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Abstract 36 
1. Correlation across species between two quantitative traits, or between a trait and a habitat 37 

property, can suggest that a trait value is effective in sustaining populations in some 38 

contexts but not others. It is widely held that such correlations should be controlled for 39 

phylogeny, via phylogenetically independent contrasts PICs or phylogenetic generalised 40 

least squares PGLS.  41 

2. Two weaknesses of this idea are discussed. First, the phylogenetically conservative share 42 

of the correlation ought not to be excluded from consideration as potentially ecologically 43 

functional. Second, PGLS does not yield a complete or accurate breakdown of A-B 44 

covariation, because it corresponds to a generating model where B predicts variation in A 45 

but not the reverse.  46 

3. Multi-response mixed models using phylogenetic covariance matrices can quantify 47 

conservative trait correlation CTC, a share of covariation between traits A and B that is 48 

phylogenetically conservative. Because the evidence is from correlative data, it is not 49 

possible to split CTC into causation by phylogenetic history versus causation by 50 

continuing reciprocal selection between A and B. Moreover, it is quite likely biologically 51 

that the two influences have acted in concert, through phylogenetic niche conservatism.  52 

4. Synthesis:  The CTC concept treats phylogenetic conservatism as a conjoint interpretation 53 

alongside ongoing influence of other traits. CTC can be quantified via multi-response 54 

phylogenetic mixed models.   55 

  56 
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Introduction 57 
Ecological research often takes an interest in correlations across species between two traits, 58 

or between a trait and a property of the species habitat. For example, seed size is correlated 59 

(fairly loosely, r2 = 0.29) with the size reached by species as adults (Falster, Moles, and 60 

Westoby 2008). One motivation for investigating how closely traits are correlated is simply 61 

to understand variation across the world’s species, and to quantify how traits might be 62 

clustered together into spectra of variation. For example, a unified size spectrum has been 63 

suggested (e.g. Díaz et al. 2016) that embraces both seed size and adult size. Another 64 

motivation is that an observed correlation might be consistent with some proposed 65 

mechanism connecting the two traits, or alternatively a lack of correlation might argue 66 

against a mechanism. For example, it can be suggested that taller species typically suffer 67 

more competitive mortality between seedling and reproductive stages, and this puts a stronger 68 

selective premium on large seed size (Falster, Moles, and Westoby 2008).  69 

 70 

A present-day correlation between seed size and potential plant size across species can be 71 

interpreted as caused by trajectories of change through past evolution. Equally, the past 72 

trajectories can be interpreted as movement toward evolutionary attractors, produced by an 73 

ecological mechanism that exerts continuing selective pressure in the present day. Either of 74 

those versions of causation are consistent with observed correlations between traits, or 75 

between a trait and habitat.  76 

 77 

It is important to be clear that correlations across species come from observational or survey 78 

evidence. They can offer support for some proposed mechanism or argue against it, but they 79 

can not significance-test them in the same sense as manipulative experimental treatments can. 80 

In manipulative experiments, the treatment is cause and the outcome is effect, and other 81 

factors are controlled or randomized so that each replicate yields an independent item of 82 

evidence for the link between cause and effect. Because the items of evidence are 83 

independent, a P-value for the ensemble of events can be calculated with confidence. 84 

Whereas in survey evidence, some unmeasured or uncontrolled variable might be creating a 85 

correlation between the two focal traits, or counteracting it.  86 

 87 

Where investigators have thought about third and fourth variables as possible influences, and 88 

have been able to obtain measurements for them, a more limited sort of independence can be 89 

obtained by controlling or partialling for these third or fourth variables, or equivalently by 90 
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applying multiple regression. Residuals are obtained for the focal variables after regression 91 

on the covariates, and correlations between the residuals are then inspected. But this is still a 92 

very different sort of independence compared to the evidence that emerges from a 93 

manipulative experiment. If an A-B correlation disappears after partialling for C, it still 94 

remains a possibility that C was a secondary correlate and the true mechanism runs between 95 

A and B. Plus there remain variables D, E, F and so forth that might have been the true cause 96 

but were not measured or not even thought of.  97 

 98 

Structured causal modeling SCM (Pearl 2009) or graphical causal modeling (Cronin and 99 

Schoolmaster Jr. 2018) is a framework that purports to determine cause-and-effect 100 

relationships from observational data (Arif and MacNeil 2022). However, the conditions for 101 

identifying causation unambiguously are stringent. The causal maps are required to be 102 

directed acyclic graphs (DAGs), with no recursion to variables earlier in the causal chain. It 103 

must be possible to list all competing causal hypotheses in order to compare them, and each 104 

must correspond to a different chain of causation between variables. In our opinion (contra 105 

Cronin and Schoolmaster Jr. 2018), these conditions are not ever met by the situations of 106 

interest here, coordination across species among traits and habitat and their relationship to 107 

phylogeny. Coordination between traits happens because the current value of each trait 108 

influences natural selection on the other (recursion). Traits also influence the habitats where 109 

the clade is successful, and habitat in turn exerts natural selection on the traits (again 110 

recursion). A map leading from clade membership to trait values always has alternative 111 

causal interpretations: (1) that traits are intrinsically slow to change so that clade signal 112 

remains, and (2) niche conservatism, that there is continuing ecological selection from other 113 

traits in combination with habitat.  114 

 115 

It is widely held that correcting or controlling or accounting for phylogeny (methodology 116 

summarized in Box 1) should be mandatory when ecologists consider present-day 117 

functionality of traits in combination with each other or with different environments (e.g. 118 

Losos 2011; Garamszegi 2014; Swenson 2020; Revell and Harmon 2022). Reviewers and 119 

editors of ecology journals commonly require authors to control for phylogeny. Despite this 120 

strong majority view insisting on the practice during review, experts have raised substantial 121 

questions about what is achieved by controlling for phylogeny (Box 2).  122 

 123 
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Correcting an A-B relationship for phylogeny uses the same logic as partialling it for a 124 

continuous variable C. The commonest justification why phylogenetic correction should be 125 

mandatory is to say that related species are not independent (Felsenstein 1985, and very often 126 

repeated up to the present day, e.g. Symonds and Blomberg 2014). An A-B relationship 127 

controlled for phylogeny is often interpreted as a corrected or improved version of the simple 128 

cross-species relationship. This interpretation is not correct. Rather, phylogenetically 129 

controlled relationships measure different properties of the data, compared to relationships 130 

across present-day species. They address a different question (see section below “What does 131 

phylogenetic generalised least squares quantify?").  132 

 133 

A statistical method corresponds to a generating model. Its equations, variables and  134 

probability distributions express models for causation or for prediction. Only if the generating 135 

model is well aligned with a biological hypothesis will a clear answer be delivered. The 136 

statistical models fitted, the causal or predictive maps hypothesized, and the biological 137 

questions of interest are all aspects of the same issue.  138 

 139 

The PGLS and PIC methods mainly used for controlling for phylogeny correspond to 140 

particular generating models. Our main aim here is to show that these generating models do 141 

not necessarily correspond to questions that ecologists want to ask. Further, the fact that they 142 

are couched in terms of least squares regression of A against B does not adequately represent 143 

a generating process whereby A and B reciprocally influence each other. Another aim here is 144 

to put forward multi-response or multivariate phylogenetic mixed models (MR-PMM). These 145 

treat A and B as joint responses and partition the different correlations in a way that does not 146 

treat phylogeny and present-day function as alternative interpretations. MR-PMM are not 147 

new (Lynch 1991; Housworth, Martins, and Lynch 2004), but have not come into common 148 

use in ecology.  149 

 150 

Quantifying conservative trait correlation via multi-trait response 151 

models 152 
The most straightforward reason why controlling for phylogeny should not be interpreted as 153 

automatically correcting or improving an A-B relationship, is that present-day influence from 154 

B and phylogenetic conservatism overlap as explanations for variation in A. Controlling for 155 

phylogeny is advocated with a view to discarding, or partialling out, A-B covariation that is 156 
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phylogenetically conservative from the A-B relationship. From the perspective of 157 

understanding present-day ecological differences across species, this means that differences 158 

between major clades are downweighted as contributors. To the extent differences between 159 

major clades are important in present-day ecology, it risks throwing the baby (or large parts 160 

of it) out with the bathwater (Hansen 2014; de Bello et al. 2015).  161 

 162 

A constructive solution to this problem of interpretation lies in multi-response phylogenetic 163 

mixed models (MR-PMM; Halliwell, Yates, and Holland 2022). These models decompose 164 

trait-level covariance and variance into phylogenetic and independent components (details in 165 

Box 3 and Table 1). A component of A-B correlation that is also phylogenetically structured 166 

can be identified and quantified. We refer to this quantity as the conservative trait correlation 167 

CTC. In these MR-PMM, as in PGLS, a matrix of covariances expected from a phylogenetic 168 

generating model appears as part of the residual structure on the right hand side. The key 169 

difference from PGLS is that traits A and B are jointly modelled as response variables on the 170 

left hand side (hence the name multi-response), and both their phylogenetic and independent 171 

correlations are parameters to be estimated. This makes it possible to decompose the A-B 172 

correlation into a component that is also phylogenetically structured (conservative trait 173 

correlation) and a component that is independent of phylogeny (Table 1). It has also the 174 

effect of treating the A-B relationship as a question of how they are coordinated rather than 175 

as a question of how B predicts A, analogous to standardized major axis (SMA) relationships 176 

rather than to ordinary least squares (OLS) regression (Warton et al. 2006). This will be 177 

appropriate for most evolutionary questions, since selective influences between traits or 178 

between a trait and a habitat property will be reciprocal.  179 

 180 

From a statistical point of view, conservative trait correlation CTC is A-B covariation where 181 

for each trait, phylogeny and the other trait jointly are associated. It is not possible to separate 182 

them. From the point of view of interpreting biological mechanism, it is quite likely that 183 

phylogeny and each trait have acted in concert on the other trait, via phylogenetic niche 184 

conservatism (next section). MR-PMM identifies phylogenetically-conservative covariation 185 

between traits A and B (Table 1), and remains agnostic whether this covariation should be 186 

attributed to phylogenetic history or to continuing reciprocal selection between the traits, or 187 

to the synergy between those two, known as niche conservatism. This is more constructive 188 

than the PGLS partitioning, which is used with a view to separating phylogenetically-189 
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conservative covariation from the estimate of the A-B relationship (see also section on 190 

PGLS).   191 

 192 

Phylogenetic niche conservatism 193 
Should the present-day pattern of trait-combinations across species be interpreted as caused 194 

by trajectories of change through past evolution? Or should the past trajectories be interpreted 195 

as movement toward evolutionary attractors, which continue to be attractors in the present 196 

day? A correlation between traits, or between a trait and habitat, can be interpreted in either 197 

of these ways. Traits of ecological importance are expected often to evolve in a 198 

phylogenetically conservative way. If a new ecological opportunity or niche arises, successful 199 

occupants are most likely to be drawn from clades that already possess appropriate trait-200 

combinations. Descendants from a clade are most likely to be successful in habitats or ways 201 

of life similar to those the clade is already adapted for. Through this phylogenetic niche 202 

conservatism, large shares of present-day adaptation and phylogeny can often be bound 203 

together as a unified causal process. Differences between major clades are often important 204 

contributors to the observed variation across ecological strategies. Phylogenetic history and 205 

present-day ecological competence are complementary explanations, not mutually exclusive 206 

alternatives.   207 

 208 

Consider the simulations described in Fig 1. In Fig 1a there is an overall correlation between 209 

traits A and B, but the correlation is generated from the difference between two major clades, 210 

and no correlation has been simulated within each clade. A similar pattern was shown in 211 

Felsenstein’s (1985) Fig 7. His interpretation was that  “It can immediately be seen that the 212 

apparent relationship ….. is illusory”. However, Price (1997) showed that a similar pattern 213 

could in fact be produced by continuing selective forces. Fig 1b illustrates this, using a 214 

simulation driven by the same principles as Price.  215 

 216 

In Fig 1b the broken line circumscribes an ecological attractor, a region of trait combinations 217 

in niche space that are ecologically competent. The shape of this region is of high interest for 218 

ecologists. Indeed, this is the motivation for looking at scattergrams of one trait vs another. It 219 

is supposed for both (a) and (b) of Fig 1 that orange and blue symbols represent sister clades 220 

that have diverged in trait space toward lower left and upper right. Panel (a) then assumes 221 

Brownian motion, while (b) assumes that new species can emerge only within the viable trait-222 
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space and tend to be drawn from the existing clade that is nearest in trait space. In both cases 223 

each clade is phylogenetically conservative. In (a) the conservatism takes the form of 224 

sluggish Brownian motion. (If the Brownian motion is rapid, then the historical difference 225 

between the two major clades is quickly washed out.) In (b) conservatism arises from a 226 

constrained range of ecological possibilities.  227 

 228 

The point is that the observed pattern across present-day species cannot help to decide which 229 

of these causative interpretations is more likely. Further, the process in Fig 1b is both 230 

phylogenetically conservative and also caused by ecological constraints continuing into the 231 

present day. Data analysis should not treat these as competing alternatives. Better for it to 232 

identify conservative trait correlation, the share of trait correlation that might be attributed 233 

either to phylogenetic history or to continuing functionality or to a combination of the two.  234 

 235 

The question how much to interpret functional traits in terms of past history versus in terms 236 

of present-day competence itself has a history (brief summary in Box 4). To some extent it 237 

reflects tension between the outlooks of evolutionists and ecologists.  238 

 239 

When ecological selection has favoured high trait A in conjunction with high trait B through 240 

the length of phylogenetic history, as well as in the present day (as in Fig 1c), then ordinary 241 

regression across species and PGLS will yield similar results (Fig 2, simulation  S1), because 242 

the trait correlation pattern across phylogenetic divergences is similar to the pattern across 243 

present-day species. This is a very common case in real datasets (Ackerly 1999; Carvalho, 244 

Diniz-Filho, and Bini 2006). Nevertheless, this similarity should not be the basis for choosing 245 

OLS in preference to PGLS or vice versa. These two analyses, and also MR-PMM, are 246 

different in what features of the data they model. Analyses should be chosen to match the 247 

assumptions of the generating model and the question being addressed, even though OLS and 248 

PGLS quite often yield similar slopes.  249 

 250 

Controlling for phylogeny does not confer strong-sense independence 251 
The most common justification why controlling for phylogeny should be mandatory is to say 252 

that related species are not independent (Felsenstein 1985, and very often repeated up to the 253 

present day). This justification implies that independence is restored by controlling for 254 

phylogeny. But that implication is only correct in a very limited sense.  255 
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 256 

Independence is used with two meanings. The looser meaning is simply “uncorrelated”. Seed 257 

size can be said to lack independence from plant asymptotic height. Independence can be said 258 

to be restored by replacing the absolute seed size with residuals around a regression of seed 259 

size on plant height. However, this is a conditional independence, from a fitted function of 260 

plant height only, not from all possible confounding variables. 261 

 262 

The tighter meaning of independence is about formally significance-testing a hypothesized 263 

causal mechanism. If causal events are independent, their probabilities can be multiplied to 264 

yield the probability of the ensemble of events. When phylogenetic correction is said to be 265 

obligatory because cross-species correlations lack independence, the suggestion is that after 266 

correction, independence will be ensured in this tighter sense, and a reliable significance test 267 

will ensue. But significance tests from survey or correlative data should not be interpreted as 268 

clean tests of causation anyhow. An A-B correlation may be more or less consistent with a 269 

proposed causation, but it does not provide significance-tested proof. Correcting for 270 

phylogeny using structured residuals addresses one sort of cross-correlation, but not all. 271 

There may always be further variables unmeasured or not even thought of that are correlated 272 

with both A and B (Price 1997). And further, in a network of interconnected variables, 273 

correlations do not by themselves resolve the pathways along which causation runs.  274 

 275 

Criteria need to be invoked from outside the correlative data. Some causal pathways might 276 

seem more plausible than others in light of known mechanisms, or parsimony can be invoked 277 

in choosing among statistical models, or combinations of plausibility with parsimony (Yates, 278 

Richards, and Brook 2021).  279 

 280 

Independence in this sense of independent events showing causality can really only be 281 

assured in manipulative experiments. Treatments come before outcomes in an experiment’s 282 

timeline, so it is clear which is cause and which is effect. And factors other than treatments 283 

are randomized or physically controlled, so each replicate becomes definitively an 284 

independent instance of a treatment giving rise or failing to give rise to an outcome. In 285 

situations such as social science surveys or comparisons across present-day species, there is 286 

no way to assure independence in this rigorous sense (Hernán, Hsu, and Healy 2019). 287 

Significance tests should not be taken too literally when analysing survey data, but r2 and 288 
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similar indices that quantify the strength of correlations are useful descriptors. Cross-species 289 

relationships are correlations not causation, and remain so after adjusting for phylogeny. 290 

  291 

To invoke independence in the context of estimating a P-value you need to specify what 292 

process is being tested for. Then the question is whether two or more events or links between 293 

variables are independent as evidence for that process. Independence is a property of the 294 

hypothesis as well as of the data structure. To say that past divergences are independent cases 295 

for a link between traits A and B while present-day species are not, is just another way of 296 

asserting that past divergences are a legitimate causative explanation while continuing 297 

present-day selection is not (Box 4).   298 

 299 

Arguments over the primacy of causal processes cannot be resolved from data that are cross-300 

correlated. We should look to statistical methodologies that offer the most informative 301 

decomposition of trait variance, without preferencing one causality over another. Causality 302 

can then be interpreted in light of knowledge about physiological mechanisms, or 303 

manipulative experiments demonstrating how particular trait values confer advantage 304 

depending on other traits or on habitat.  305 

 306 

What does phylogenetic generalised least squares quantify? 307 
Saying that PGLS accounts for phylogeny does not tell us what it actually is. What is 308 

measured by the PGLS slope and confidence intervals, and how should it be interpreted?  309 

 310 

For phylogenetically independent contrasts PICs and for PGLS with λ set at 1, the slope 311 

coefficient with associated confidence interval describes divergences in A as predicted from 312 

divergences in B, taken across the population of all past divergences inferred at all the nodes 313 

in the tree. The significance test (whether the confidence intervals on the slope span zero) 314 

assesses consistency, the question whether trait divergences were correlated across most or 315 

all of the nodes.  316 

 317 

The interpretation of PGLS with λ estimated lies somewhere between the extreme cases of λ 318 

= 0 (OLS) and λ =1 (original PGLS). Fitted λ with a value less than 1 but still not zero can be 319 

interpreted as a rescaling of branch lengths in the phylogeny (Symonds and Blomberg 2014). 320 

Low lambda elongates the terminal branches, reducing the expected similarity between 321 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 5, 2023. ; https://doi.org/10.1101/2023.02.05.527214doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.05.527214


 11 

related species. With fitted λ the PGLS slope likely still reflects an ensemble of slopes across 322 

all divergences, but with divergences calculated on a tree with branch lengths modified by λ. 323 

PGLS assumes that the true generating process is consistent with ‘B predicts A’ and that B 324 

has no phylogenetic signal. These assumptions are usually not true. Unless predictor B 325 

actually is free of phylogenetic signal, the slope is confounded with the phylogenetic 326 

component of the residual variance (Supplementary 2, see also simulations in next section). 327 

This confounding will commonly have the result that some but not all of the phylogenetic 328 

signal in the A-B relationship remains in the slope estimate. Analogous issues occur in spatial 329 

statistics where environmental predictors with spatial signal are confounded with the spatial 330 

component of the residual variance (Marques, Kneib, and Klein 2022; Warton 2022).  331 

 332 

The focus of PICs and PGLS on describing correlation in past divergences accords with the 333 

insistence of evolutionists that adaptation is defined as the selective circumstances when a 334 

trait or trait value first came about (Box 4). PGLS does not directly measure the relationship 335 

between traits in the present day, unless λ = 0 when it becomes an ordinary least squares 336 

regression. It is the nature of most trees that there are many nodes near the tips and rather few 337 

deep in the tree. As a result, deep nodes have only a minor influence on the PGLS-estimated 338 

relationship between divergence in A and divergence in B. But the consequences of a single 339 

deep divergence for the pattern across present-day species can sometimes be very substantial 340 

(Fig 1). Consider for example the divergence between angiosperms and gymnosperms. As 341 

well as qualitative differences such as tracheids vs vessels for water transport, these two 342 

major clades of seed plants have widely different strategies with regard to quantitative traits 343 

such as vein density in the leaves, seed size and leaf mass per area (e.g. Ackerly and Reich 344 

1999; Brodribb et al. 2005; Díaz et al. 2016). This only counts as one divergence among 345 

many in a PGLS, but it has large consequences in terms of ecological strategies sustained in 346 

the present day.  347 

 348 

The relationships quantified by OLS and by PGLS are different, OLS a pattern across 349 

present-day species, PGLS a pattern across past evolutionary divergences (at least with λ = 350 

1). Biologically, these are naturally complementary questions, but they are different, and one 351 

should not be seen as replacing the other. MR-PMM quantifies both types of relationship 352 

within a single analysis, but not in quite the same way, since it models phylogenetic signal in 353 

both traits and formulates the relationship as A-B coordination rather than as predicting A 354 

from B.  355 
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 356 

Simulations to illustrate how MR-PMM compares to PGLS 357 
To illustrate issues around niche conservatism and the decomposition provided by MR-PMM, 358 

we simulated datasets of two traits A and B. For each simulation, A and B were given the 359 

same independent or residual covariance, but different phylogenetic covariances 360 

(Supplementary 1 for details). We simulated 400 replicate datasets by generating random 361 

pure birth trees of 200 taxa. The two traits A and B were simulated from the full cross-362 

covariance structure of the MR-PMM, comprising phylogeny-independent covariances 363 

crossed with phylogenetic covariances, rather than generating A as a scalar multiple of B, as 364 

is assumed in PGLS (e.g. Revell 2010). This structure allows the independent and 365 

phylogenetic variance in A and B to be defined separately and explicitly.  366 

 367 

MR-PMM successfully recovers the trait-level covariances of each generating model (Fig 2), 368 

as expected since it corresponds to the generating model. Comparing these covariance 369 

estimates with PGLS is more complicated since PGLS is a single-response model and does 370 

not report covariances directly, only the b slope coefficient. To facilitate comparisons, the 371 

independent and phylogenetic variances of each trait were set to one which places the slope 372 

coefficients on the same scale as the correlation coefficients (see Supplementary 1 for 373 

details). This choice of scale means that the βOLS estimate is approximately equal to the mean 374 

of the simulation values for independent and phylogenetic correlation components, βl=1 is 375 

approximately equal to independent component, and βl=MLE  attains an intermediate value 376 

depending on the estimated λ.  377 

 378 

These simulations illustrate the following. First, when covariances between traits are similar 379 

on the phylogenetic and independent level (Fig 2, S1), then βl=1, βl=MLE and βOLS are also 380 

similar. Biologically, this is a common outcome (Price 1997; Ackerly 1999; Carvalho, Diniz-381 

Filho, and Bini 2006). Second, βl=1 has the effect of disregarding covariance associated with 382 

phylogenetic history during calculation of the β coefficient. Our central point in this paper is 383 

that phylogenetically-associated covariance should not be automatically set aside, because 384 

niche conservatism is both phylogenetic and also represents selective attractors that continue 385 

into the present day (Figure 1). Third, in the extreme case where the correlation between a 386 

pair of traits occurs exclusively on the phylogenetic level, βl=1 is likely to report no 387 

relationship (Figure 2, S4). To the extent that differences between major clades are important 388 
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in present-day ecology, this result represents a false negative. Fourth, optimising l does not 389 

resolve this problem, rather it represents a compromise between the assumptions of PGLS 390 

and OLS. Finally, because βl=1, βl=MLE and βOLS are all products of single-response models, 391 

they represent single-number summaries of the different components of A-B covariance 392 

present in the data (Supplementary Information 2). This means they are poor approximations 393 

of the true generating model when phylogenetic and residual covariances differ in sign (S3) 394 

or even magnitude (S2). 395 

 396 

Conclusion 397 
Both evolutionary and ecological questions about traits are important, but they are not the 398 

same. For ecologists interested in the present-day relationship of traits to habitat or each 399 

other, phylogenetic correction has been justified largely from the perspective that trait 400 

correlation across species might be misleading. This formulation is missing the point from 401 

the outset. Correlative data are undoubtedly capable of being misleading, and need to be 402 

approached with that mindset. But it is wrong to think that controlling or accounting for 403 

phylogeny obviates the problem. 404 

 405 

Phylogenetically independent contrasts PICs ask about the history of divergences at nodes. 406 

The divergences, rather than the present-day species, are the population of interest. The 407 

question whether divergences in A have been consistently associated with divergences in B is 408 

a natural one for evolutionists to ask. It is complementary to the ecological question about 409 

trait-combinations that are competent in the present day, but it is not the same question.  410 

 411 

Phylogenetic generalized least squares PGLS is currently widely recommended and used. 412 

When used with l= 1, it is mathematically equivalent to PICs. However, the actual historical 413 

divergences are not inspected or graphed as they are for PICs. The slope estimate with l= 1 414 

describes the power of divergence in B to predict divergence in A, across the ensemble of 415 

divergences or nodes. As was the case for PICs, this slope estimate answers an interesting 416 

question, but not the question how traits are related across present-day species.  417 

 418 

When PGLS is used with l fitted to the data, l will usually lie intermediate between 0 and 1, 419 

since for most traits there is some phylogenetic signal but not perfect correlation with a 420 

phylogenetic generating model. The strength of the residual phylogenetic influence is then 421 
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measured via l. The estimated slope is intermediate between the slope across divergences 422 

and the slope across present-day species.  423 

 424 

Multi-response phylogenetic mixed models open a path to interpreting covariance structure 425 

better in two ways, we believe. First, their generating model deals in A-B covariation, which 426 

reflects the nature of reciprocal influences between traits and habitat more satisfactorily than 427 

regression-style models predicting A from B. Second, they quantify the variance and 428 

covariance components more comprehensively. In particular, they quantify conservative trait 429 

correlation CTC, and remain agnostic about whether it is caused by history, by continuing 430 

evolutionary attractors, or by both. Historical and present-day accounts of causation are, in 431 

fact, complementary. Over evolutionary time, new ecological opportunities will very often 432 

have been taken up by speciation from clades that already possess a configuration of traits 433 

close to what will be most successful.  434 
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Boxes and Tables 544 

Box 1: Phylogenetic correction in brief 545 
Consider a dataframe giving traits or habitat properties (columns) across a number of present-546 

day species or other entities (rows). Also, the species in the data table are connected by a tree 547 

structure representing their phylogeny, as best it is known. Phylogenetic correction of 548 

correlations between columns in such a dataframe has two elements. There is a statistical 549 

procedure, and then an interpretive step whereby the phylogenetically -adjusted relationship 550 

between two traits or between a trait and a habitat is seen as corrected, compared to the raw 551 

correlations across present day species. The implication is that the phylogenetically adjusted 552 

relationship is more reliable, or more enlightening, or that the model is more complete.  553 

Statistical method and interpretation are linked. What generating process is being assumed by 554 

the statistical model, and hence what question exactly does a given statistical method ask?  555 

 556 

One version of the statistical procedure is to transform a set of present-day species into a set 557 

of evolutionary divergences or phylogenetically independent contrasts PICs (Felsenstein 558 

1985). At each node in the tree, an evolutionary divergence or PIC is inferred for each trait. 559 

These divergences, rather than present-day species, then become the objects under study, and 560 

the cases or items of evidence in a statistical procedure. The question is whether divergences 561 

in trait A tend to be correlated in size and direction with divergences in trait B. (For a 562 

polytomy, there is a regression between trait A and trait B across the set of descendant 563 

species or nodes. Indeed for a dichotomy, the divergences can also be thought of as a two-564 

point regression.) The effect has something in common with a pairing design in social 565 

science, where individuals are matched for (say) gender or age or income, then differences 566 

(“contrasts”) are calculated across the pair for other variables, and the analysis proceeds 567 

using those contrasts as items of evidence, rather than the individuals themselves.  568 

 569 

Currently the method most often used is phylogenetic generalised least squares PGLS 570 

(Grafen 1989; Martins and Hansen 1997). This is a regression model for relationships 571 

between traits across species. The expected residual covariances between each pair of species 572 

are modelled in such a way that higher covariance is expected when the species have 573 

diverged more recently on the phylogenetic tree. If two species are outliers in the same 574 

direction and also have a relatively recent common ancestor, then some covariance between 575 
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them is seen as expected, and the influence of those residuals on the position of the fitted line 576 

is downweighted accordingly. In other words, the idea that traits are for unspecified reasons 577 

slow to change through evolutionary time (phylogenetic inertia) is part of the causation being 578 

modeled.  579 

 580 

The phylogenetically expected covariances in PGLS scale with the combined branch lengths 581 

shared between species, reflecting a Brownian-motion or diffusion model for trait change. 582 

Often a parameter l (Pagel 1999) is fitted by maximum likelihood as part of the model. This 583 

is a multiplication factor in the range 0 to 1 for the off-diagonal elements of the 584 

phylogenetically expected residual covariance matrix. If l is near zero, this effectively makes 585 

the terminal branches of the tree very long, with little covariance expected even between 586 

sister species. (In phylogenetic mixed models PMM discussed in Box 3, an equivalent scaling 587 

is estimated for each response trait (Halliwell et al. 2022)). In addition to the basic Brownian-588 

motion model, a variety of more complex models have been developed (overview in 589 

Garamszegi 2014), that fit parameters for rates of trait change that vary through time or in 590 

response to other variables.  591 

 592 

PGLS with l fixed to 1 is mathematically equivalent to PICs, which iteratively calculate 593 

divergences or contrasts at each node through the phylogenetic tree and treat those as a 594 

population of events (Blomberg et al. 2012; Symonds and Blomberg 2014). Under these 595 

circumstances the regression slope and confidence intervals reported by PGLS are 596 

summarizing the population of regression slopes across all the divergences or nodes in the 597 

phylogenetic tree. PGLS with l = 0 yields the ordinary least squares regression slope across 598 

present-day species. With intermediate l, the slope will lie somewhere in between those two 599 

meanings. Mathematical treatment is provided as Supplementary 2.  600 

 601 

  602 
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Box 2. Selected quotes that illustrate uncertainty among experts 603 

about what is achieved when controlling for phylogeny 604 
 605 
The majority or standard view is expressed by Garamszegi (2014) in the preface to an edited 606 

book: “Statistically, the effect of phylogeny can be regarded as a confounding factor that 607 

violates assumptions about non-independence of the unit of analysis, and that potentially 608 

introduces spurious correlations across traits.” Similarly Huey et al. (2019): “Independent 609 

contrasts enabled comparative biologists to avoid the statistical dilemma of nonindependence 610 

of species values, arising from shared ancestry … Felsenstein (1985) rapidly and radically 611 

changed both evolutionary and organismal biology … No one would consider ignoring 612 

phylogeny when analyzing data involving multiple species …” 613 

 614 

As against that majority view, the following quotes make the point that adaptation to niche 615 

and phylogenetic history should not be treated as competing alternatives. Housworth et al 616 

(2004) wrote “the heritable component contains not only genetic changes but also nongenetic 617 

contributions to the phenotype, such as environmental or cultural contributions, that are 618 

described by the phylogenetic relationship among the taxa.”. Hansen (2014) wrote “if related 619 

species tend to occur in similar environments (i.e., having similar values of their predictor 620 

variables), then we still expect a phylogenetic signal in the response variable. Correcting for 621 

phylogeny in this situation is throwing the baby out with the bathwater … [perhaps] the 622 

application of phylogenetic comparative methods has done more harm than good in the study 623 

of adaptation.” De Bello et al (2015) wrote “Phylogenetic relatedness between species 624 

should not be considered a bias to be corrected, but rather an evolutionary signal that allows 625 

results to be interpreted at different evolutionary scales.” 626 

 627 

Any given model reflects a hypothesis about processes generating the observed data (Uyeda, 628 

Zenil-Ferguson, and Pennell 2018): “[phylogenetic comparative models] PCMs are powerful 629 

tools for drawing inferences from interspecific data but they necessarily imply some types of 630 

causal structures and negate others. It is too much to ask of our methods to decide what 631 

questions we ought to ask.”  632 

 633 

And causation can not be decisively inferred from survey data: “the validity of causal 634 

inferences depends on structural knowledge, which is usually incomplete, to supplement 635 
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the information in the data. As a consequence, no algorithm can quantify the accuracy of 636 

causal inferences from observational data” (Hernán, Hsu, and Healy 2019). 637 

  638 
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Box 3: Multi-response phylogenetic mixed models MR-PMM as 639 

applied to dissecting covariance between two traits across species  640 
 641 
In multi-response phylogenetic mixed models, two or more traits appear as responses on the 642 

left hand side of the model equation. Terms on the right hand side include a matrix of 643 

covariances expected from a model of trait change through the phylogeny, as well as trait-644 

level intercepts and possibly fixed or random variables. With respect to a single-response 645 

model, changing the status of trait B from a predictor for A to a joint response variable with 646 

phylogenetically structured residuals allows phylogenetically conservative A-B correlation 647 

(conservative trait correlation CTC) to be quantitatively identified. The multi-response 648 

approach treats the A-B relationship as a question of trait coordination rather than a question 649 

of predicting A from B. For allometric relationships, this joint view yields a consistent 650 

estimate of trait coordination, via a decomposition of their residual covariation, unlike the 651 

predictive view where the slope estimates depend on whether A is predicted from B or vice 652 

versa (Warton et al. 2006). Indeed, for data generated from a MR-PMM,  slope estimates for 653 

B from a misspecified single-response model such as PGLS confound various components of 654 

the generating model (explained further in Supplementary 2).  655 

 656 

MR-PMMs offer a sufficiently complex and more biologically appropriate model structure 657 

than their single-response analogues. These models simultaneously account for phylogenetic 658 

signal in all included traits and permit a decomposition of the estimated trait correlation 659 

according to dependence on phylogeny.  For two species traits A and B, a multi-response 660 

mixed model with phylogenetic covariances modelled as a random effect takes the form 661 

 662 

!𝐴𝐵$ = 	'
𝜇! + 𝑏! + 𝑒!
𝜇" + 𝑏" + 𝑒"

, 663 

 664 

The µ’s are vectors of fixed effects, which can be any linear predictive equation. When the 665 

interest is only in the relationship between traits A and B, i.e. there are no predictors in the 666 

model, these fixed effects would contain only an intercept for each trait. 667 

 668 

The phylogenetic random effects bA, bB and the phylogeny-independent effects eA, eB are 669 

drawn from multivariate normal distributions 670 

 671 
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(𝑏!, 	𝑏")~𝑀𝑉𝑁(0, Σ#$% ⊗𝐶) 672 

(𝑒!, 	𝑒")~𝑀𝑉𝑁80, Σ&'( ⊗ 𝐼: 673 

 674 

For two response traits, A and B, and n species in the phylogeny, the covariance matrices for 675 

the random effects and independent errors are of dimensions 2n  x 2n. The covariance of the 676 

phylogenetic random effects  Σ#$% ⊗𝐶 is the Kronecker product of a 2 x 2  trait-level 677 

correlation matrix, Σ#$%, with C, the n x n matrix of expected error covariances given a 678 

model of trait evolution applied to a phylogenetic tree. For the simplest case of Brownian 679 

motion, C is the phylogenetic relatedness matrix. The covariance structure of the residuals or 680 

phylogeny-independent elements Σ&'( ⊗ 𝐼, is  the Kronecker product of a  2 x 2 trait-level 681 

correlation matrix Σ&'(  , with I, an n x n identity matrix (1 for diagonal elements and 0 for 682 

off-diagonal elements). For the two-trait PMM, we estimate two phylogenetic variances for A 683 

and B (Σ!!
#$% and Σ""

#$%) and the phylogenetic covariance between A and B (Σ!"
#$%). The same 684 

is true for independent (co)variances in the elements of Σ&'(. When scaled by the relevant 685 

variance components, these covariances yield phylogenetic and residual correlations. Thus, 686 

when appropriately parameterized, the MR-PMM estimates each element listed in Table 1. 687 

 688 

MR-PMM looks at the correlation between A and B rather than at predicting one from the 689 

other. Given a fitted MR-PMM, further derived quantities such as (standardized) major axes 690 

relating A to B (Warton et al. 2006) can be constructed from either point estimates or 691 

posterior distributions of the variance and covariance parameters associated with the two 692 

traits.  693 

 694 

In principle, models with this layout can have any number of species traits or habitat 695 

properties on the left hand side, and also other predictors included in the fixed-effect terms on 696 

the right hand side. More complex models require more replication to yield reliable estimates 697 

(Housworth, Martins, and Lynch 2004).  For simplicity, we have confined this explanation to 698 

the correlation between two Gaussian traits, but response variables are not required to be 699 

Gaussian distributed. See Halliwell, Yates and Holland (2022) for details including worked 700 

examples in two popular R packages, ‘MCMCglmm’ and ‘brms’. 701 

 702 

  703 
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Box 4: Past and present-day causation 704 
The question whether adaptation should be interpreted as a past versus a present-day process 705 

has long been debated. Palaeobiologists and evolutionists have insisted that adaptation should 706 

refer only to the selective circumstance that initially gave rise to a trait. For example, Gould 707 

and Vrba (1982) coined “exaptation” for functionality that came about subsequent to a trait’s 708 

origin, in order to reserve adaptation for functionality at the time of origin. (For a quantitative 709 

trait such as adult body size, they must have meant “origin” to refer to the time the trait 710 

arrived at a particular value.)   711 

 712 

This defining of terms by evolutionists has mostly stuck over the ensuing 40 years. For 713 

example, Paradis (2014) wrote: “we can define the phylogenetic comparative method as the 714 

analytical study of species, populations, and individuals in a historical framework with the 715 

aim to elucidate the mechanisms at the origin of the diversity of life.” Losos’s (2011) 716 

presidential address to American Society of Naturalists discussed traits and phylogenies. 717 

Summarizing the history of ideas, he wrote “the key turning point was the publication of 718 

Felsenstein’s (1985) article in the American Naturalist, which presented the issue of shared 719 

ancestry as a difficulty in comparative analysis and the independent contrasts method as the 720 

solution …. publication of books by Brooks and McLennan (1991) and Harvey and Pagel 721 

(1991) completed the revolution. Since that time, there has been a continuous, unabated rise 722 

in the development and use of phylogenetic comparative methods. Comparative studies now 723 

are essentially unpublishable unless analyzed in a phylogenetic context …”.  Losos 2011 also 724 

wrote in a footnote: “many reviewers … have been concerned that this article will give 725 

license to ecologists and other ne’er-do-wells to ignore phylogenetic approaches entirely. So, 726 

just to be clear, I will say it again: phylogenetics is an important approach for studying 727 

historical events …. This article should not be read as license to ignore phylogenetic 728 

information in comparative studies!”   729 

 730 

Phylogenies are indeed essential for studying the history of divergences. But what has 731 

happened here is that comparative studies have been defined as being about history, in the 732 

same way as adaptation earlier was defined as being about history. On the other hand, 733 

ecologists have a continuing interest in the question what traits or trait-combinations make 734 

species successful in what situations in the present day. Losos intended, no doubt, to express 735 

collegiality from evolutionists toward ecologists when he breezily called them ne’er-do-736 
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wells. But the collegiality did not extend to permitting ecologists to consider adaptation and 737 

comparative studies as questions about the present day.  738 

 739 

The essential point for ecologists is that patterns such as in Fig 1 where a trait is correlated 740 

both with another trait and with phylogenetic history, called here conservative trait 741 

correlation CTC, can potentially arise from a deep historical divergence followed by limited 742 

subsequent change, or from continuing selection in the present day. The observed pattern 743 

does not give a basis for preferring one explanation to the other, and moreover the two need 744 

not be mutually exclusive. For ecologists aiming to describe trait combinations that confer 745 

present-day competence, it is not sensible to remove the conservative trait correlation from 746 

consideration.  That is why we recommend instead the partitioning of variation provided by 747 

MR-PMM (Table 1).  748 

  749 
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Table 1. Where variation is attributed by the multi-response phylogenetic mixed 750 
model (MR-PMM) described here. Key parameters estimated are four standard 751 
deviations 𝜎!

"#$, 𝜎%
"#$,  𝜎!&'(, and 𝜎%&'(, and two correlations 	𝜌!%

"#$	and		𝜌!%&'(. 752 
Components of variation expression 

total variation in A 𝜎𝐴2 = %𝜎𝐴
𝑝ℎ𝑦&

)
+ %𝜎𝐴&'(&

)
 

phylogenetic signal in A 
𝜆𝐴 =

%𝜎𝐴
𝑝ℎ𝑦&

)

𝜎𝐴
2  

total variation in B 𝜎%2 = %𝜎%
𝑝ℎ𝑦&

)
+ %𝜎𝐴&'(&

)
 

phylogenetic signal in B 
𝜆% =

%𝜎%
𝑝ℎ𝑦&

)

𝜎%
2  

A-B correlation associated with phylogeny (called here 

conservative trait correlation CTC) 𝜌𝐴𝐵
𝑝ℎ𝑦 =

Σ!%
"#$

)Σ!!
"#$Σ%%

"#$
 

A-B correlation independent from phylogeny 
𝜌𝐴𝐵
𝑖𝑛𝑑 =

Σ!%&'(

)Σ!!&'(Σ%%&'(
 

total A-B correlation 

(expression in terms of lambda as given by Housworth, 

Martins, and Lynch 2004) 

𝜌!% =

*!"
#$%+	*!"

&'(

-!-"
	=	𝜌𝐴𝐵

𝑝ℎ𝑦*𝜆𝐴𝜆% + 

𝜌𝐴𝐵
𝑖𝑛𝑑*(1 − 𝜆𝐴)(1 − 𝜆%) 

   753 

  754 
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 755 
Figure 1. Data simulated under different evolutionary models, beginning from two clades 756 

(orange and blue) separated in a space described by two traits A and B. Large solid points 757 

represent the most recent common ancestor for the orange and blue clades in each simulation. 758 

Species then radiate, and traits diversify, within each clade. In simulation (a), radiation of 759 

each major clade proceeds by Brownian motion. The overall correlation between traits has 760 

been produced entirely by the starting points of the two major clades. In simulation (b), the 761 

radiations are positioned at random within a region of trait space (broken line) whereby only 762 

trait combinations within the line are competent to support viable populations. New viable 763 

species are more likely to arise from clades that have existing species nearer to them in trait 764 

space. The observations in present-day species are not distinguishable between simulations 765 

(a) and (b), illustrating how historical vs present-day determination of an overall correlation 766 

can often not be distinguished by analysis of present-day data.  A version of this comparison 767 

was first given by Price (1997). In simulation (c), data are produced from a MR-PMM. 768 

Positive correlations between A and B are operating on both the phylogenetic and 769 

independent level (𝜌𝐴𝐵
𝑝ℎ𝑦 =	𝜌𝐴𝐵

𝑖𝑛𝑑 = 0.7), resulting in a tight overall relationship between A 770 

and B. Importantly, correlations within each of the major clades and also between them, are 771 

both important drivers of the present-day spectrum of variation. 772 
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 773 
Figure 2. Parameter estimates for phylogenetic and independent covariances (black) from 774 
MR-PMM, and beta coefficients (blue) from PGLS (βl=1), PGLS with lambda optimised 775 
(βl=MLE), and OLS (βOLS) fit to simulated datasets (S1-4). Points represent the median 776 
posterior estimate across 400 model fits, with heavy and light wicks showing the 50% and 777 
90% sample quantiles, respectively.  For each simulation, Σ!!&'( =	Σ""&'( = Σ!!

#$% =	Σ""
#$% = 1. 778 

True values for Σ!"&'( and Σ!"
#$%used to generate the data for each simulation are indicated by 779 

vertical red bars. 780 
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