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Abstract25

Hippocampal place cell sequences have been hypothesized to serve as diverse26

purposes as the induction of synaptic plasticity, formation and consolidation of27

long-term memories, or navigation and planning. The interrelation of sequence re-28

play during offline states such as sleep or consummatory behaviors and online theta29

sequences during running and navigation is highly debated. Offline sequences are30

inherently 1-dimensional, whereas online sequences reverse with running direction31

and thus reflect the 2-dimensional topology of space, which poses a fundamental32

and unresolved inconsistency. Here, we propose a computational model of cornu33

ammonis 3 (CA3) and dentate gyrus (DG), where sensorimotor input drives the34

direction-dependent online sequences within CA3, and the intrahippocampal CA3-35

DG projections produces prospective intrinsic sequences. The model thereby sug-36

gests that sequence propagation on multiple 1-D manifolds underlies a relational37

code that contains stable signatures for the encoding of spatial memories and that38

could be used for prospective planning.39
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1 Introduction40

As a rat navigates in an environment, place cells fire sequentially during one theta cycle41

(∼100 ms) and form time-compressed representations of behavioral experiences (Skaggs42

et al., 1996), called theta sequences. Theta sequences were proposed to be driven by43

extrinsic (extrahippocampal) sensorimotor input (Foster and Wilson, 2007; Huxter et al.,44

2008; Romani and Tsodyks, 2015; Yiu et al., 2022), since they are played out in the direc-45

tion of travel during locomotion and, hence, represent current behavioral trajectories. In46

contrast, various types of hippocampal sequences have also been proposed to arise from47

intrinsic hippocampal connectivity. Non-local activation of place sequences during im-48

mobile periods was observed in replay of past locations after the space has been explored49

(Skaggs and McNaughton, 1996; Lee and Wilson, 2002) as well as in preplay (Dragoi and50

Tonegawa, 2011) of prospective locations before the animal explores a novel environment.51

In addition, some CA3 place cells exhibit out-of-field firing at reward locations (Sasaki52

et al., 2018). These remote activations of place cells reflect the underlying circuit connec-53

tivity rather than the actual locomotive state of animal. Furthermore, a subset of CA354

cell pairs shows rigid theta correlations with peak lags that are independent of the traver-55

sal order of their place fields (Yiu et al., 2022), suggesting the existence of hard-wired56

sequences even when sensorimotor drive is present. Such intrinsic sequences that are57

driven by intrahippocampal connectivity (Tsodyks et al., 1996), although less predom-58

inantly observed during theta (Yiu et al., 2022), are generally interpreted as reflecting59

spatial memories or planning (Kay et al., 2020).60

Existing models for theta sequences are, however, either fully extrinsic or intrinsic.61

The former often employ short-term plasticity (Romani and Tsodyks, 2015; Thurley et al.,62

2008), which creates synaptic couplings that are temporally stronger along the instan-63

taneous forward direction. In contrast, intrinsic models such as Tsodyks et al. (1996)64

model use a fixed asymmetrical weight matrix pre-designed to align with one movement65

trajectory. Neither of these models alone can explain the simultaneous presence of rigid66

and flexible correlations in theta sequences. Here we present a network model that ac-67

counts for both types of correlations by separating their generation into two anatomically68
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distinct layers: CA3 and dentate gyrus (DG). Extrinsic sequences are generated in the69

CA3 layer by short-term synaptic plasticity mechanisms, while the intrinsic sequences are70

played out by the CA3-DG recursive loops with fixed asymmetrical weights, as inspired71

by the experimental evidence that lesions in DG abolish non-local activation of CA3 place72

cells (Sasaki et al., 2018) and CA3 theta correlations (Ahmadi et al., 2022).73

In this paper, we present a model for theta correlations that unifies both extrinsic and74

intrinsic mechanisms. Extrinsic and intrinsic sequences can propagate simultaneously in75

separate directions, along the movement trajectory and the pre-designed CA3-DG loops,76

respectively. As a result, spike correlations display directionality as the two sequences77

cross each other at various angles: The more parallel they are, the stronger the correla-78

tion. Our simulations are in quantitative agreement with directionality properties found79

in experimental data (Yiu et al., 2022) and propose that rigid correlation structure can80

serve as a stable temporal pattern, which is recognizable across multiple movement direc-81

tions. This temporal ”landmark” pattern allows spatial encoding even if sensory-motor82

experience is lacking and may reflect the mechanistic basis for offline replay.83

2 Methods84

Neuronal model. Neurons are modelled according to Izhikevich (2003). The soma85

potential v and the adaptation variable u of unit i at time t (in ms) follows the equations:86

v̇i(t) = 0.04v2i (t) + 5vi(t) + 140− ui(t) + Ii(t)

u̇i(t) = a [b vi(t)− ui(t)]

Ii(t) = IRi (t) + ISi (t)− Iθ(t)

Any time v(t) crosses the threshold 30 mV from below, we register a spike for the neuron87

and reset the soma potential by v(t)← c and the adaptation variable by u← u(t)+d. For88

the excitatory pyramidal place cells, we use parameters a = 0.035, b = 0.2, c = −60 mV,89
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d = 8, which provides the neuron with burst firing characteristics. For the inhibitory90

interneurons, the parameters were a = 0.02, b = 0.25, c = −65 mV, and d = 2, which91

corresponds to fast spiking patterns. I(t) is the total sum of recurrent IR(t), sensory92

IS(t) and oscillatory theta input93

Iθ(t) = 7

[
1 + cos

(
2πt

100ms

)]
/2

Spatial input. The place field centers pCA3
i =

[
xCA3
i (t), yCA3

i (t)
]
of 80 × 80 = 640094

excitatory CA3 cells equally tile the 80 by 80 cm square arena. Place cell firing rates95

are modelled direction-sensitive, with best directions ψCA3
i semi-randomized among each96

2× 2 tile of place cells by randomly rotating a set of 4 equally spaced direction angles by97

a uniformly distributed angle ξ, i.e.98

[
ψCA3
i , ψCA3

i+1 , ψ
CA3
i+2 , ψ

CA3
i+3

]
=
[
0◦, 90◦, 180◦, 270◦

]
+ ξ mod 360◦ .

The sensory input JS
i (t) into the i-th neuron depends on the instantaneous position,99

p(t) =
[
x(t), y(t)

]
, and heading direction ψ(t) of the animal as100

JS
i (t) =


AS

i (t) I
MEC(t) if d

(
p(t),pCA3

i

)
≦ 5cm

0 if d
(
p(t),pCA3

i

)
> 5cm

AS
i (t) = Apos +Adir exp

(
cos
(
ψ(t)− ψCA3

i

)
− 1
)

IMEC(t) =
1

2

[
1 + cos

(
2πt

100ms
+ 70◦

)]
,

where Apos is the amplitude of positional tuning and d(·) computes the Euclidean distance101

between two positions. The positional tuning curve is implemented as a rectangular box102

function, where the place cell only receives sensory input if the animal is within 5cm from103

the field center. Directional tuning is implemented as an additional amplitude gain Adir to104

the positional current depending on the circular difference between the animal’s heading105

and the neuron’s best direction ψCA3
i . The sensory input is assumed to be modulated by106

theta oscillations from medial entorhinal cortex (MEC) IMEC(t) with a phase shift of 70◦107
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(Mizuseki et al., 2009).108

The sensory input JS is subsequently transformed to the input current IS via short-109

term facilitation (STF)110

ṡFi (t) =
(SF

0 − sFi (t))
τF

+ (SF
1 − sFi (t))ΦFJS

i (t)

ISi = JS
i (t)

[
sFi (t)

]2
,

where the facilitation variable sFi decays to SF
0 with a time constant τF = 500ms and111

increases to SF
1 when the sensory input JS

i is present. Φ controls the strength of the112

STF. The facilitation variable is squared to include non-linear interactions in presynaptic113

calcium dynamics. As a result, facilitated sensory input ISi increases over time and114

becomes stronger in the later part of the field.115

Note that only the CA3 place cells receive the sensory input. ISi (t) is not applied to116

the place cells in DG and all of the inhibitory interneurons.117

CA3 recurrent connections. Place cells in CA3 connect with each other by excitatory118

synapses. The excitatory synaptic current IEi (t) is conductance-based, and follows the119

equations:120

ġEi (t) =
−gEi (t)
τE

+
1

NJ

∑
j,f

Wij s
D
j (t) δ(t− t

(f)
j − τ0) (1)

IEi (t) =
[
V E − vi(t)

]
gEi (t) (2)

The conductance gEi of a post-synaptic cell i is increased by the spike arrivals at times121

t
(f)
j from the pre-synaptic cell j, and decay with a time constant τE = 12ms. NJ = 6, 400122

is the number of presynaptic place cells, V E = 0mV is the reversal potential of the123

excitatory synapses and τ0 = 2ms is the synaptic transmission delay.124

The synaptic weights Wij from cell j to cell i depend on the distance between place125
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cell centers and on the similarity of their preferred angles, i.e.,126

WCA3
ij = Jij

{
Bpos +Bdir exp

[
KCA3

(
cos(ψL

i − ψL
j )− 1

)]}
exp

(
−d(pCA3

i ,pCA3
j )2

2σ2

)
,

where Bpos and σ correspond to the maximum strength and width of the location-specific127

interaction, respectively. Bdir and KCA3 control the maximum strength and the concen-128

tration of the directional dependence, respectively. Jij models the rightward asymmetry129

of the cell connections, which was only turned on when we simulated the 2-D variant130

of Tsodyks et al. (1996) model in Figure 1 and otherwise turned off in the rest of our131

analysis.132

If rightward asymmetry is ON, Jij = 1 if xCA3
j < xCA3

i , else 0

If rightward asymmetry is OFF, Jij = 1

Furthermore, the recurrent synaptic conductances underwent short-term synaptic de-133

pression (STD), as was proposed in Romani and Tsodyks (2015) to serve as sequence134

generator in 2-D space. The mechanism penalizes the recurrent input into the place135

cells behind the animal. As a result, the differential recurrence strengths translate to a136

gradient of spike phases and produces extrinsic sequences in the direction of travel. We137

model the STD by the variable sDi (t) which represents the available synaptic resource138

and follows the dynamics:139

ṡDi (t) =
1− sDi (t)

τD
− UDδ(t− t(f)i ) ,

where sDi recovers to 1 with a time constant τD = 500 ms and is depleted by a fraction140

UD every time a spike occurs. The STD only applies to synaptic connections when CA3141

place cells are pre-synaptic. sDi (t) is fixed at 1 when the pre-synaptic cells are inhibitory142

interneurons or DG place cells.143
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DG layer. We simulated NDG = 40 × 40 = 1600 place cells in the DG layer, with144

place field centers equally tiling the environment. The DG cells do not receive sensory in-145

put. Their positional (xDG
i , yDG

i ) and directional (ψDG
i ) tunings are determining synaptic146

strengths to and from the CA3 layer. The directional tuning is randomized as in CA3.147

The synaptic current dynamics follow equations (1) and (2). Excitatory synaptic weights148

from CA3 place cells to DG place cells are defined as149

WCA3−DG
ij = CCA3

j BDG exp
[
KDG

(
cos(ψDG

i − ψCA3
j )− 1

)]
exp

(
−d(pDG

i ,pCA3
j )2

2σ2

)
,

which are dependent on the differences in the place field centers and best angles between150

the CA3 and DG populations. The variable CCA3
j defines the path corresponding to the151

intrinsic sequence by choosing152

CCA3
j = maxk∈[−10,10]

{
exp

(−d(pC
k ,p

CA3
j )2

2σ2

)}
,

where pC
k varies with the intrinsic path direction θDG as pC

k = [2k cos(θDG), 2k sin(θDG)].153

The excitatory synaptic strengths from DG to CA3 are chosen such that DG cells154

projects back to CA3 cells with place field centers shifted by a vector r = [4 cos(θDG), 4 sin(θDG)]155

of fixed length of 4 cm along the intrinsic path, i.e.,156

WDG−CA3
ij = BDG exp

[
KDG

(
cos(ψCA3

i − ψDG
j )− 1

)]
exp

(
−d(pCA3

i − r,pDG
j )2

2σ2

)
.

The model has no synaptic connections between DG excitatory neurons.157

Inhibitory synapses. The model additionally contains NI = 250 inhibitory interneu-158

rons (denoted as Inh) each for the CA3 and the DG layer. They provide inhibitory159

feedback separately to the excitatory cells within each layer (CA3-Inh-CA3 and DG-Inh-160
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DG). The dynamics of their synaptic currents mirrors the excitatory synapses, i.e.,161

ġIi (t) =
−gIi (t)
τ I

+
1

NI

NI∑
j

WX−Y
ij δ(t− t(f)j − τ0)

IIi (t) =
[
V I − vi(t)

]
gIi (t) ,

with τ I = 10ms, V I = −80mV. CA3 and DG have all-to-all connections to their162

inhibitory populations with uniformly randomized strengths, i.e. WX−Y
ij = WX−Y

0 ξ , with163

ξ ∼ U(0, 1). WX−Y
0 is the maximum synaptic strength, and the notation X-Y corresponds164

to Inh-CA3 and Inh-DG connections. There is no synaptic connection between inter-165

neurons, i.e. W Inh−Inh = 0.166

The total recurrent current entering each excitatory neuron is thus the sum of the167

excitatory and inhibitory current:168

IRi (t) = IIi (t) + IEi (t)

Excitatory synapses to interneurons. Interneurons only receive all-to-all excitatory169

currents from their respective layer. Those currents are modelled according to eqs.(1-2).170

The synaptic weights are constant and denoted by WCA3−Inh
0 and WDG−Inh

0 .171

Parameters of the models. Model parameters that are adjusted in different analyses172

are listed in table 1.173

Cross-correlation analysis. Cross-correlation represents the probability that a spike174

of one place cell would occur following a certain time lag from the spike of the another175

cell. Cross-correlation is always computed as a histogram of time lags between spike176

pairs with a resolution of 5ms in a window of 200ms. Throughout the present study,177

the direction of a time lag is designated as the lag of the first encountered cell relative178

to the next cell along the trajectory, except in Figure 1, where the direction of time lag179

follows the cell order along the 0◦, 45◦ and 90◦ trajectory in each comparison group, and180

in Figure 2, where the time lag direction is from left to right cells.181
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Name \Figure 1 (In) 1 (Ex) 2 3 4 (Control) 4 (Lesion) 5 6

Apos 7.7 9.2 6.7

Adir 0 6

SF
0 1 0 1.25 0

SF
1 1 2 1.25 2

ΦF 0 0.001 0 0.001

Bpos 1100 0

Bdir 0 2000 1500 2000 1500

KCA3 0 1

Jij ON OFF

UD 0 0.9 0.7

NDG 0 40× 40 = 1600

BDG 0 3000 0 4000

KDG 0 1 0 1

NI 0 250

WCA3−Inh
0 0 50

W Inh−CA3
0 0 5

WDG−Inh
0 0 350

W Inh−DG
0 0 35

Table 1: Model parameters used in simulations according to Figure panels
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Correlation lag is derived by band-pass (4-12 Hz) filtering the cross-correlation his-182

togram and applying a Hilbert transform on the filtered signal. The phase of the analytic183

signal at time lag 0 is the correlation lag.184

Extrinsicity and intrinsicity. We apply quantitative measures for the extrinsic or185

intrinsic nature of correlations in a pair of place fields following Yiu et al. (2022). We186

compare the cross-correlation signals of a field pair for a running direction along the187

DG-loop (θDG) and opposite to the loop (θDG + 180◦). Extrinsicity (Ex) is computed188

as the Pearson’s correlation (r) between two cross-correlation signals, and intrinsicity189

(In) between the signal of θDG and the horizontally flipped signal of θDG + 180◦. The190

Pearson’s correlation is then transformed (r′ = (r + 1)/2) to be in the range of 0 and 1.191

An extrinsic pair would give an extrinsicity near 1, since the effect of DG loop is minimal192

and correlation signals are similar in both θDG and θDG + 180◦ directions. An intrinsic193

pair would see correlation signal horizontally flipped in the θDG + 180◦ condition due to194

the large effect of DG loop, and hence, give an intrinsicity near 1. We classify a pair as195

extrinsic if its extrinsicity exceeds intrinsicity, and vice versa.196

Tempotron. A tempotron is a neuronally inspired classifier (readout neuron) whose197

dendritic synaptic weights can be adapted to recognize temporal patterns of spikes ar-198

riving at the afferents (for details, see Gütig and Sompolinsky (2006)). Briefly, the soma199

potential of the tempotron follows the equations200

V (t) =
∑
i

wi

∑
i,f

K(t− t(f)i )

K(t− t(f)i ) = V0(exp[−(t− t(f)i )/τ ]− exp[−(t− t(f)i )/τr]) ,

where wi is the adaptable weight of the afferent fiber conveying spikes from place cell i to201

the tempotron. K(t−t(f)i ) is a post-synaptic potential (PSP) kernel with decay and rising202

time constants of τ = 5ms and τr = 1.25ms respectively. V0 is a factor which normalizes203

the PSP kernel to 1. A spike is said to occur if V (t) crosses the firing threshold VΘ = 2204
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from below. After threshold crossing, the afferents will be shunted and spike arrivals will205

not evoke more PSPs for the rest of the pattern. A pattern is defined as the set of spike206

times of all the pre-synaptic place cells in a theta cycle (100ms).207

The weight wi follows the update rule208

∆wi = 0.01
∑

t
(f)
i <tmax

K(tmax − t(f)i )

209

wi ← wi +∆wi If a (+) pattern does not elicit a spike,

wi ← wi −∆wi If a (−) pattern does elicit a spike,

where tmax is the time at the peak of the soma potential V (t). The learning rule assigns210

credit to the afferents based on spike timing. Spike times closer to the peak are considered211

to have higher contribution to the tempotron firing, hence their afferents are incremented212

by a larger step. After training, spike times with similar temporal correlations as the (+)213

patterns would be able to evoke enough PSP in the tempotron’s soma and elicit a spike214

as a positive response of binary classification, while those similar to (−) patterns would215

not elicit a spike from the tempotron.216

We trained the tempotrons to identify the spike patterns of place cells at locations217

with and without intrinsic connectivity separately. To this end, we modified our network218

such that DG loops are present at the upper half of the arena, spanning the space from219

x=-20cm to x=+20cm at y=+20cm in direction θDG = 0◦, while the loop is absent in220

the lower half of the arena.221

During training, we applied ”non-moving” spatial inputs to the CA3 place cells at222

the with-loop (0 cm, 20 cm) and no-loop (0 cm, -20 cm) locations for 1 second, as if the223

animal were standing still at the locations, evoking the activities representing the two224

location cues. For computational efficiency, we restricted our analysis to the populations225

of CA3 place cells within the 20cm squared boxes centered at the two locations. Each226
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population contains 400 pre-synaptic cells, forming the input space for the tempotron.227

The spikes from the with-loop population will train the first tempotron and those from228

the no-loop population will train the second tempotron. Prior to training, the input229

spikes are sub-divided to 10 patterns based on their theta cycles. Each pattern has a230

window of 100ms. We added noise to the patterns by jittering the spikes with Gaussian231

noise N ∼ (0, (2ms)2) for 100 times. As a result, each tempotron receives 10 × 100 =232

1000 training patterns from the activity evoked by the location. All training patterns are233

(+) patterns and there is no (−) pattern.234

After training, trajectories (20cm long, 1s duration) with running directions from 0◦235

to 360◦ with 15◦ increment were simulated to cross each of the locations. The trajectories236

produce intrinsic sequences in the with-loop population and extrinsic sequences in the237

no-loop population. The patterns evoked by the running trajectories were separately238

applied to the tempotrons. The input spikes for testing were also subdivided in to theta239

cycles and jittered in the same manner as during training, forming 1000 testing patterns240

for each running direction. A sequence is said to be correctly identified if the tempotron241

fires at at least 1 out of 10 theta cycles along the trajectory. The accuracy rate for each242

running direction of trajectory is computed across the 100 jittered realizations.243

3 Results244

Theta sequence directionality in intrinsic and extrinsic models. Theta-scale245

correlations of place cells have been explained by previous models using two different246

types of network mechanisms, intrinsic and extrinsic ones. For intrinsic models spike247

correlations are explained by only the recurrent connectivity of the neuronal network.248

For extrinsic models, the spike correlation is determined by sensory-motor inputs. We249

first illustrate how these mechanisms work for two exemplary representatives of these two250

major model classes.251

For intrinsic models, we refer to the original Tsodyks et al. (1996) model where phase252

precession is generated by the fixed asymmetrical connectivity between place cells. Spike253
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phases of the place cells ahead of the animal decrease as the excitatory drive is gradually254

increasing, but only along one preferred running direction. Here we simulate a network255

of CA3 place cells with fixed asymmetrical connectivity as suggested in Tsodyks et al.256

(1996) model (see Methods for the implementation) and applied our model to behavioral257

running trajectories in a 2-D open space (Figure 1A). Phase precession and spike correla-258

tions (Figure 1B-D) are compared for opposite running directions. In our simulation, all259

place cells project excitatory synapses to their counterparts with rightward neighboring260

place fields (see CA3 recurrent connections in Methods). Phase precession therefore is261

determined by how closely the running direction matches the preferred direction imposed262

by the intrinsic connections. The closer the trajectory angle aligns with this preferred263

direction, the more negative is the slope of phase precession (Figure 1C). Since in this264

case, the theta sequence only propagates rightwards as place cells are sequentially acti-265

vated from left to right, the signs of spike correlations between cell pairs remain invariant266

to movement direction (Figure 1D, see Cross-correlation analysis in Methods). Intrinsic267

models thus cannot explain experimentally observed directional independence of phase268

precession and directional dependence of theta spike correlations (Huxter et al., 2008).269

Our example of an extrinsic model is based on our spiking simulations of the rate-270

based model by Romani and Tsodyks (2015), where phase precession was explained by271

symmetric recurrent connections that undergo running direction-dependent attenuation272

by short-term synaptic depression (STD): place fields with centers behind the current273

animal position on the trajectory thereby received largely reduced recurrent input re-274

sulting in recurrently driven theta sequences to play out only in forward direction. We275

simulated our spiking variant of the Romani and Tsodyks (2015) model with the same276

trajectories as the intrinsic model (Figure 1A, E), and recovered direction-independent277

phase precession (Figure 1F). Since now, the theta sequences are played out in the same278

direction as the movement, theta spike correlations are symmetrically reversed (Figure279

1G) as shown experimentally in CA1 neurons (Huxter et al., 2008; Yiu et al., 2022).280

In area CA3, however, theta spike correlations are neither solely extrinsic (Yiu et al.,281

2022; Kay et al., 2020), since phase precession properties change in relation to running282
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directions, nor are they solely intrinsic since reversal of correlation is still observed in283

most of the sequences (Huxter et al., 2008; Yiu et al., 2022). We therefore propose a new284

theory of phase precession for CA3 incorporating both intrinsic and extrinsic factors.285

A

B

C

D

E

F

G

Theta cycle (100ms)

20 cm

Position

Position

Intrinsic
Model

Extrinsic
Model

Figure 1: Phase precession depends on running direction in intrinsic models but not extrinsic
models. (A) Simulated trajectories (duration 2 s) in a 2-D environment (80×80 cm) with speed
20 cm/s in left and right (left column), diagonal (middle), and up and down (right) directions.
(B-D) Simulation results from the intrinsic model (with fixed asymmetrical connectivity inspired
from Tsodyks et al. (1996) model). Place cells only project synapses to their right neighbors.
(B) Spike raster plots of place cells along the orange (left panel) and light green (right panel)
trajectories (colors defined in A). Theta sequences flip order with reversed running direction.
(C) Phase-position relation for the spikes colored in a. Linear-circular regression (gray line)
parameters are indicated on top. Positions of the animal at the first and last spike are normalized
to 0 and 1, respectively. (D) Averaged cross-correlation of all cell pairs separated by 4cm along
the trajectory. Reversal of running direction does not flip the sign of the peak lags. (E-G) Same
as A-D, but for the extrinsic model (spike-based variant of Romani and Tsodyks (2015) model).
Synaptic connections are symmetrical but short-term depression penalizes the recurrent synaptic
drive of the place cells ”behind” the animal. (E-F) Theta sequences and phase precession are
present and remain invariant for different movement directions. (G) Cross-correlations flip sign
of peak lags when trajectory is reversed.
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Directional sensory input. To, however, fully explain directional properties of theta286

phase precession and theta spike correlations by a model, also directional modulations of287

firing rates (Yiu et al., 2022) need to be taken into account.288

We therefore included both directional and positional modulation of the sensory input289

to the model place cells (Figure 2A-B) with randomized best directions (See Spatial290

input in Methods). The sensory input is assumed to arise from MEC, and hence, it is291

also theta-modulated and phase-shifted by 70◦ with respected to the peak of theta cycle292

(Mizuseki et al., 2009). Furthermore, since the precession slope observed in Romani’s and293

Tsodyks’ (2015) model is limited (-1.13 radians per field size, see Figure 1F) as compared294

to the experimental reports (−4.44 radians (Yiu et al., 2022) and −266 degrees (Schmidt295

et al., 2009) per field size), we introduced short-term synaptic facilitation (STF) to the296

sensory input (Berretta and Jones, 1996; Thurley et al., 2008) generating temporally297

asymmetric depolarization as suggested by intracellular recordings in vivo (Harvey et al.,298

2009) (Figure 2B). STF amplifies the sensory current at the later part of the field, thus299

creating phase precession with lower phase tail and increasing the steepness of slopes.300

Finally, we designated the synaptic weights to be stronger between place cells with similar301

preferred directions (Figure 2C) as has been proposed (Brunel and Trullier, 1998) as a302

result of Hebbian plasticity applied to directional firing fields.303

A simulation of the place cell network was performed for a rightward trajectory304

through the arena based on our variant of the extrinsic Romani and Tsodyks (2015) model305

(Figure 2D). We focus on two sets of place cells, one for which the trajectory aligns with306

the best direction of the field (red) and one for which the trajectory runs along the307

worst direction, which is opposite to the best direction of the field (Figure 2F). Consis-308

tent with experimental data (Yiu et al., 2022), phase precession has a lower onset and309

marginal spike phase along best direction than along the worst (Figure 2G-H), reflecting310

that larger depolarizations generally yield shorter latencies. Directionality of the input,311

however, does not affect spike pair correlations, which remains solely extrinsic (Figure312

2I). Thus, even though rate directionality and directional bias in recurrent connectivity313

can render phase precession directionally dependent, they are not sufficient to account314
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for intrinsic sequences.315

A B C

D E

F G H I

1e3

Figure 2: Directional input gives rise to spikes at lower theta phase. (A) Directional input
component of an example place cell. (B) Total sensory input as the sum of directional and
positional drive of an example place cell for the animal running in the best (red dashed line,
left) and the worst (blue dashed line, right) heading direction of the cell. The sensory input
is modelled by oscillatory currents arriving with +70◦ phase shift relative to theta peaks (gray
vertical lines). Place fields are defined by a 5cm rectangular envelope. Solid lines depict the
input current including short-term synaptic facilitation. (C) Synaptic weights (Wij , color) from
the place cell at the center (darkest dot) to its neighbors in the 2-D environment. Each dot is a
place field center in 2-D space. Arrows depict their best directions. (D) Spike raster plot sorted
by visiting order of the place fields along the trajectory. Spikes of the cells with best and worst
direction are colored in red and blue, respectively. (E) Phase position plots for the cells with
best and worst direction from d (labels as in Figure 1C). The mean phase is marked as horizontal
gray bar. (F) Example place cell centers with best (< 30◦ different from the trajectory; red) and
worst (> 150◦; blue) directions relative to the rightward trajectory (gray line). Only centers
of cells that fire more than 5 spikes are shown. (G) Slopes and onsets of phase precession of
the population from (F). Marginal slope and onset distributions are plotted on top and right,
respectively. Note higher phase onset in the blue population with trajectory aligned to the worst
directions. (H) Spike phase distributions. Higher directional inputs generate lower spike phases.
(I) Average spike correlation between all pairs with 4cm of horizontal distance difference when
the animal runs rightwards and leftwards. Peak lags are flipped as expected from an extrinsic
model.
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Generation of intrinsic sequences by DG-CA3 recurrent network. To explain316

the expression of intrinsic sequences in CA3, we propose them to be generated by the317

interaction of two networks, CA3 and DG (Figure 3A). DG is a good candidate region318

to be involved in phase precession, since lesions of it were shown to reduce prospective319

spiking (Sasaki et al., 2018) and to lower the onset phase of phase precession (Ahmadi320

et al., 2022). In our model, the neurons in DG receive excitatory synaptic inputs from321

CA3 place cells (putatively via hilar mossy cells) and project back to the CA3 cells with322

place field centers at a different location. The CA3 cells at the target location of DG input323

are then activated and evoke higher depolarization in cells with place fields at the next324

DG target locations, again through the DG loop. This scheme produces a rigid sequence325

whose activation order is independent of the movement direction. The connection pattern326

of DG-CA3 projections could be determined by pre-existing network structure or past327

experience through associative learning, or both.328

Figure 3, provides schematic illustrations, for a DG layer that either only projects329

CA3 activity to their rightward neighbours (θDG = 0◦, Figure 3A) or only to their left-330

ward neighbors (θDG = 180◦, Figure 3E). Simulations for both cases (θDG = 0◦ and331

θDG = 180◦) assume a rightward trajectory. Apart from the addition of the DG layer, the332

model architecture and parameters of CA3 layer are the same as in Figure 2 (including333

best and worst direction in place field firing rate), which only generates extrinsic se-334

quences through STD in the CA3 recurrent synaptic connections. DG-loop connectivity335

is additionally modulated by firing rate directionality of the CA3 place fields. Fields with336

similar best direction are more strongly connected via the loop than those with opposite337

best directions (see DG layer in Methods).338

We found that when the simulated animal is running in the same direction as the339

DG-CA3 projection, phase precession starts from a higher phase (Figure 3C-D) due to340

the forward activation of place cells through DG layer (recovering the effect of asymmet-341

ric connectivity in the original Tsodyks et al. (1996) model), as compared to the model342

without DG layer (Figure 2G-H). Spike phases along best-direction remains lower than343

along the worst direction (Figure 3D). When, however, the animal is running against344
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the DG-CA3 projection (Figure 3E), extrinsic sequences are still present in forward di-345

rection, evoked by the movement of the animal, but the intrinsic sequences are played346

out backward as determined by the direction of fixed recurrence (Figure 3F). The latter347

appears as higher phase at the tail of phase position plots (Figure 3G) which leads to348

flatter precession slopes and decreases the fraction of phase precession (slope < 0) of all349

traversal trials (Figure 3H). A closer look into pair correlation reveals that for trajectories350

opposite to the DG-loop projection (θDG = 180◦), spike probability is added to positive351

time lags (Figure 3I). Therefore, introducing fixed recurrence through DG loops elicits352

both extrinsic and intrinsic sequences and qualitatively changes theta sequences.353

To quantify the degrees of extrinsic and intrinsic sequence firing, we use the measures354

extrinsicity and intrinsicity (Yiu et al., 2022) (see Methods for details). Consistent with355

experimental data (Yiu et al., 2022), our model reproduces a greater extrinsicity for356

cell pair activity when running direction aligns with both best place field directions as357

compared to when it aligns to both worst field directions (Figure 3J), since along the best358

direction, cells receive more sensory depolarization, and thus, the movement-dependent359

extrinsic sequences are more activated. The model also explains, why pairs with similar360

best place field directions may be less extrinsic than pairs with approximately opposite361

best direction (dissimilar pairs), since the DG loop preferentially connects CA3 place cells362

with similar best directions.363

Thus, by introducing feedback excitation via the DG layer, intrinsic sequences are able364

to propagate in fixed directions on top of the movement-dependent extrinsic sequences.365

Theta sequence directionality is reflected through the change in spike correlation, which366

varies as a function of the difference between the direction of DG feedback and movement367

direction.368

Lesion in DG reduces pair correlation. One prediction of the DG-loop model,369

consistent with findings from DG lesion experiments (Ahmadi et al., 2022), is that DG370

would contribute to the temporal organization of spike sequences in CA3. To verify this371

hypothesis also in the model, we implemented a lesion of DG by disabling activity in372

the DG layer. To compensate for reduced excitatory drive caused by the lesion, we then373
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Figure 3: DG-CA3 loop introduces directionality of theta sequences. (A) Illustration of synap-
tic connections from CA3 place cells to DG and vice versa. DG layer mirrors the place cell
population in CA3 and redirects the CA3 inputs back to different locations. Here, DG cells
project into CA3 place cells with fields 4 cm displaced to the right of the pre-synaptic CA3
cells. θDG denotes the angular difference between the DG projection direction and the ani-
mal’s movement direction. (B) Spike raster plots sorted by cell indices along the trajectory
(2 s duration) from x=-20cm to x=20cm. Cells with best and worst angles are marked by red
and blue colors, respectively. (C) Phase-position plots as is Figure 2E. (D) Distributions of
precession slopes, onsets and spike phases as in Figure 2G-H. (E-H) Same as a-d, but with DG
cells projecting opposite to the animal’s movement direction (θDG = 180◦). (I) Average spike
correlations for θDG = 0◦ and θDG = 180◦ for pairs separated by 4cm along the trajectory.
Note that for θDG = 180◦, there is a relative excess of spike-pairs with positive lags. (J) Left:
Intrinsicity and extrinsicity (see Methods) for all pairs from the populations with best (red)
and worst (blue) direction. Pairs above and below the identity line are classified as intrinsic
and extrinsic pairs, respectively. Numbers are the ratios of extrinsic to intrinsic pairs. Note
that the red best direction pairs are more extrinsic than the blue worst direction pairs due
to higher sensory input. Middle: Ex/Intrinsicity of pairs with similar (< 30◦) and dissimilar
(> 150◦) preferred angles. Pairs with similar preferred angle are more intrinsic due to stronger
DG-CA3 recurrence. Right: Cumulative distribution of the differences between extrinsicity and
intrinsicity. Dissimilar and best direction pairs have higher bias to extrinsicity than similar and
worst direction pairs, respectively.
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increased probability of release of the sensory inputs thereby increasing the initial input374

amplitudes but removing short-term synaptic facilitation (Figure 4A).375

For a simulated rightward trajectory, we plotted the pair correlation lags versus the376

distance between the centers of two fields (Figure 4B-C). Theta compression (Dragoi377

and Buzsáki, 2006) measures how much theta phase encodes a certain interval in space378

and is quantified by magnitude of the linear-circular regression slopes (a, in radians per379

maximum pair distance) of the lag-distance plots. Theta compression is lower for the DG380

lesion case (a = 0.54 for both θDG = 0◦ and θDG = 180◦), as compared to the control case381

(a = 2.23 for θDG = 0◦ and a = −0.77 for θDG = 180◦) reproducing the finding (Ahmadi382

et al., 2022) that spatial encoding via theta sequences crucially depends on intact DG and383

predicting that loss of DG inputs is compensated for by the increase of release probability384

in the spared afferent synapses from the MEC.385

A

B

C

θDG=0° θDG=180°

Pair distance (cm)

Control
Lesion

Figure 4: DG lesion reduces temporal correlations in theta sequences. DG recurrence is turned
off to simulate the lesion condition. (A) Positional sensory inputs into a place cell in lesion
(purple) and control (green) cases. The control case is identical to Fig 3. In the lesion case, DG
input is compensated by increased sensory input with increased probability of synaptic release,
hence reduced short-term synaptic facilitation. (B) Theta compression, i.e., correlation between
peak correlation lag and distance of field centers in the control case. Each dot represents a field
pair. Linear-circular regression line is indicated in black. Note that the sign of regression slope
(a in radians per maximum pair distance) is determined by the directions of DG loop (negative
in θDG = 180◦). (C) same as b, but for the lesion case. Theta compression is reduced as
compared to the control condition.

Theta sequences in 2-D. So far, the model was only evaluated on bidirectional lin-386

ear tracks, where running directions completely overlapped with the orientation of the387

DG loop connectivity. Now, we extend our analysis to 2-D space by examining oblique388

trajectories which cross the DG-loop projection at certain angles.389
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We first arrange the DG-loop connections such that they cross a rightward trajectory390

at 45◦ and 225◦ (Figure 5A-F). Similar to the cases of θDG = 0◦ and θDG = 180◦ (Figure 3D391

and 3H), precession slopes are steeper and onsets higher when the trajectory aligns more392

with the orientation of the DG-loop, but with a smaller effect size for oblique crossings393

(Figure 5A and 5C) since DG-loop connectivity only covers part of the trajectory near394

the intersection. We further resolve the precession slope, onset and marginal phase for395

each place cell into 2-D maps (Figure 5B and 5D). Intrinsic sequences with a higher396

marginal spike phase can be clearly seen along the belt of DG-loop projections and are397

even extended to the outside of trajectory predicting ”off-track” spikes at high phases.398

Depending on the movement alignment with the DG-loop orientation, the slope becomes399

either more negative (θDG = 45◦) or more positive (θDG = 225◦). Analysis of extrinsicity400

and intrinsicity was conducted for all field pairs and confirmed the same trend as in401

Figure 3 that best and dissimilar pairs are more extrinsic than worst and similar pairs,402

respectively (Figure 5E). As a quantitative prediction, we computed the angle differences403

between field centers of cell pairs for the extrinsic and intrinsic populations, and observe404

that extrinsic pair center differences are mostly oriented horizontally (along the running405

direction) while intrinsic pair center differences are oriented along the DG-loop orientation406

θDG = 45◦, as by design (Fig 5F).407

The analysis above is repeated for the geometric configurations that DG-loop connec-408

tivity is minimally interacting with the movement direction, i.e., when they are perpen-409

dicular to each other (θDG = 90◦ and θDG = 270◦, Figure 5G). Similar effects as in Figure410

5B and 5D on precession slope, onset and marginal phases are also observed in the 2-D411

map, except the effects are further restricted to the intersection area in the middle. Also,412

the whole population has become more extrinsic as compared to the 45◦ and 225◦ cases413

(Figure 5H, see the numbers for extrinsic-intrinsic ratios) due to the smaller overlapping414

area between DG-loop projection and the trajectory. Lastly, the pair center difference415

orientation confirms that extrinsic pairs follow the trajectory direction while intrinsic416

pairs are biased towards the DG-loop orientations (90◦).417

The results demonstrate the distinct roles of extrinsic and intrinsic sequences in 2-D418
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spatial encoding. The former represents trajectory direction while the latter the asso-419

ciative memory towards specific locations. They can be played out at the same time420

separately in different directions and only interact with each other when they overlap.421

The interaction is reflected in the change in phase precession properties, most notably422

the higher spike phases from the DG-CA3 recurrent input, as well as increased intrin-423

sicity of pair correlation and extended firing fields along the orientation of the DG-loop424

projections.425

Functional role of intrinsic sequences. While the function of extrinsic theta se-426

quences in encoding the actual trajectory of an animal (connecting the recent past, present427

and near future locations) is obvious, the potential role of the lesser expressed intrinsic428

sequence contributions is not straight forward. Simulations of trajectories in 2-D (Fig-429

ure 5) suggest intrinsic activity may serve a role to identify certain location-direction430

pairs independent of the current trajectory. Here we follow this idea by evaluating the431

hypothesis that the intrinsic sequences signal a stable ”landmark” (location/direction432

pair) cue by a temporal code that is invariant to different directions of approach.433

To test our hypothesis, we constructed a downstream readout neuron that would reli-434

ably identify the presence of the intrinsic sequence independently of the animal’s running435

direction. To this end, we trained the synaptic weights using the tempotron learning436

rule (Gütig and Sompolinsky, 2006), which is able to implement binary classification437

based on temporal relations of input spike patterns (see Tempotron section in Methods).438

Two tempotrons were trained to recognize the spike patterns from the place cells, one439

taking input from a model with DG-loop connectivity at θDG = 0◦, and one without440

DG-loop connectivity separately (Figure 6A). Non-moving spatial inputs were applied to441

the CA3 place cells at the centers of with-loop and no-loop populations and their spike442

patterns in each theta cycle are used as training patterns, mimicking a situation in which443

network activity is evoked without sensory-motor input as, e.g., in a situation before the444

animal has seen the environment. The training patterns have only (+) labels, which445

the tempotrons are trained to recognize by firing a spike (Figure 6B). We then test the446

tempotrons with spike patterns induced by trajectories from 0◦ to 360◦ going through the447
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Figure 5: Extrinsic and intrinsic sequences are distinguishable through temporal properties in
2-D space. (A) Left: Schematic illustration of DG projection being tilted by 45◦ relative to the
trajectory. Right: Distributions of phase precession onsets and slopes from the place cells along
the trajectory as in Figure 2G. (B) Slopes (left), onsets (middle) and mean spike phases (right)
of phase precession from the place cells as a function of field center. High spike phases and onsets
occur along the DG-loop orientation where intrinsic spiking dominates. (C-D) Same as (A-B),
but DG-loop projection is at 225◦ relative to trajectory. (D) For DG loops pointing opposite to
the sensorimotor drive, prospective firing along the DG loop yields less steep precession slopes
and lower onset. (E) Extrinsicity and intrinsicity of all pairs along the trajectory as in Figure
3J. Some pairs are totally extrinsic (Ex=1) because DG projection is absent at those parts of
the trajectory. (F) Density of extrinsic/intrinsic pairs as a function of the orientation of field
center difference vector relative to the x axis. Intrinsic fields peak at 45◦. (G) Same as (A-D),
but DG projections are perpendicular to the trajectory at 90◦ (top) and 270◦. Prospective
spikes from intrinsic sequences are initiated in the perpendicular directions. (G) Same as (E),
but with higher Ex-In ratios. (I) Intrinsic pairs are at ±90◦.
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two current injection sites (Figure 6C). All spikes in each training and testing pattern are448

individually jittered by adding a noise term σ ∼ N (0, 2ms2) for 100 times, producing 100449

samples for each pattern. The tempotron is said to successfully recognize the sequence of450

a trajectory direction if any of the theta cycles throughout the trajectory elicits a spike.451

We found that for the population involving a DG loop, the tempotron is able to452

recognize the sequence patterns produced for all running directions, while for the no-loop453

population, the tempotron fails to identify the sequences in most of the trajectories (see454

accuracies in Figure 6D). Note that the tempotron performed its classification while the455

extrinsic sequences were not disabled. The reason is that the spike patterns induced by456

intrinsic sequences remain similar to the training pattern despite being approached in457

other directions (see sequential contributions in Figure 6E), while spike patterns of the458

no-loop network can no longer be recognized (Figure 6F).459

Our results show that intrinsic sequences can provide a stable correlation signal which460

allows reliable decoding of locations through temporal correlations. The intrinsic tempo-461

ral code remains detectable even as a mixture with the extrinsic sequences.462

4 Discussion463

We presented a model of hippocampal theta sequences in 2-d environments, suggesting464

that both extrinsic and intrinsic mechanisms are required to explain experimental reports465

that phase precession and spike timing correlations are non-homogeneous across running466

directions. Although phase precession already becomes directional by including direction-467

dependent sensory input into a purely extrinsic model, directionality of spike timing468

correlations cannot be explained by such a model. We, however, demonstrated that469

the correlation preference could be implemented by fixed recursive loops via a model470

DG layer. We further supported the model assumptions by showing that DG lesions471

plus compensatory sensory drive can abolish the theta compression effect in CA3 spiking472

activity (Ahmadi et al., 2022). By employing a spike-based temporal pattern decoder473

(tempotron), we showed that the trajectory-independent sequences could function as474
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Figure 6: Intrinsic sequences provide a stable landmark for positional decoding using a tem-
potron. (A) Top: A tempotron is trained separately for place cells population within the top
(with DG loop; blue) and bottom (no DG loop; red) squares, to recognize the presence of the
corresponding sequence activities. DG-loop rightward projection is indicated by blue arrow and
only exists in the blue square. Non-moving spatial inputs are applied to neurons with fields at
two locations (marked by black crosses) to play out spike sequences. Bottom: Resulting spikes
of place cells with centers from x=-10 to x=10 fixed at y=+20 (with-loop, top raster plot) and
y=-20 (no-loop, bottom). Each theta cycle is one (+) training pattern, in which the tempotron
is trained to classify by eliciting a spike. (B) Spikes of place cells from x=-10 to x=10 (in each
rectangular row) fixed at different values of y. Only one theta cycle is shown as an example
pattern. Each place cell delivers spikes to a dendrite of the tempotron, producing post-synaptic
potentials (PSPs) at the soma (line plot at the bottom). Synaptic weights are adapted by the
tempotron learning rule such that PSPs can cross the threshold (gray line) and fire for the de-
tection of the sequence. After the tempotron has fired, the PSPs will be shunted. (C) Sequence
detection is tested on trajectory directions (φ) from 0◦ to 360◦ with a 15◦ increment to detect
the presence of sequence. (D) Detection accuracies (ACC) for with-loop (red line) and no-loop
(blue) populations. Note that the tempotron cannot detect the no-loop sequences when tested
on trajectories at various angles. (E) Detection of intrinsic sequence from a trajectory φ = 180◦

for the DG-loop population. Spike raster is shown for every two horizontal rows of place cells in
the arena and color-coded by the synaptic weights (see color bar on the right). Tempotron soma
potential is shown at the bottom for each pattern. (F) Same as (E), but for no-loop inputs.
The tempotron remains silent.
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stable signatures that act as anchors of the spatial code.475

Early intrinsic models (Tsodyks et al., 1996) were challenged owing to their inability476

to generate phase precession in backward travel (Figure 1C, also see Cei et al. (2014)), as477

well as the predominantly extrinsic correlations observed in CA1 (Huxter et al., 2008).478

In our hybrid model, phase precession still occurs during backward travel (θDG = 180◦)479

but at a lower probability as indicated by the larger fraction of positive phase-position480

slopes (Figure 3H). Also, extrinsic sequences still dominate over intrinsic sequences as481

indicated by the majority of field pairs being extrinsic (Figure 3J). Both the reduced482

expression of phase precession in reverse runs and the dominance of extrinsic sequences483

are in accordance with the experimental data (Yiu et al., 2022).484

The mixture of extrinsic and intrinsic mechanisms in our theory, naturally gives rise485

to the directionality of spike correlations and phase distributions. As the trajectory aligns486

itself with the DG loops, the ratio of intrinsic to extrinsic sequences increases. As a result,487

spike correlations become more rigid and the phase distribution is shifted upward due488

to the accumulated synaptic transmission delay from the reverberating activity between489

CA3 and DG populations. Adding directional sensory input activates extrinsic sequences490

in the best direction more strongly, and hence, leads to an association between best-491

angle (worst-angle) pairs and extrinsicity (intrinsicity). These predictions of our model492

are corroborated by past reports of higher spike phases in the non-preferred arm of a493

T-maze (Kay et al., 2020) as well as the association of rigid correlations with upward494

shifts in spike phases and an increase in worst-angle pairs (Yiu et al., 2022).495

Since intrinsic sequences can also propagate outside the trajectory (Figure 5) and496

activate place cells non-locally, our model predicts direction-dependent expansion of place497

fields. Remote activation during locomotion has already been observed in a previous498

study (Sasaki et al., 2018) where CA3 place cells preferentially firing at one arm of the499

maze were also activated at reward locations at other arms. In our model, only short-range500

intrinsic connectivity was considered, thus, place field boundaries expand locally but in501

a skewed manner matching the sequence direction. Skewness of place fields has been502

reported by a number of studies (Mehta et al., 1997; Shen et al., 1997; Mehta et al., 2000;503
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Ekstrom et al., 2001; Lee et al., 2004; Burke et al., 2008; Cei et al., 2014; Roth et al.,504

2012; Dong et al., 2021) showing place fields to be asymmetrically expanded opposite505

to the direction of travel. This effect was connected to plasticity as it develops after506

repeated traversal, and due to its dependence on NMDA receptor activation (Ekstrom507

et al., 2001; Burke et al., 2008; Shen et al., 1997). These plasticity studies show that the508

hippocampal place code is shaped by intrinsic synaptic computations including temporal509

activation patterns in theta sequences (Feng et al., 2015). Apart from being conducted on510

linear tracks and not 2-d environments, most of this work focused on CA1 and associated511

Schaffer collateral plasticity. Yet some prior studies (Lee et al., 2004; Roth et al., 2012)512

did show that place fields in CA3 were more skewed than in CA1, which our model513

would explain by CA3 expressing more intrinsic sequences than CA1 consistent with514

prior experimental observations (Yiu et al., 2022).515

The back-projection from CA3 to DG is a crucial anatomical prerequisite of our model,516

but was rarely explored compared to the feed-forward inputs via the perforant pathway.517

The proposed CA3-DG recurrent structure of this model, albeit simplified, is consistent518

with the anatomical evidence. Pyramidal cells in CA3 innervate the mossy cells at the DG519

hilus (Scharfman, 1994, 2016), which then project to granule cells through both excitatory520

and inhibitory pathways (Hsu et al., 2016; Scharfman, 1995; Larimer and Strowbridge,521

2008; Soriano and Frotscher, 1994), and subsequently back to CA3 pyramidal cells. An522

optogenetic study (Hsu et al., 2016) showed that the net effect of mossy cells on granule523

cells was predominantly inhibitory, suggesting that the DG ensembles excited by mossy524

cell synaptic drive are sparsified by suppressing unwanted out-of-ensemble activity. In-525

deed, past studies showed that reliable excitatory effect could be observed when granule526

cells were depolarized (Scharfman, 1995) and when they received back-propagation of527

sharp wave bursts from CA3 population (Penttonen et al., 1998). This indicates that the528

excitatory recurrent pathway from CA3 via DG exists and might allow activity rever-529

beration between two layers. Moreover, lesions of the DG layer were shown to eliminate530

the coordinated temporal structure of CA3 activity and to be instrumental to sequence531

organization (Figure 4 and Ahmadi et al. (2022)).532
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Our model assumed a connectivity pattern of DG loops in which neurons activate the533

neighbours along a specific direction, as inspired by Hebb’s phase sequences (Hebb, 1949)534

and, hence, replay of the loop would activate a spatially plausible virtual trajectory. The535

loop connectivity could either arise from previous learning, or might be present already536

beforehand (Dragoi and Tonegawa, 2013), with spatial topology inherited by associating537

2-d sensory features to cell ensembles in the loop (Leibold, 2020) . The resulting topology538

can exhibit discontinuous long-range jumps to other locations (Sasaki et al., 2018) or539

consist of a discrete set of (behaviorally relevant) locations (Pfeiffer, 2022).540

Different from other phase precession models, we also included heading direction as541

part of the sensory input, as inspired by past literature that CA1 (Markus et al., 1995;542

Acharya et al., 2016; Stefanini et al., 2020), CA3 (Mankin et al., 2019) and DG place543

cells (Stefanini et al., 2020) exhibit directional selectivity in firing rates, potentially in-544

herited from the upstream head-direction cells in the medial entorhinal cortex (Giocomo545

et al., 2014) and postsubiculum (Taube et al., 1990). As a result, the directional drive546

immediately translates to phase directionality in theta sequences, partly contributing to547

the upward shift of the phase distribution in the worst angles. Such phase directionality548

arises naturally from the intracellular dynamics of a spike-based model, where stronger549

depolarization causes earlier spiking. This phase-rate dependence has already been used550

in previous models (Harris et al., 2002; Mehta et al., 2002; Thurley et al., 2008), where the551

increasing depolarization within place fields directly relates to decreasing spike phases.552

The causal effect of firing rate on spike phases, however, was disputed by Huxter et al.553

(2003) as they showed that precession slopes and spike phases remained the same between554

high- and low-spiking runs, suggesting that the phase is not single-handedly determined555

by firing rate. In our model, firing rate is determined by both low-phase spiking from556

sensory input and high-phase spike arrivals of DG-CA3 loops, both producing opposing557

effects on the phase distribution. Thus, depending on the strength and geometry of the558

DG-CA3 connectivity, spike phases are not fully determined by firing rate.559

By using a tempotron to decode the spike patterns, we show that the spike patterns560

of intrinsic sequences can serve as a stable landmark which remains decodable across561
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multiple running directions. The invariant temporal patterns could serve as anchors562

of spatial memories in a novel environment, since place fields only stabilize after the563

animal becomes familiar with the environment (Wilson and McNaughton, 1993). The pre-564

existing sequence motifs, even at times when the spikes of the neurons are not spatially565

tuned to a location, can still encode the position based on their temporal relations alone.566

The idea has previously been spelled out (Cheng, 2013) and numerically verified (Leibold,567

2020) with multiple fixed sequences that form a decodable spatial representation in a568

reinforcement learning paradigm.569

We speculate that the functional roles of intrinsic sequences may not be limited to570

spatial memories. While, in the spatial domain, intrinsic sequences could be interpreted571

as planning of alternative trajectories during navigation or prospective planning of future572

pathways (Kay et al., 2020; Sasaki et al., 2018), virtual non-spatial trajectories could573

represent working memories contents (Jensen et al., 1996) available for general decision574

making processes.575
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