t)ṅj(t− τ)⟩ = ⟨Φi(t)ṅj(t− τ)⟩, (4)

which take advantage of the nonlinearity Φi(t) being an exponential function. In deriving these equations we have
assumed the network will be in a stationary steady-state, which means that Eq. 3 will be independent of time t and
Eq. 4 will depend only on τ .

In the case of exponential nonlinearity, the expectations over the nonlinearity can be related to the moment gener-
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FIG. 3. Pearson correlation between the spike train correlation and MLE inferred self-coupling filters in a
strongly coupled random network of 64 neurons. A-E. Violin plots show how the correlations change when the different
number of neurons are observed and different amount of spike train data is used in inference. 3%, 6%, 12%, 25%, 50%, 75%,
and 100% percentage of observed neurons in this 64 neuron network corresponds to 2, 4, 8, 16, 32, 48, and 64 neurons being
observed. The spike train correlation functions strongly correlate with the MLE inferred filters when less neurons are observed
and the correlation decreases as more neurons are observed. F. Median correlation values summarized from panel A-E showing
a transition of the correlation from high to low as more neurons in the network are observed or as more spike train data is used
in the MLE inference.
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FIG. 4. Correlations are high for both random and balanced excitatory-inhibitory networks in weak coupling
regimes. A-C. Random network. A. When the weight matrix coefficient J0 decreased from 3 to 1, the network transitioned
into a noise-driven regime, and the mean firing rates of the neurons varied less and were driven by the same baseline drive in the
generative model. B. In the weak coupling regime, such as when J0 = 1, high correlations between the MLE inferred filters and
spike train covariances were observed even when all the neurons in the network are observed, as compared to the network in a
strong coupling regime where the high correlation between the MLE inferred filters and spike train covariances only happen in
the sub-sampled network.C. For a random network in a strong coupling regime (J0 = 3), strong Pearson correlation coefficients
were observed when the MLE was done for a sub-sampled network. Using less spike train data in the inference led to slightly
higher correlations. D-F. Similar phenomenon holds for a balanced excitatory-inhibitory network, where 20% of the neurons
are inhibitory and 80% of them are excitatory. The weight matrix coefficient J0 was tuned from 1 to 7, with J0 = 7 the largest
possible integer value for which the spike train process is stable.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.01.526673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526673
http://creativecommons.org/licenses/by/4.0/


8

ating functional of the spike train process. For the right hand side of Eq. 3,

⟨Φi(t)⟩ = ⟨eµ̂i+
∑

j Ĵij∗(⟨ṅj⟩+δṅj)⟩ = eµ̂i+
∑

j Ĵij∗⟨ṅj⟩Z[j̃i(t
′) = Ĵij(t− t′)], (5)

where ṅj = ⟨ṅj⟩+ δṅj and Z is the moment generating functional of the mean-subtracted spike train process, defined
for an arbitrary “source” variable j̃i(t) as Z[j̃] ≡ ⟨exp(

∑
i

∫
dt j̃i(t)δṅi(t))⟩ (see the full derivation in MLE solution

from the path integral formalism of spike train process). Similarly, for the right hand side of Eq. 4 we have

⟨Φi(t)ṅi(t− τ)⟩ = eµ̂i+
∑

j Ĵij∗⟨ṅj⟩ δZ[j̃]

δj̃j(t′)

∣∣∣∣∣
j̃j(t′)=Ĵij(t−τ)

. (6)

The important implication of Eqs. 5 and 6 is that the moment generating functional contains only information
about the non-causal statistical moments of the spike train process; they do not directly contain any information
about response functions, which are causal. In a path integral formulation of this stochastic process, one can formulate
a more general moment generating functional that contains information about both the statistical moments and the
causal response functions of the process. Crucially, however, the information about the response functions drops out
of the expectations we have computed, meaning that the MLE equations do not directly contain any information
about the response functions. In fully observed systems relationships between the statistical moments and response
functions can often be derived [13]; however, in the absence of a fully observed network it may not be possible to
recover the response functions from the subset of observed moments. This result suggests that the synaptic filters
Ĵij(t), even when restricted to be causal, ultimately reflect information about the non-causal statistical moments,
rather than the actual response functions of the network. In the limit of a fully observed network it may be possible
to extract this causal information, but in a sub-sampled network our results imply that the causal nature of the
inferred connections may not reflect any actual causal response properties of the network.

Eqs. 3 and 4 are too nonlinear to solve in general, but we may glean some insight by approximating the network as a
Gaussian process, which amounts to neglecting the contribution of all statistical moments beyond pairwise statistics.
We use Eq. 5 to eliminate the dependence on µ̂i in Eq. 6, leaving a system of Wiener-Hopf integral equations to solve
for the filters Ĵij(t):

Cij(t− t′) = ri
∑
k

∫
dt′′Cjk(t

′ − t′′)Ĵik(t− t′′). (7)

Here, ri = ⟨ṅi⟩ is the mean firing rate of neuron i and Cij(t, t
′) = ⟨ṅi(t)ṅj(t

′)⟩ − ⟨ṅi(t)⟩⟨ṅj(t
′)⟩ is the spike-train

covariance. In practice these quantities would be estimated from data and hence known, but in this analysis we will
estimate them using a mean-field analysis of the spiking network model.

Although Eq. 7 looks like it can be solved using Fourier transform methods, the left-hand side is only valid for
t − t′ > 0. If this restriction is neglected, the solution Ĵij(t) will be non-causal in general. Solving this system of
equations while imposing causality is difficult in general and still an area of active research, but the procedure is
tractable for the case of a single observed neuron, which we highlight here.

To simplify the analytic calculations, we consider a network of all-to-all coupled neurons, Jij(t) = Jt exp(−t/τ)Θ(t)/τ2,
including the self couplings i = j, and homogeneous baselines µi = µ. A mean-field analysis yields the following
estimate of the mean firing rates,

r = λ0Φ (µ+NJr) ,

which is the same for every neuron due to the homogeneity of the network. For an exponential nonlinearity this
equation can be solved in terms of the Lambert W function, r = −(NJ)−1W−1 (−NJλ0e

µ), defined as the solution
of the transcendental equation x = W−1(x) exp(W−1(x)) for which −1/e < x < 0. This restriction defines the branch
of the Lambert W function that we must use for excitatory J > 0. It follows that NJ < exp(−(1 + µ))/λ0 in order
for the network to be stable.

The covariance of the neurons in this network is estimated to be

Cij(t− t′) = r

[
δijδ(t− t′) +

(a2− − b2+)(b
2
+ − a2+)

(b+ − b−)(b+ + b−)

e−b+|t−t′|/τ

2b+τ
−

(a2− − b2−)(b
2
− − a2+)

(b+ − b−)(b+ + b−)

e−b−|t−t′|/τ

2b−τ

]
, (8)
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where a± =
√

1 + (N − 1)Jr ±
√
(N − 1)Jr(4− Jr) and b± = 1±

√
NJr. With this result, we can use the Wiener-

Hopf procedure [14] to solve Eq. 7 for the self-history filter of a single observed neuron (see General solution of the
integral equation for details). We find

Ĵ(t) =
1

r

[
(a+ − b−)(a+ − b+)

a+ − a−
e−a+t/τ − (a− − b−)(a− − b+)

a+ − a−
e−a−t/τ

]
Θ(t)

τ
. (9)

In Fig. 5A, we plot the predicted self-coupling filter in Eq. 9 and the predicted spike train autocovariance for a
single observed neuron in a 64-neuron network and compare it with the MLE inferred filter from 2 million spike train
data.

A few remarks are in order. First, in the limit that N → 1 this filter indeed recovers the ground-truth filter
J(t) = Jt exp(−t/τ)Θ(t)/τ2. Second, the resulting filter does not agree with the predictions of the effective filters of
[4], which are obtained by marginalizing out the unobserved neurons. The reason for this discrepancy is subtle: when
we make the Gaussian process approximation to close the MLE equations 5 and 6, this turns out to be tantamount
to assuming the spike train fluctuations δṅi(t) are driven by independent Gaussian noise of variance ri:

δṅi(t) ≈
∑
j

∫
dt′ Ĵij(t− t′)δṅj(t

′) + ξ(t),

where ⟨ξi(t)ξj(t′)⟩ = riδijδ(t−t′). On the other hand, marginalizing out the hidden neurons and applying the Gaussian
approximation is tantamount to assuming the neurons are driven by correlated noise ⟨ξi(t)ξj(t)⟩ = Σij(t − t′) ̸=
δijδ(t − t′). The two calculations are consistent, however, because both approaches produce the exact same set of
spike-train covariances within the Gaussian approximation. One can transform between any two sets of filter-noise
covariance pairs:

Cij(ω) =
∑
k

(I− rJ(ω))
−1
ik (ω) (I− rJ(−ω)) Σkℓ(ω). (10)

If the noise covariance matrix can be factored as Σij(ω) =
∑

mn Sim(ω)Sjn(−ω)Σ̃mn(ω) for some transformation

matrix S and other covariance matrix Σ̃, then we can transform from one set of filters to another by rJ̃ij(ω) =
δij −

∑
k(S

−1)ik(ω)(δkj − rJkj(ω)). (We give these expressions for our specific homogeneous all-to-all network, but
the general expressions of the Gaussian approximation for any network Jij are minor modifications of this result). The
MLE equations we have derived here select the solution corresponding to independent driving, while the marginaliza-
tion calculation of [4] corresponds to correlated driving noise. This implies that, at least for Gaussian processes, one
cannot independently infer both the linear filters and the noise covariances without additional constraints or modeling
assumptions.

With our approximate solution for the all-to-all network, we can analytically calculate the overlap coefficient between
the inferred filter Ĵ(t) and the auto-covariance C(t), excluding the delta-function peak at t = 0:

ρ ≡
∫∞
0+

dt Ĵ(t)C(t)√∫∞
0

dt Ĵ(t)2
∫∞
0+

dt C(t)2
. (11)

The overlap is equivalent to the Pearson correlation coefficient estimated from infinite time-points. The general
expression for the alpha function filter is rather unwieldy, so we do not write it here. In Fig. 5B, we plot the overlap
ρ as a function of x = NJλ0e

1+µ ≤ 1, for various values of N . We observe that the overlap is generally very high
away from the edge of stability of the network (at x = 1), but drops to 0 as the edge of stability is approached. This
drop becomes increasingly rapid as N increases, approaching zero as

ρ ≃ 25/4N1/4
(
1−NJλ0e

1+µ
)1/4

(12)

for large N as NJλ0e
1+µ → 1. As our single observed neuron represents a smaller and smaller fraction of the observed

network when N increases, the window over which the correlation between Ĵ(t) and C(t) drops to 0 is a range of
order 1/N . Thus, even when the synaptic strength of the network is quite strong, in a heavily subsampled network
one must tune extremely close to the edge of stability to see a drop in the correlation.

While this is a simplified test case, it gives us valuable insight into what is occurring in our simulations. The inferred
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FIG. 5. Demonstration of the predictions in a homogeneous all-to-all network. A. A homogenous all-to-all network
with J = 0.037, µ = −2, λ0 = 1 is simulated up to 2 million observation windows. The MLE inferred J00 (in red solid line
and red dots) and estimated spike train covariances (in grey bars) are compared with the predicted J00 (in purple dotted line)
and the predicted spike train autocorrelation (in orange bars). The predictions are similar in shape and magnitude to the ones
derived from the simulated spike trains. B. The predicted overlap, equivalent to the Pearson correlation, drops as NJλ0e

1+µ

increases, with varying speed depending on the network size N . For a fixed N , the increase of NJλ0e
1+µ amounts to the

increase of the network coupling strength J . The inset shows an enlarged view of the drop.

filters obtained by maximum likelihood estimation are shaped by the spike-train covariances, not any causal response
functions of the ground truth network. In a fully observed network, it may be possible to extract information about
the response functions from the observed correlation functions, at least at the level of the Gaussian approximation
(e.g., by solving Eq. 10 for δij + riJij(ω), given the ground-truth noise). However, when the network is subsampled
it is likely not possible in general to recover these response functions, and the inferred filters increasingly reflect the
spike train covariances, despite the imposition of causality on the inferred filters.

DISCUSSION

Interpretation of the results

In this work, we built a Poisson point process Generalized Linear Model (GLM) to study how well the commonly
used maximum likelihood estimation (MLE) does at inferring neuronal connections in subsampled spiking neuron
networks. Surprisingly, a strong correlation between the MLE inferred coupling filters and the corresponding spike
train covariances with Pearson correlation coefficients above 0.99 was observed when a) there exist unobserved neurons
in the network, i.e., subsampling the network, or b) the network is in a weak coupling regime dominated by spontaneous
activities, as shown in Fig. 4. In the strongest coupling regime possible for these network models, a median Pearson
correlation coefficient around 0.8 was still observed even when all the neurons in the network were observed, suggesting
a strong tie between the MLE inferred coupling filters and corresponding spike train covariances. This phenomenon
is robust both in random networks and in more realistic balanced excitatory-inhibitory networks. Furthermore, using
less spike train data (decreasing the spike train data volume) in the inference also led to slightly stronger correlations
between those two quantities. The observed strong correlation is puzzling because the inferred filters and the spike
train covariances are derived from two seemingly independent routes, even if both are based on the same spike train
data. Notably, inferring neuronal coupling filters with MLE requires a neuron model to calculate the likelihood
function, while computing the spike train covariances is “model-free.”

To gain insights into these phenomena, we turned to the path integral formulation of the spike train process of the
GLM neuron model [4, 15, 16]. The standard Poisson GLM choice of an exponential inverse link function (the firing
rate nonlinearity) enabled us to analytically derive equations that the maximum likelihood estimation must satisfy
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in Eq. 5 and Eq. 6, which reduced to Eq. 7 under a Gaussian process approximation of the spiking process. These
equations reveal that the MLE inferred filters can only access information on the non-causal moments, not the causal
response functions. It is also worth noting that although our analytic calculations for the MLE inferred filters only
consider pairwise covariances, the general MLE equations Eq. 5 and Eq. 6 involve all higher order moments from the
moment generating functionals. Thus while the MLE inferred filters in practice contain more information than pairwise
correlations, they are still not causal. We further demonstrated our results by solving the MLE inferred self-coupling
filter for a single observed neuron in a simplified homogeneous all-to-all network and calculated the expected MLE
inferred filters, spike train covariances, and Pearson correlation coefficient between those two, as shown in Fig. 5. These
demonstrations explained the observed strong correlations in different subsampling and network coupling regimes in
Fig. 3 and Fig. 4.

Comparison to other work

Mapping out the network structure and inferring connections between neuron pairs from the recorded spike train
data are challenging tasks, and understanding the results one obtains requires careful consideration of the assumptions
underlying the statistical models fit to data. It is well-known that when subsampling neurons in a network, the inferred
neuronal connections are effective or functional and may not reflect the casual ground-truth connections [17], although
recent attention has shifted towards developing methods to infer causal connections in neural circuitry, either through
Granger causality, information-theoretic measures, or novel sampling paradigms [2, 3, 18–21]. In particular, Kim
et al. [18] applied Granger causality to neural spike trains to identify causal connections between recorded neurons by
performing hypothesis testing based on the likelihood ratio test. Lepperød et al. [3] proposed to combine concepts of
instrumental variable and difference in differences from econometrics to perform causal inference. Soudry et al. [2],
on the other hand, proposed a shotgun sampling method that randomly samples overlapping subsets of the network
over a period of time so that the reconstruction of the entire network could in principle be accomplished.

Furthermore, the covariances of neuron activity have historically been considered a different measure of how neuron
pairs relate to each other, dubbed “functional connectivity,” popular in fields like fMRI [22]. Pernice and Rotter [23],
as well as Schiefer et al. [24], showed that it is possible to reconstruct neuronal connections from spike train covariances
in certain sparse networks. Kobayashi et al. [25] proposed a method to fit spike train covariance functions with GLM
in order to perform hypothesis testing in determining the existence of connections between neurons. However, the
exact relationship between the spike train covariances and the ground-truth coupling filters is generally unknown and
can be arbitrarily complex, involving not only the pairwise but also higher order moments [15, 26, 27].

Meanwhile, efforts have been made to infer neuronal connections among observed and hidden neurons through
sophisticated statistical methods such as expectation-maximization and latent variable models [8–10, 28]. However,
these methods either allow acausal connections between the observed and the hidden neurons [8] or perform well
only when the number of hidden neurons is less than the observed neurons [9, 10] or require careful modeling of the
hidden neuron populations [28]. More recently, Brinkman et al. [4] derived an analytical relationship between the
ground-truth neuronal connections and the effective connections that unobserved neurons generate between subsets of
observed neurons, although left the inference problem open, which this work seeks to address. Building upon previous
studies, our work investigates the question of how the commonly used statistical inference procedure produces effective
connections that may differ from or relate to the causal ground-truth connections as well as the spike train covariances
in a GLM-based nonlinear spiking network model with different network structures, opening the door for investigating
the role spike train covariance function plays in the inferred neuronal connections, in particular in causal connection
inference. We found that the maximum likelihood procedure does not infer the effective interactions predicted by
[4], which correspond to approximating fluctuations of the spiking process around their mean values as a Gaussian
process driven by correlated noise, whereas the MLE solution is equivalent to assuming the fluctuations as Gaussian
processes driven by independent noise. The two cases give the same spike-train correlations, however, and so they
yield equivalent observable statistics.

Limitations of the study and future directions

While the findings in this work are very relevant to the ongoing study of inferring causal neuronal connections from
recorded spike trains, our results are based on simulating the spike train process as a point process Poisson GLM and
using MLE to perform a model-matched inference. The choice of the particular neuron model and inference method
could potentially have an impact on the conclusions one can draw. Inferring neuronal connections from real neural
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data usually performs model-mismatched inference [5], as the underlying biological neuron model would always remain
unknown. Our choice to focus on a statistical model that matches the form of the generative model (up to different
numbers of neurons), likely improves the inference results compared to using a mismatched model. In the appendix
we present a short calculation of how fitting a model with exponential nonlinearity to a generative model with a
sigmoidal nonlinearity affects the inferred results, finding that the MLE inference will generically estimate weaker
coupling strengths than ground truth (Ground-truth networks with non-exponential firing rate nonlinearity ϕ(V )). It
will be interesting to test the conclusion of this work with other neuron models and other inference methods.

Our analytical solutions leveraged the exponential nonlinearity in the inferred GLM, and focused on the steady state
of the spike train process, which make the derivation of analytically tractable equations for MLE possible. While
in principle a similar analysis could be performed using a inference model with a different nonlinearity, the MLE
equations will be much more complicated.

We further simplified our MLE equations for the exponential nonlinearity by approximating the spike train process
as a Gaussian process, limiting the statistical moments to second-order. One can go beyond the Gaussian level of
approximation of the spike train process to estimate how the higher-order moments have an impact on the statistically
inferred neuronal connections, though this would not change the result that the MLE fit only has access to non-causal
moments.

Finally, one of the ultimate goals of this line of work is to identify the causal connections between neuron pairs,
not just “effective” connections. Establishing the gold-standard causal connections in a network requires perturbation
experiments and perhaps novel statistical inference methods that have the potential to make this inference possible
in large-scale networks [3]. Such perturbative drives would manifest in our analytic formulas as introducing terms
related to the causal response functions of the network. Building on our methodology by including such perturbative
inputs will enable investigation of the origin of the inferred neuronal connections: how the non-causal covariances and
causal response functions get mixed in, and under what conditions one dominates the other in the inference process.

METHODS

Spike train simulation with a linear-nonlinear Poisson cascade model

In this work, we use a generalized linear model (GLM) to simulate the neuron spike trains. In the GLM generative

model, neurons emit spikes probabilistically following a Poisson process, with the rate given by Φ
(
µi +

∑
j Jij ∗ ṅj

)
.

Discrete spikes are generated for a small observation window dt = 0.1. A first-order alpha function Jij(t) =
Wij t e−t/τ/τΘ(t) is used as the ground-truth interaction filters that govern the interaction of neuron j’s spike train
history on neuron i’s instantaneous firing rate. Causality is imposed through the Heaviside step function Θ(t) = 1 if
t > 0 and 0 otherwise. The weight matrix W with entry Wij sets the interaction strength of the filters and τ = 1 sets
the typical timescale of the decay of the response. The spike train is simulated by solving a second-order differential
equation with a 4th-order Runge-Kutta method to conveniently track the spike train history, following the method
used in previous works [4, 15, 29]. While simulating the spike train data, we run the simulation up to 2 million
observation windows, and use different amounts of the spike train data in inferring the coupling filters, e.g. in Fig. 3.
The term “data volume” in the main text and figures refers to the spike train data up to that number of observation
windows in the simulation.

Random network weight matrix generation. Following previous works [4, 15], we generated a 64-neuron random
network weight matrix with a sparsity p = 50%, so that only half of the connections are non-zero. The non-
zero synaptic weight strengths were drawn independently from a normal distribution with zero mean and standard
deviation J0/

√
pN , where J0 is the weight matrix coefficient and N is the number of neurons in the network. The

weight matrix coefficient J0 took three values 1, 2, 3 while we set the baseline drive µi = −2 throughout the study.
J0 = 3 was the largest integer value we can set to still have a stable spike train process in the simulation, thus the
network is considered to be in a high coupling regime in that case. Importantly, the diagonal entries of the weight
matrix were always set to −1 for different J0 to simulate a soft refractory period for the neurons from their own spike
history.

EI network weight matrix generation. Following previous works [11, 12], we generated a 64-neuron excitatory-
inhibitory (EI) network weight matrix with 20% (13) inhibitory neurons and 80% (51) excitatory neurons. Excitatory
neurons make connections to excitatory neurons with a probability 20% and other all other neuron pairs (E-I and
I-I) make connections with a probability 50%. The weight matrix coefficient J0 was set to be a multiplication factor
of the weight matrix. The weight of the excitatory connections was set to 0.04125 and the weight of the inhibitory
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connections was set to −0.16625 when J0 = 1. Thus for the largest possible integer weight matrix coefficient J0 = 7 in
Fig. 4D-F, the excitatory and inhibitory weights were 0.28875 and −1.16375, respectively. The diagonal entries were
always set to −1 for different J0 to simulate a soft refractory period for the neurons from their own spike history.

Neuronal connection inference with maximum likelihood estimation

We infer the neuronal connections based on a generalized linear model with an exponential inverse-link function,
which amounts to a model-matched inference given the same model used in generating the spike trains. The observed
neuron spike train {ṅi(t)} are assumed to follow ṅi(t)dt ∼ Poiss[Φ(µ̂i +

∑
j∈obs Ĵij ∗ ṅj)dt], where µ̂i and Ĵij are

the inferred baseline drive and interaction filters to be determined and the observation window dt is set to 0.1. The
likelihood function is thus,

Li(µ̂, Ĵ) = Prob({ṅi(t)}|µ̂i, Ĵij) =
∏
t

(Φi(t)dt)
ṅi(t)dt

(ṅi(t)dt)!
e−Φi(t)dt. (13)

We use the Tweedie regressor with power 1 and log link function in the scikit-learn (v.0.24.2) package to do the
inference [30], which under the hood minimizes the unit deviance and can be shown to be equivalent to maximizing
the likelihood function in Eq. 13. Note that no regularization penalty is added for all the inference procedures used
in this work.

For the inference of the filters with basis functions as shown in Fig. 1C, alpha basis functions

αn(t) = tn exp(−t/τ)Θ(t)/τn

of orders n = 0, 1, and 2 were used. In this scenario, the number of unknowns for inferring the filters decreases to
3, the same as the number of basis functions. The inferred neuronal connections are truncated at 100 observation
windows, corresponding to 10 s for the chosen time window dt = 0.1 s.

For the inference of the filters without using basis functions, we use the same number of 100 observation windows,
and thus 100 unknowns must be inferred to determine the coupling filters at each time point preceding the spikes.

MLE solution from the path integral formalism of spike train process

Maximizing the likelihood function in Eq. 13 amounts to solve for the zero points of its derivatives with respect to
the unknowns Jij and µ̂i in Φi(t) = λ0 exp(µ̂i +

∑
j Ĵij ṅj). For mathematical simplicity, we take the logarithm of the

likelihood to get the log-likelihood function Li = log(Li) and maximize the log-likelihood,

∂Li

∂µ̂i
= lim

T→∞

1

T

∫ T/2

−T/2

dt

(
ṅi(t)

Φi(t)
− 1

)
∂µ̂i

Φi(t) = lim
T→∞

1

T

∫ T/2

−T/2

dt

(
ṅi(t)

Φi(t)
− 1

)
Φi(t) = 0, (14)

where we note that ∂µ̂iΦi(t) = Φi(t) for the choice of exponential nonlinearity. For a stationary system the time
average will tend to the expected value due to ergodicity, and is equivalent to forming the log-likelihood using a
large number of independent trials, which limit to the expected value for infinitely many trials. Thus, Eq. 14 can be
simplified to

⟨ṅi(t)⟩ = ⟨Φi(t)⟩ . (15)

Similarly,

δLi

δĴij(t)
= lim

T→∞

1

T

∫ T/2

−T/2

dt′
(
ṅi(t

′)

Φi(t′)
− 1

)
∂Ĵij(t)

Φi(t
′) = lim

T→∞

1

T

∫ T/2

−T/2

dt′
(
ṅi(t

′)

Φi(t′)
− 1

)
Φi(t

′)ṅj(t
′ − τ) = 0, (16)

where we note that ∂Ĵij(t)
Φi(t

′) = Φi(t
′)ṅj(t

′− t) for the choice of exponential nonlinearity and thus the equation can

be reduced to Eq. 4.

As explained in the main text, for an exponential nonlinearity we can relate the expectations over Φi(t) to the
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moment-generating functional of the spiking process and set λ0 = 1,

⟨Φi(t)⟩ = eµ̂i+
∑

j Ĵij∗⟨ṅj⟩Z[j̃i(t
′) = Ĵij(t− t′)],

⟨Φi(t)ṅi(t− τ)⟩ = eµ̂i+
∑

j Ĵij∗⟨ṅj⟩ δZ[j̃]

δj̃j(t′)

∣∣∣∣∣
j̃j(t′)=Ĵij(t−τ)

,

(Eqs. 5 and 6 in the main text), where ṅj = ⟨ṅj⟩+δṅj and Z[j̃] ≡ ⟨exp(
∑

i

∫
dt j̃i(t)δṅi(t))⟩. The moment generating

functional cannot generally be solved in closed form, so to make use of these equations we will need an approximation.
We will use mean-field theory with Gaussian fluctuation corrections to approximate the spike trains as a Gaussian
process, for which the moment generating functional is known in closed form.

Our calculation of the moment generating functional of the spike train process makes use of the path-integral
formalism based on the spiking network model [4, 15, 16, 31]. Following Ocker et al. [15], we introduce an auxiliary
variable ñ, called the “response variable,” then and the action of the spike train process under our GLM neuron model
becomes

S[ñ, ṅ] =
∑
i

∫
dt

ñi(t)ṅi(t)− (eñi(t) − 1)Φ

µi +
∑
j

(Jij ∗ ṅj)(t)

 , (17)

such that the joint probability distribution of the spike train and auxiliary variable follows,

Prob[ñ, ṅ] ∝ e−S[ñ,ṅ]. (18)

Going forward, we make a change of variables ṅi = ri + δni where ri = ⟨ṅi⟩ is the mean firing rate of neuron i,
so that the expansion below is around the first moment of the spike train process. Eq. 17 can be split into free and
interacting actions. We expand the action in powers of δṅi(t) and ñi(t), keeping only terms to quadratic order, which
amounts to the Gaussian process approximation,

S[ñ, δṅ] ≈
∑
ij

∫
dtdt′

{
ñi(∆

−1)ij(t, t
′)δṅj −

1

2
ñi(t)

2Φi

}
, (19)

where (∆−1)ij(t, t
′) = δijδ(t − t′) − Φ

(1)
i Jij(t − t′) is the inverse of the linear response function and Φ

(n)
i =

dnΦ(x)
dxn |x=µi+

∑
j Jij∗rj is the nth derivative of the nonlinear activation function evaluated at the mean firing rate

ri. The linear order terms have been eliminating by imposing that ri satisfies

ri = Φi

µi +
∑
j

Jij ∗ rj

 , (20)

and assuming a time-independent solution.

The quadratic action 19 corresponds to a Gaussian distribution for the fluctuations δṅi(t), which have zero mean
and covariance

Cij(t
′, t′′) =

∑
k

∫
dt∆ik(t

′, t)Φk∆jk(t
′′, t). (21)

For a Gaussian process the moment generating functional of the spike train can be derived [31], giving

Z[j̃] =

∫
Dñ(t)Dδṅ(t)e

∑
i

∫
dtj̃i(t)δṅi(t) e−S[ñ,δṅ] = exp

1

2

∑
ij

∫
dt′dt′′j̃i(t

′)Cij(t
′, t′′)j̃j(t

′′)

. (22)

Combined with Eq. 5 and Eq. 6, the derived moment generating functional can be used to solve the MLE equations
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in Eq. 3 and Eq. 4, leading to the closed maximum likelihood estimation equations,

Cij(t, t
′) = ri

∑
k

∫
dt′′Cjk(t

′, t′′)Ĵik(t− t′′),

(Eq. 7 in the main text), which establishes the relationship between the spike train correlation function Cij and the

MLE inferred filters Ĵij under Gaussian process approximation.
For the specific case of an all-to-all network with Jij(t) = Jte−t/τΘ(t)/τ , the mean field equation reduces to a

single rate equation (due to homogeneity of the network),

r = λ0 exp (µ+NJr) ,

where
∑

j

∫
dt′ Jij(t − t′)rj integrates to NJr for constant r. By manipulating this into the form of the Lambert

transcendental equation, W (z)eW (z) = z we can write the solution in terms of the Lambert W function,

r = −W−1 (NJλ0e
µ)

NJ
.

Using Eq. 21 we can evaluate the covariance for this model, and insert it into Eq. 7 to solve for the inferred filter
Ĵ(t) for a single neuron. Eq. 7 is a Wiener-Hopf integral equation that is difficult to solve in the multivariate case,
but is tractable in the scalar case, which corresponds to a single observed neuron in our context. The expressions
for the covariance and the Weiner-Hopf equation for the Gaussian approximation of the spiking network process are
minor modifications of the equations one obtains for maximum likelihood inferences of a linear Gaussian stochastic
process. We give the details of the calculations for the linear Gaussian process in the Appendix (Analysis of linear
Gaussian networks), and modify the results to apply to the spiking network model here. Specifically, the results for
the spiking network can be obtained from the linear Gaussian process on an all-to-all network by the replacements
J → Jr, Ĵ(t) → rĴ(t), C(t) → C(t)/r, where r is the mean-field firing rate.
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APPENDIX

Appendix Fig. 1: While we focused on the correlation between self-coupling filters and their spike trains covariances
in the main text, here we show that the correlations of the randomly sampled cross-coupling filters and the cross-
covariances are also strong.

ANALYSIS OF LINEAR GAUSSIAN NETWORKS

It is useful to analyze the maximum likelihood equations for a simple linear Gaussian model, which will turn out
to be formally similar to our equations for the Gaussian approximation of the spiking network model. Consider the
Gaussian process xi(t) defined by

xi(t) =
N∑
j=1

∫ ∞

−∞
dt′ Jij(t− t′)xj(t

′) + ξi(t) (23)

where ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = Σij(t− t′). It follows that xi(t) is also a Gaussian process with mean zero.

The linear filters Jij(t − t′) are assumed to be causal, such that Jij(t − t′) = 0 for t − t′ < 0. In the calculations
below we will work in continuous time, so we need to be careful with limits as the argument of the filters tends to
zero, as Jij(0) is ambiguous. We will therefore introduce a small quantity ϵ such that when we need to make the
causal behavior of Jij(t− t′) explicit under integrals we will write∫ ∞

−∞
dt′ Jij(t− t′) =

∫ t−ϵ

−∞
dt′ Jij(t− t′),

such that the argument of Jij(t− t′) is always ≥ ϵ. This convention will be important in the next section.

To calculate the covariance we first need to calculate Qij(t, t
′) ≡ ⟨xi(t)ξj(t

′)⟩. We multiply Eq. 23 by ξj(t
′) and

average over the noise, giving

⟨xi(t)ξj(t
′)⟩ =

N∑
k=1

∫ ∞

−∞
dt1 Jik(t− t1)⟨xk(t1)ξj(t

′)⟩+ ⟨ξi(t)ξj(t′)⟩

⇒ Qij(t, t
′) =

N∑
k=1

∫ ∞

−∞
dt1 Jik(t− t1)Qkj(t1, t

′) + Σij(t− t′).

Thus, Qij(t, t
′) is the solution to the equation

N∑
k=1

∫ ∞

−∞
dt1 [δikδ(t− t1)− Jik(t− t1)]Qkj(t1, t

′) = Σij(t− t′); (24)

To solve this equation, we define the linear response function ∆ij(t, t
′) by:

N∑
k=1

∫ ∞

−∞
dt ∆ℓi(t2, t) [δikδ(t− t1)− Jik(t− t1)] = δℓkδ(t2 − t1); (25)

By multiplying on the right by some right-inverse ∆R
ℓp(t1 − t3), we can show that ∆ℓp(t2 − t3) = ∆R

ℓp(t2 − t3); i.e.,
∆ij(t− t′) is both the left and right inverse of δijδ(t− t′)− Jij(t− t′).

Using ∆kj(t1, t
′), we can solve for

Qℓj(t2, t
′) =

∑
i

∫
dt ∆ℓi(t2, t)Σij(t− t′) (26)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 3, 2023. ; https://doi.org/10.1101/2023.02.01.526673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526673
http://creativecommons.org/licenses/by/4.0/


18

3% 6% 12% 25% 50% 75%100%
0.0

0.2

0.4

0.6

0.8

1.0

Spike train data volume: 400000

A

3% 6% 12% 25% 50% 75%100%
0.0

0.2

0.4

0.6

0.8

1.0

Spike train data volume: 800000

B

3% 6% 12% 25% 50% 75%100%
0.0

0.2

0.4

0.6

0.8

1.0

Spike train data volume: 1200000

C

3% 6% 12% 25% 50% 75%100%
0.0

0.2

0.4

0.6

0.8

1.0

Spike train data volume: 1600000

D

3% 6% 12% 25% 50% 75%100%
0.0

0.2

0.4

0.6

0.8

1.0

Spike train data volume: 2000000

E

3% 6% 12% 25% 50% 75%100%

0.4

0.8

1.2

1.6

2.0

Da
ta

 V
ol

um
e 

(×
 1

06 )

F

0.992 0.991 0.991 0.989 0.984 0.976 0.967

0.995 0.996 0.995 0.991 0.988 0.980 0.973

0.996 0.998 0.996 0.993 0.989 0.983 0.978

0.996 0.998 0.997 0.995 0.989 0.985 0.978

0.997 0.998 0.997 0.994 0.987 0.985 0.982

Co
rre

la
tio

n 
be

tw
ee

n 
sp

ike
 tr

ai
n 

au
to

co
rre

la
tio

n 
an

d 
M

LE
 in

fe
rre

d 
se

lf-
co

up
lin

g 
fil

te
rs

Percentage of neuron observed

FIG. 1. Peasron correlations are strong also for randomly sampled cross-coupling filters and the corresponding
cross-covariances. A-E. Violin plots show how the correlations change when the different number of neurons are observed
and different amount of spike train data is used in inference. 3%, 6%, 12%, 25%, 50%, 75%, and 100% percentage of observed
neurons in this 64 neuron network corresponds to 2, 4, 8, 16, 32, 48, and 64 neurons being observed. The normalized spike
train covariance functions strongly correlate with the MLE inferred filters when in all conditions. F. Median correlation values
are summarized from panel A-E showing a transition of the correlation coefficients.
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We can now calculate the covariance by multiplying Eq. 23 by xj(t
′) and averaging:

⟨xi(t)xj(t
′)⟩ =

N∑
k=1

∫ ∞

−∞
dt1 Jik(t− t1)⟨xk(t1)xj(t

′)⟩+ ⟨ξi(t)xj(t
′)⟩

⇒ Cij(t, t
′) =

N∑
k=1

∫ ∞

−∞
dt1 Jik(t− t1)Ckj(t1, t

′) +Qji(t
′, t)

Rearranging,

N∑
k=1

∫ ∞

−∞
dt1 [δikδ(t− t1)− Jik(t− t1)]Ckj(t1, t

′) = Qji(t
′, t)

⇒
N∑

k=1

∫ ∞

−∞
dt1 [δikδ(t− t1)− Jik(t− t1)]Ckj(t1, t

′) = Qji(t
′, t)

Multiplying on the left by ∆ℓi(t2, t),

N∑
k=1

∫ ∞

−∞
dt1

N∑
i=1

∫ ∞

−∞
dt ∆ℓi(t2, t) [δikδ(t− t1)− Jik(t− t1)]Cij(t, t

′) =
N∑
i=1

∫ ∞

−∞
dt ∆ℓi(t2, t)Qji(t

′, t)

N∑
k=1

∫ ∞

−∞
dt1 δℓkδ(t2 − t1)Cij(t, t

′) =
N∑
i=1

∫ ∞

−∞
dt ∆ℓi(t2, t)Qji(t

′, t).

Inserting Qji(t
′, t) =

∑
k

∫
dt′′ ∆jk(t

′ − t′′)Σki(t
′′ − t) gives the final expression,

Cℓj(t2 − t′) =
N∑
i=1

N∑
k=1

∫ ∞

−∞
dt

∫ ∞

−∞
dt′′ ∆ℓi(t2 − t)∆jk(t

′ − t′′)Σki(t
′′ − t). (27)

If we define (∆T )kj(t
′′ − t′) = ∆jk(t

′ − t′′), then we can write this result in a matrix-like notation as C = ∆Σ∆T .

Maximum likelihood estimation of the linear Gaussian model

We now derive a system of equations for the filters Ĵ in this linear Gaussian model. For simplicity, we will assume
our statistical model matches the form of the generative model. i.e., we want to fit a model of the form

xi(t) =
N∑
j=1

∫ ∞

−∞
dt′ Ĵij(t− t′)xj(t

′) + ξi(t)

to our data and infer the filters Ĵij(t− t′). We may assume the noise is correlated, it will not affect the equations for
the filters. The log-likelihood of the model is

L[Ĵ ] = −1

2

〈∑
i,j

∫ ∞

−∞
dtdt′

(
xi(t)−

∑
k

∫ ∞

−∞
dt1 Ĵik(t− t1)xk(t1)

)
(Σ−1)ij(t, t

′)

(
xj(t

′)−
N∑
ℓ=1

∫ ∞

−∞
dt2 Ĵjℓ(t

′ − t2)xℓ(t2)

)〉
(28)

= −1

2

∑
ijkℓ

∫
dtdt′dt1dt2 (∆−1)ik(t, t1)(Σ

−1)ij(t, t
′)(∆−1)jℓ(t

′, t2)Ckℓ(t1, t2) (29)

where the angled brackets are averages over the true process (23) in the infinite trial limit and we assume Ĵij(t−t′) = 0
for t′ ≥ t.
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Taking a functional derivative of this with respect to Ĵij(τ), we obtain

δL[Ĵ ]
δĴij(τ)

= −
∑
i′j′kℓ

∫
dtdt′dt1dt2

(∆−1)i′k(t, t1)

δĴij(τ)
(Σ−1)i′j′(t, t

′)(∆−1)j′ℓ(t
′, t2)Ckℓ(t1, t2)

= −
∑
i′j′kℓ

∫
dtdt′dt1dt2 (−δii′δkjδ(t− t1 − τ)) (Σ−1)i′j′(t, t

′)(∆−1)j′ℓ(t
′, t2)Ckℓ(t1, t2)

=
∑
j′ℓ

∫
dtdt′dt2 (Σ−1)ij′(t, t

′)(∆−1)j′ℓ(t
′, t2)Cjℓ(t− τ, t2)

=
∑
j′

∫
dtdt′ (Σ−1)ij′(t, t

′)

[∑
ℓ

∫
dt2(∆

−1)j′ℓ(t
′, t2)Cjℓ(t− τ, t2)

]
.

In the first line we performed a relabeling of indices to combine the two product rule terms into one.

We now impose that this derivative must be equal to zero. The inverse covariance can be eliminated by using the
infinite integrals of integration to shift t → t+ τ , moving the free variable τ into Σ−1:

0 =
∑
j′

∫
dtdt′ (Σ−1)ij′(t+ τ − t′)

[∑
ℓ

∫
dt2(∆

−1)j′ℓ(t
′ − t2)Cjℓ(t− t2)

]
;

we have also used the fact that the covariances and filters are of the convolutional form. Now, we multiply both sides
of the equation by Σki(τ

′ − τ) and sum over i and integrate over τ , employing the inverse relation∑
i

∫
dτ Σki(τ

′ − τ)(Σ−1)ij′(τ − (t′ − t)) = δkj′δ(τ
′ − (t′ − t)).

The noise covariance drops out of the equation, leaving

0 =
∑
ℓ

∫
dtdt2 (∆−1)kℓ(t+ τ ′ − t2)Cjℓ(t− t2).

We again use the infinite range of integration to shift t2 → t2 + t, eliminating t from the integrand. This leaves an
overall integral over t, which would be infinite, but we can impose that the integral must be zero to for all t to avoid
this issue. Thus,

0 =
∑
ℓ

∫
dt2 (∆−1)kℓ(τ

′ − t2)Cjℓ(−t2)

=
∑
ℓ

∫
dt2 [δkℓδ(τ

′ − t2)− Jkℓ(τ
′ − t2)]Cjℓ(t− τ − t2)

⇒ Cjk(−τ ′) =
∑
ℓ

∫ ∞

−∞
dt2 Ĵkℓ(τ

′ − t2)Cjℓ(−t2).

We can perform another shift t2 → τ ′ − t2 and use the fact that Cij(τ) = Cji(−τ) to write our equation as

Ckj(τ) =
∑
ℓ

∫ ∞

−∞
dt2 Ĵkℓ(t2)Cjℓ(t2 − τ)

where we also drop the prime on the variable τ . Using our constraint that the filter is causal, we may write, after
some addition variable relabeling,

Cij(t) =
N∑
ℓ=1

∫ ∞

+ϵ

dt′ Ĵiℓ(t
′)Cjℓ(t

′ − t). (30)

We can replace ϵ → 0+, where it is understood that contributions from generalized functions like δ(t′) will not
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contribute to the integral.

General solution of the integral equation

Eq. 30 is an integral equation for the unknown filters Ĵiℓ(t
′). One might hope to be able to extend the limits

of integration to the entire real line and take a Fourier transform to obtain a matrix system of equations that can
be solved, but without explicitly imposing the causality constraint this procedure will generally yield a non-causal
solution. To use the Fourier method, one first needs to generalize the equation to

Gij(t) =
N∑
ℓ=1

∫ ∞

−∞
dt′′ Ĵiℓ(t

′′)Cjℓ(t
′′ − t), (31)

where

Gij(t) =

{
Cij(t), t > 0
G−

ij(t), t ≤ 0
(32)

for some unknown functions G−
ij(t) that must be determined as part of our solution. Although we have introduced an

extra set of unknowns, once we solve for Ĵiℓ(t
′′) the G−

ij(t)’s will be determined. This extra set of functions enables
causal solutions for the filter by absorbing any non-causal pieces into them. We apply the Fourier transform to obtain

G+
ij(ω) +G−

ij(ω) =
∞∑
ℓ=1

Ĵ+
iℓ (ω)Cℓj(ω),

where we use Cjℓ(t) = Cℓj(−t) and defined the transforms

f+(ω) =

∫ ∞

0+

dt e−iωtf(t),

f−(ω) =

∫ 0+

−∞
dt e−iωtf(t),

f(ω) =

∫ ∞

−∞
dt e−iωtf(t).

We can write the equation to solve in matrix form,

G+(ω) +G−(ω) = Ĵ+(ω)C(ω).

Next, we assume we can decompose C(ω) = S+(ω)S−(ω), where S+(ω) is analytic and non-vanishing in the upper
half plane and S−(ω) is analytic and non-vanishing in the lower half plane.

Continuing, we assume S−(ω) has an inverse, such that we may write

G+(ω) [S−(ω)]
−1

+G−(ω) [S−(ω)]
−1

= Ĵ+(ω)S+(ω).

Next, we split G+(ω) [S−(ω)]
−1

= (F−1[G+ [S−]
−1

)+(ω) + (F−1[G+ [S−]
−1

])−(ω), where the two terms are defined
by first taking the inverse Fourier transform of the left-hand side and then splitting the Fourier transform up into the
± components. We can then rearrange our equation as

(F−1[G+ [S−]
−1

])−(ω) +G−(ω) [S−(ω)]
−1

= Ĵ+(ω)S+(ω)− (F−1[G+ [S−]
−1

)+(ω),

where by construction the left-hand-side has all of its poles in the lower half plane and the right hand side has all of its
poles in the upper half plane. Because the two sides are analytic on different half-planes, the only possibility is that
they are both equal to the same function, which must be polynomial of degree n if we require the growth at |ω| → ∞
to be less than O(ωn) [14]. If we demand that the filters decay as |ω| → ∞ (which excludes a δ-function component),
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then the only option is that the two sides must be equal to zero, and hence we arrive at the formal solution

Ĵ+(ω) = (F−1[G+ [S−]
−1

)+(ω)[S+(ω)]
−1. (33)

In practice, the primary obstacles in performing this procedure are finding a spectral decomposition of the kernel C(ω)
and then splitting up G+(ω)[S−(ω)]

−1 into its separate additive factors that are analytic on different half planes.
For a one-dimensional system there is a general procedure for performing both of these steps, but for a system of
equations the non-commutativity of matrices prohibits the use of the scalar method.

To this end, in this work we will focus our analytic investigations on the case of a single observed neuron, in order
to glean at least some analytic insights into the maximum likelihood inference procedure. This is best illustrated with
some concrete examples, which we work through in the next section.

EXAMPLE CASE: ALL-TO-ALL COUPLED NETWORK DRIVEN BY INDEPENDENT NOISE

To evaluate an explicit example, we consider an all-to-all coupled network with Jij(t − t′) = Jg(t − t′), for some
temporal profile g(t); we evaluate the solutions explicitly for an exponential filter, which has simpler analytic expres-
sions, and then give the corresponding results for alpha function filters. We will assume the driving noise ξi(t) to be
independent white noise of unit variance, ⟨ξi(t)ξj(t′)⟩ = δijδ(t− t′). In this case we can solve for the response function
∆ by first Fourier-transforming Eq. (23) and then performing the matrix inversion:

N∑
k=1

[δik − Jg(ω)] = δij ,

where g(ω) is the Fourier transform of g(t). If we denote I as the identity and P as a matrix of all 1’s, then the inverse

[aI+ bP]
−1

=
1

a
I− b

a(Nb+ a)
P

[32]. In our case we have a = 1, b = −Jg(ω), giving

∆ij(ω) = δij +
Jg(ω)

1−NJg(ω)
.

Let’s now assume an exponential filter g(t) = exp(−t/τ)Θ(t)/τ , which has Fourier transform g(ω) = 1/(1+ iωτ) using
the convention g(ω) =

∫∞
−∞ dte−iωtg(t). Thus, in the time-domain ∆ij(t) is given by

∆ij(t) =

∫ ∞

−∞

dω

2π
eiωt

(
δij +

J

g(ω)−1 −NJ

)
=

∫ ∞

−∞

dω

2π
eiωt

(
δij +

J

iωτ + 1−NJ

)
= δijδ(t) + J exp(−(1−NJ)t/τ)Θ(t)/τ,

where to evaluate the second term we used the residue theorem: factoring out a iτ from the denominator, we observe
a pole at ω = i(1−NJ) in the upper-half plane when 1 > NJ . This restriction requires either 0 < J < 1/N or J < 0
for the process to be stable. For t < 0, iωt = −iR|t|(cos θ + i sin θ) on a contour of radius R, and the real part of
this, +R|t| sin θ is only negative in the lower-half plane, so we must close the contour there and the integral evaluates
to zero because there are no poles contained in the contour. For t > 0 the real part of the arc is −R|t| sin θ, and we
must close the arc in the upper half plane, obtaining the contribution from the pole.

It is important to note that while ∆ij(t− t′) happens to be symmetric in the indices, it is not symmetric in time,
as it contains a causal piece. (This makes sense, because xi(t) is causally dependent on the noise ξi(t)). In a more
complicated network, ∆ would also not be symmetric in the indices, because ⟨xi(t)ξj(t

′)⟩ is not invariant under an
exchange of indices.
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We can now calculate the covariance Cij(t). In the Fourier domain we have

Cij(ω) =
N∑

k=1

∆ik(ω)∆jk(−ω)

=
N∑

k=1

(
δik +

J

iωτ + 1−NJ

)(
δjk +

J

−iωτ + 1−NJ

)

=
N∑

k=1

(
δikδjk +

Jδjk
iωτ + 1−NJ

+
Jδik

−iωτ + 1−NJ
+

J2

|iωτ + 1−NJ |2

)
= δij + 2JRe

[
1

iωτ + 1−NJ

]
+

NJ2

(1−NJ)2 + (ωτ)2

= δij +
2J(1−NJ) +NJ2

(iωτ + 1−NJ)(−iωτ + 1−NJ)

= δij +
J(2−NJ)

(iωτ + 1−NJ)(−iωτ + 1−NJ)

We used the fact that the noise covariance is Σij(ω) = δij . We again evaluate the inverse Fourier transform by using
the Residue theorem. There are now two symmetric poles at ω = ±i(1−NJ)/τ , so we get a contribution from both
planes, as expected for a covariance. The result is

Cij(t) = δijδ(t) +
J(2−NJ)

2(1−NJ)

exp(−(1−NJ)|t|/τ)
τ

.

Solution for a single observed unit

Solving for Ĵ+(t) analytically is in general difficult, but there is a general prescription for the scalar case, meaning
we should be able to obtain an exact solution in the case of a single observed unit. We calculate this here for unit
i = 1 in the all-to-all network. The equation to solve is

G+(ω) +G−(ω) = Ĵ+(ω)C(ω),

where

G+(ω) =

∫ ∞

0+
dτ e−iωτ

(
δ(τ) +

a

2bτ
e−b|t|/τ

)
=

a

2b

1

iωτ + b
,

where we introduce a = J(2 −NJ) and b = 1 −NJ to simplify the upcoming formulas. The full Fourier transform
of C(ω)

C(ω) = 1 +
a

(iωτ + b)(−iωτ + b)
.
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Therefore, we need to solve the equation

a

2b

1

iωτ + b
+G−(ω) = Ĵ+(ω)

(
1 +

a

(iωτ + b)(−iωτ + b)

)
= Ĵ+(ω)

(
(iωτ + b)(−iωτ + b) + a

(iωτ + b)(−iωτ + b)

)
= Ĵ+(ω)

(
−(iωτ)2 + b2 + a

(iωτ + b)(−iωτ + b)

)
= Ĵ+(ω)

(
(iωτ +

√
b2 + a)(−iωτ +

√
b2 + a)

(iωτ + b)(−iωτ + b)

)

We now separate the factors that are analytic and non-vanishing on the lower-half-plane and the upper half-planes.
We have

a

2b

1

iωτ + b

−iωτ + b

−iωτ +
√
b2 + a

+G−(ω)
−iωτ + b

−iωτ +
√
b2 + a

= Ĵ+(ω)

(
iωτ +

√
b2 + a

iωτ + b

)
.

We use partial fractions on the left-hand-side to write

a

2b

1

iωτ + b

−iωτ + b

−iωτ +
√
b2 + a

=
A

iωτ + b
+

B

−iωτ +
√
b2 + a

,

where

A =
a

b+
√
b2 + a

, B = − a

2b

√
b2 + a− b√
b2 + a+ b

.

Here we will only care about the filter Ĵ+(ω), so we only need the A term. After separating the terms analytic in the
upper versus lower half planes, demanding that the filters decay at infinite ω means we must have

Ĵ+(ω)

(
iωτ +

√
b2 + a

iωτ + b

)
=

a

b+
√
b2 + a

1

iωτ + b

⇒ Ĵ+(ω) =
a

b+
√
b2 + a

1

iωτ +
√
b2 + a

Because Ĵ+(ω) only has poles in the lower half plane, as desired, we know it will be causal and we can use the regular
Fourier transform to recover it in the time domain (as Ĵ+(ω) = Ĵ(ω)). The result is

Ĵ(t) =
a

b+
√
b2 + a

e−
√
b2+a t/τ

τ
Θ(t).

Restoring a = J(2−NJ) and b = 1−NJ gives

Ĵ(t) =
J(2−NJ)

1−NJ +
√
(1−NJ)2 + J(2−NJ)

e−
√

(1−NJ)2+J(2−NJ) t/τ

τ
Θ(t). (34)

We can check that we recover the true filter when N = 1: (1−J)2+J(2−J) = 1− 2J +J2+2J −J2 = 1, and verify
in Mathematica that this solution does satisfy the original integral equation.

Now that we have Ĵ(t) and C(t) we can evaluate the normalized overlap between them,

ρ =

∫∞
0

dt Ĵ(t)C(t)√∫∞
0

dt Ĵ(t)2
∫∞
0

dt C(t)2
.
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Using Mathematica, this works out to

ρ =
2
√
1−NJ 4

√
(1−NJ)2 + J(2−NJ)

1−NJ +
√
(1−NJ)2 + J(2−NJ)

.

Plotting this as a function of x = NJ ∈ [0, 1) for fixed N , we see that for small x ρ ≈ 1, and rapidly approaches 0 as
x → 1 from below. As N increases the fraction of the range of x for which ρ ≈ 1 increases.

Alpha function filter

The manipulations work similarly for an alpha function filter g(t) = te−t/τΘ(t)/τ2, which has Fourier transform
g(ω) = 1/(iωτ + 1)2. This introduces more poles to deal with when using the residue theorem and partial fraction
decomposition, but the calculations are tractable for the most part. For the linear Gaussian network model we find
the covariance of the units to be

Cij(t− t′) = δijδ(t− t′) +
(a2− − b2+)(b

2
+ − a2+)

(b+ − b−)(b+ + b−)

e−b+|t−t′|/τ

2b+τ
−

(a2− − b2−)(b
2
− − a2+)

(b+ − b−)(b+ + b−)

e−b−|t−t′|/τ

2b−τ
, (35)

where a± =
√

1 + (N − 1)J ±
√
(N − 1)J(4− J) and b± = 1±

√
NJ , and the effective self-history filter to be

Ĵ(t) =
(a+ − b−)(a+ − b+)

a+ − a−
e−a+t/τ − (a− − b−)(a− − b+)

a+ − a−
e−a−t/τ Θ(t)

τ
. (36)

The reader will notice these expressions are similar to those given in the main text for the Gaussian approximation of
the spiking network model. Our results for the spiking network model can be obtained from these results by rescaling
J → Jr, Ĵ(t) → rĴ(t), and C(t) → C(t)/r.

SUBSAMPLING THE LINEAR GAUSSIAN MODEL

In this section we derive the effective action for the linear Gaussian model and marginalize out unobserved units to
derive an action for the subsampled network. In doing so we will show explicitly that the effective filters calculated
by this procedure, akin to the method of [4] for the spiking network model, do not match the filters predicted by
maximum likelihood inference.

We may write the probability distribution as a path integral

P [x(t)] =

∫
Dx̃ e−S[x̃,x],

where S[x̃, x] is the action

S[x̃, x] =
N∑
i=1

∫ ∞

−∞
dt

x̃i(t)

xi(t)−
N∑
j=1

∫ t−

−∞
dt′ Jij(t− t′)xj(t

′)

− 1

2
x̃i(t)

2

 (37)

To subsample the network we divide the sums into recorded and hidden neurons:

S[x̃, x] = Srec[x̃, x] + Shid[x̃, x] +
∑
r,h

∫
dtdt′ {x̃r(t)Jrh(t− t′)xh(t

′) + x̃h(t)Jhr(t− t′)xr(t
′)} ,

where Srec[x̃, x] and Shid[x̃, x] have the same form as Eq. (37) but the sums only extend over the recorded and hidden
neuron subsets, respectively. We marginalize over the hidden units, which requires that we evaluate the expectation〈

e
∑

r,h

∫
dtdt′ {x̃r(t)Jrh(t−t′)xh(t

′)+x̃h(t)Jhr(t−t′)xr(t
′)}
〉
;

this can be recognized at the definition of the moment generating function with sources j̃h(t) =
∑

r

∫
dt x̃r(t)Jrh(t−t′)
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and jh(t) =
∑

r

∫
dt′ Jhr(t− t′)xr(t

′). For a zero-mean Gaussian process the result is [31]

Z[j, j̃] = e
∑

hh′
∫
dtdt′ { 1

2 j̃h(t)Chh′ (t−t′)j̃h′ (t′)+j̃h(t)∆hh′ (t−t′)jh′ (t′)},

where ∆hh′(t − t′) is the linear response function of the network, including only hidden neurons, and Chh′(t − t′) =∑
h′′

∫
dt′′ ∆hh′′(t − t′′)∆h′h′′(t′ − t′′) is the covariance function, again including only hidden units. The effective

action for the recorded units is therefore

Seff [x̃, x] = Srec[x̃, x]−
∑
rr′

∫
dt1dt2

{
1

2
x̃r(t1)

(∑
hh′

∫
dtdt′ Jrh(t1 − t)Jr′h′(t2 − t′)Chh′(t− t′)

)
x̃r′(t2)

+ x̃r(t1)

(∑
hh′

∫
dtdt′ Jrh(t1 − t)∆hh′(t− t′)Jhr′(t

′ − t2)

)
xr′(t2)

}

=
∑
r

∫ ∞

−∞
dt

{
x̃r(t)

[
xr(t)−

∑
r′

∫ t−

−∞
dt′ Jeff

rr′(t− t′)xj(t
′)

]}
− 1

2

∑
rr′

∫
dtdt′ x̃r(t)Σ

eff
rr′(t− t′)x̃r′(t

′),

where the effective filter is

Jeff
rr′(t− t′) = Jrr′(t− t′) +

∑
hh′

∫
dt1dt2 Jrh(t− t1)∆hh′(t1 − t2)Jhr′(t2 − t′) (38)

and the effective noise covariance is

Σeff
rr′(t− t′) = δrr′δ(t− t′) +

∑
hh′

∫
dt1dt2 Jrh(t− t1)Jr′h′(t′ − t2)Chh′(t1 − t2). (39)

This result shows that the subsampled network has modified filters and an effective noise that is no longer delta-
correlated.

Effective filters for subsampled all-to-all network

We now calculate the effective filter for a single unit from an all-to-all network with exponential filters. In the
Fourier domain we have

Jeff(ω) = J(ω) +
∑
hh′

J1h(ω)∆hh′(ω)Jh1(ω)

=
J

iωτ + 1
+
∑
hh′

J

iωτ + 1

(
δhh′ +

J

iωτ + b

)
J

iωτ + 1

=
J

iωτ + 1
+

J

iωτ + 1

(
N − 1 +

J(N − 1)2

iωτ + b

)
J

iωτ + 1

=
J

iωτ + 1

[
(iωτ + 1)(iωτ + b) + J(N − 1)(iωτ + b) + J2(N − 1)2

(iωτ + 1)(iωτ + b)

]
,

which does not match the inferred filter expression.
The effective noise covariance is

Σeff(ω) = 1 +
∑
hh′

Jrh(ω)Jr′h′(−ω)Chh′(ω)

= 1 +
∑
hh′

J

iωτ + 1

J

−iωτ + 1

(
δhh′ +

a

(iωτ + b)(−iωτ + b)

)
= 1 +

J2

(iωτ + 1)(−iωτ + 1)

(
N − 1 +

a(N − 1)2

(iωτ + b)(−iωτ + b)

)
Using our result for the auto-covariance of a unit driven by correlation noise, the auto-covariance of the observed
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neuron should be equal to

C(ω) = ∆(ω)∆(−ω)Σeff(ω)

=

∣∣∣∣1− J

iωτ + 1

[
(iωτ + 1)(iωτ + b) + J(N − 1)(iωτ + b) + J2(N − 1)2

(iωτ + 1)(iωτ + b)

]∣∣∣∣−2

×
(
1 +

J2

(iωτ + 1)(−iωτ + 1)

(
N − 1 +

a(N − 1)2

(iωτ + b)(−iωτ + b)

))
= 1 +

J(2−NJ)

(iωτ + 1−NJ)(−iωτ + 1−NJ)
,

which is the expected result (using a = J(2 − (N − 1)J) and b = 1 − (N − 1)J , accounting for the fact that the
observed neuron is removed when calculating Chh′(ω)). We used Mathematica to simplify the expression in going
to the last line. This result demonstrates that two different models (one with delta-correlated noise and one with
non-trivial correlations) can produce exactly the same covariance function.

GROUND-TRUTH NETWORKS WITH NON-EXPONENTIAL FIRING RATE NONLINEARITY ϕ(V )

In this work we focus on the effects that unobserved neurons have on inference of their synaptic interactions, but as
mentioned in the main text, model mismatch is also a possible source of deviation between inferred filters and ground
truth. We can treat a simple case of model mismatch within the context of our analytic analysis: when the ground
truth nonlinearity ϕ(V ) is not exponential, but some other form such as sigmoidal,

ϕi(t) = λsig

1 + exp

−

µi +
∑
j

∫
dt′ Jij(t− t′)ṅj(t

′)

−1

.

A sigmoidal nonlinearity prevents the generative model’s firing rates from diverging, and it remains stable even
when the excitatory synaptic couplings between neurons are strong, though the neurons will tend to fire close to the
maximum firing rate λsig. The sigmoidal nonlinearity is used for model inference less frequently than the exponential
nonlinearity because it renders the log-likelihood of the model non-convex, opening the door for local minima.

If one fits a GLM with exponential nonlinearity to spike trains generated by the process with non-exponential
nonlinearity, our general maximum likelihood equations are not altered, but our Gaussian approximation changes
slightly because the factor of gi ≡ ϕ′(µ+

∑
j Jij ∗ rj) that appears in the linear response function ∆ij(t− t′) does not

reduce to the firing rate ri. In our all-to-all network example the solution for the inferred self-history filter of a single
neuron would be

Ĵ(t) =
1

r

Jg(2−NJg)

1−NJg +
√
(1−NJg)2 + Jg(2−NJg)

e−
√

(1−NJg)2+Jg(2−NJg) t/τ

τ
Θ(t), (40)

where the ground-truth filter is J(t) = Je−t/τΘ(t)/τ and g = ϕ′(µ + NJr). In the limit N → 1 the inferred filter
reduces to

Ĵ(t) =
Jg

r

e−t/τ

τ
Θ(t); (41)

compared to the ground truth coupling strength J , the inferred coupling strength is modified by the ratio g/r. For
the case of a sigmoidal nonlinearity, if J is large enough that the network is spiking close to its maximum firing rate
λsig, then the gain g will be small compared to the firing rate r, and so the inferred coupling will be much weaker
than the true coupling.
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