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SUMMARY 

PolyQ diseases are autosomal dominant neurodegenerative disorders 

caused by the expansion of CAG repeats. While of slow progression, these 
diseases are ultimately fatal and lack effective therapies. Here, we present 

our results from a High-Throughput chemical screen oriented to find drugs 
that lower the toxicity of a protein containing the first exon from the 

Huntington´s disease protein huntingtin (HTT) harboring 94 glutamines 
(Htt-Q94). Our screening identified the anti-leprosy drug clofazimine as a hit, 
which was subsequently validated in several in vitro models as well as in a 

zebrafish model of polyQ toxicity. Computational analyses of 
transcriptional signatures, together with molecular modeling and 

biochemical assays revealed that clofazimine is an agonist of the 

peroxisome proliferator activated receptor gamma (PPARg), previously 

suggested as a potential therapy for HD by stimulating mitochondrial 

biogenesis. Accordingly, clofazimine rescued the mitochondrial 

dysfunction triggered by Htt-Q94 expression. Together, our results support 

the potential of clofazimine repurposing for the treatment of PolyQ 

diseases. 
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INTRODUCTION 
Polyglutamine (polyQ) diseases include 9 inherited hereditary 

neurodegenerative syndromes that are caused by the expansion of Q-coding 

repeats within the exons of several seemingly unrelated genes [1]. One of these 

pathologies is Huntington´s disease (HD), being one of the most frequent 

neurodegenerative diseases with an incidence of 3-5 cases per 100.000 

worldwide [2]. In HD, the disease is linked to the expansion of a CAG repeat 

within the first exon of huntingtin (HTT), which becomes pathogenic above 35 

repeats with the severity of the disease correlating with repeat length [3, 4]. While 

HTT dysfunction has been proposed to contribute to HD [5, 6], an alternative 

hypothesis is that the pathology is caused by gain-of-function toxicity of the 

polyQ-bearing mutant HTT (mHTT). Accordingly, early studies showed that 

transgenic mice expressing a fragment of the exon 1 from mHTT including the 

expanded polyQ track suffered from motor dysfunction and premature death [7, 

8]. Importantly, seminal work revealed that ectopic expression of polyQ 

expansions inserted in HPRT, a gene not mutated in patients, also led to 

neurodegeneration and premature death, highlighting the causal role of polyQ 

toxicity [9].   

 

In what regards to the mechanisms of polyQ toxicity, this remains to be fully 

understood. An important feature of these expansions is their propensity to form 

insoluble aggregates that form intraneuronal inclusions, which were found in 

mouse models and also patients from several polyQ diseases including HD [10-

12]. However, whether these inclusions are the real cause of the pathology has 

been the subject of intense debate, and it is clear that mHTT can also be toxic 

independently of the formation of large aggregates (reviewed in [1]). Regardless 

of whether it forms inclusions, mHTT has been shown to drive multiple cellular 

alterations in aspects such as mRNA transcription [13-15], protein degradation 

and post-translational modifications [16], synaptic function and plasticity [17-21] 

and mitochondrial activity [22-26].  
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Unfortunately, these mechanistic discoveries have not yet led to clinical 

improvements in the treatment of HD. The only approved treatments for HD, 

tetrabenazine and deutetrabenazine, are directed to alleviate the involuntary 

movements (chorea), but do not cure the disease [27, 28]. In this context, it 

becomes urgent to try to find novel therapies for polyQ diseases, an area of 

intense research. Efforts are spread among strategies trying to prevent mHTT 

aggregates or promote their clearance, as well as to targeting their downstream 

pathological effects (reviewed in [29]). Noteworthy, several of the unbiased 

chemical screens have been focused on the identification of compounds that 

lower polyQ aggregates in biochemical assays, which often lead to compounds 

that show toxicity per se when evaluated in in vivo models [30, 31]. Here, we 

present our results from a High-Throughput Imaging based drug-repurposing 

screening oriented to find compounds that reduce the toxicity of polyQ 

expansions.   
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RESULTS 
A chemical screen for modulators of polyQ-toxicity 

To conduct a chemical screen, we first generated an inducible system enabling 

the expression of an EGFP fusion protein containing the first exon of human HTT 

with an expanded polyQ tract of 94 glutamines (Htt-Q94 hereafter). The cDNA was 

cloned in a Tet-On gene expression system enabling the expression of Htt-Q94 

upon the addition of doxycycline (dox). As polyQ expression is toxic for any cell 

type, the system was stably integrated in human osteosarcoma U2OS cells that 

are widely used in large chemical screens, and a clone with stringent regulated 

expression selected for further experiments (U2OSQ94). Before conducting the 

screen, we verified the Dox-inducible expression of Htt-Q94 as seen by a 

widespread accumulation of EGFP-expressing cells (Fig. 1A). Moreover, and as 

previously reported in similar setups, a 1-week treatment with dox led to the 

appearance of cells with Q94 aggregates (Fig. 1A, inset). At this time, Htt-Q94 

expression led to a significant reduction in cell numbers, as quantified by 

detecting nuclei by High-Throughput Microscopy (Fig. 1B), confirming the toxicity 

driven by polyQ expression in this cell system. 

 

The chemical library used combined 1,200 FDA-approved compounds and 94 

additional drugs targeting components of the epigenetic machinery (Table S1). 

We added epigenetic drugs given that several of them have been found to be of 

potential for the treatment of HD and other neurodegenerative diseases [32]. To 

conduct the screen, U2OSQ94 cells were seeded on 384 well plates at 100 

cells/well, and treated with dox (50 ng/ml) and the library compounds (1µM) for 8 

days. At this point, cells were fixed and DNA was stained with Hoechst enabling 

the quantification of nuclei (Fig. 1D). 35 compounds leading to an increase in 

nuclei numbers bigger that 3 SD from those found in the control wells (only 

treated with dox), were taken for a dose-response validation screen conducted at 

0.5, 1, 5 and 10 µM. From this secondary screen, 4 compounds showed a 

significant rescue of toxicity in at least 2 of the doses tested: promethazine 
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(PRM), amodiaquine (AMD), clofazimine (CFZ) and troglitazone (TZD) (Fig. 
S1A).  

 

Clofazimine and troglitazone rescue polyQ-toxicity in vitro 

Next, and to evaluate whether the compounds were able to present a 

sustained effect in reducing the toxicity associated to Htt-Q94 expression, we 

conducted clonogenic survival assays. These experiments confirmed that all 4 

compounds increased the number of colonies in dox-treated U2OSQ94 cells (Fig. 
2A and Fig. S2). Before entering into mechanistic analyses, we first wanted to 

discard hits that were acting by preventing the dox-dependent expression of Htt-

Q94, an issue that we have previously faced when conducting similar screens 

using Tet-On systems [33]. To do so, we measured their effects on dox-induced 

Htt-Q94 levels both by immunofluorescence (IF) and western blotting (WB). While 

PRM and AMD significantly limited Htt-Q94 expression, CFZ and TZD rescued 

polyQ toxicity despite not affecting Htt-Q94 expression or the presence of its 

aggregates (Fig. 2B, C). We thus focused on these two compounds for 

subsequent analyses. 

 

To further validate these results in vitro in an orthogonal model, we performed 

growth competition assays in the human leukemic KBM7 cell line. To do so, we 

co-cultured KBM7 cells expressing either mCherry or EGFP-Htt-Q94 (KBM7Q94) 

for 10 days. In the absence of drugs, the percentage of KBM7Q94 cells 

progressively declined, confirming that Htt-Q94 expression also impairs cellular 

fitness in this model. In contrast, treatment with CFZ or TZD rescued the relative 

decline of KBM7Q94 cells, confirming the in vitro effects of both these drugs in 

rescuing polyQ toxicity (Fig. 2D,E). Interestingly, one of these two compounds, 

TZD, is a well-established agonist of the peroxisome proliferator activated 

receptor gamma (PPARg), an approach that has been previously studied as a 

potential therapy for various neurodegenerative diseases including HD, 

confirming the usefulness of our screen to identify potential therapies [34-37, 26]. 
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In contrast, CFZ, an antibiotic originally developed as a treatment for leprosy 

active against a wide range of mycobacteria [38], has not been previously 

investigated in the context neurodegeneration. We thus selected CFZ for further 

analyses.      

 

Clofazimine rescues polyQ-induced mitochondrial damage  

To understand how CFZ treatment was rescuing polyQ toxicity we conducted 

transcriptomic analyses by RNA sequencing (RNAseq) in dox-induced U2OSQ94 

cells treated or not with CFZ for 8 days. Interestingly, these analyses revealed a 

general impact of CFZ in boosting the expression of multiple factors related to 

mitochondria such as voltage dependent ion channels, translocases, subunits of 

the ATP synthase and components of mitochondrial translation (Fig. 3A). 

Consistently, Gene Set Enrichment Analyses revealed that CFZ treatment led to 

a significant enrichment of multiple pathways related to mitochondrial function 

(Fig. 3B) in dox-induced U2OSQ94 cells. 

 

To evaluate mitochondrial activity, we used mitotracker, a red dye that stains 

mitochondria in a membrane-potential-dependent manner [39]. In agreement with 

the mitochondrial dysfunction that has been repeatedly documented in cells from 

HD patients (reviewed in [40]), dox treatment led to a notable reduction of the 

mitotracker signal in U2OSQ94 cells, which was rescued by CFZ (Fig. 3C,D). 

Similarly, transmission electron microscopy analyses revealed that Htt-Q94 

expression had a profound impact on the mitochondria of U2OSQ94 cells, 

characterized by swelling and substantial abnormalities in external membranes 

and cristae, all of which were rescued by CFZ (Fig. 3E). 

 

Clofazimine is a PPARg agonist  

As mentioned, CFZ has been used as an antimycobacterial since the 1950s 

[41]. In addition, recent screens also identified that CFZ prevented infection by a 

wide range of viruses, including SARS-CoV-2 [42]. Surprisingly, despite its 
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interesting medical properties, its target and mechanism of action remain 

unknown. To address this, we used the transcriptional signature of CFZ-treated 

U2OS cells to interrogate the Connectivity Map (CMap), a database from the 

Broad Institute at MIT that stores the transcriptional signatures of more than 5,000 

drugs [43], aiming to identify drugs with a similar transcriptional impact. 

Interestingly, these analyses revealed an enrichment of PPARg agonists among 

the compounds presenting a transcriptional signature that resembled that of CFZ 

(Fig. 4A). In fact, PPARg itself was transcriptionally induced by CFZ in our 

transcriptomic analyses (Fig. 3A). 

 

Consistent with bioinformatic analyses, molecular docking revealed that CFZ 

is able to bind to the same pocket in PPARg as other agonists such as TZ, and 

with a similar binding affinity (Fig. 4B,C). Furthermore, cellular thermal shift 

assays (CETSA) [44] indicated that TZ and CFZ were able to have a similar 

impact in stabilizing PPARg at increasing temperatures, supporting a direct 

interaction (Fig 4D,E). Finally, concomitant treatment with the PPARg antagonist 

GW9662 reverted the effects of Cf and Tz in restoring the expression of PPARG 

or the mitochondrial factors TFAM or Citrate Synthase (CS) in dox-treated cells 

U2OSQ94 cells (Fig. 4F). Together, these results demonstrate that CFZ can bind 

to PPARg and stimulate its activity. 

 

Clofazimine rescues polyQ toxicity in neurons and zebrafish  
To further document the effect of CFZ in a neuronal model, we used SH-SY5Y 

neuroblastoma cells, which can be differentiated into a neuronal-like phenotype 

with retinoic acid (RA) [45]. Parental cells were infected with pLVX-UbC-rtTA-Htt-

Q94-CFP lentiviruses, enabling dox-dependent expression of Htt-Q94-CFP (SH-

SY5YQ94). After 5 days of differentiation with 10 µm RA, SH-SY5YQ94 cells were 

treated with dox for 3 additional days. As in all previous models, Htt-Q94 

expression had a profound impact on SH-SY5YQ94 cells, exemplified by 

decreased cell numbers and a reduction in the mitotracker signal; all of which 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 6, 2023. ; https://doi.org/10.1101/2023.02.06.527298doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.06.527298
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
Li et al.  9 
 

were rescued by treatment with CFZ (Fig. 5A,B and Fig. S3). Of note, CFZ had 

a significant effect in increasing cell numbers and mitochondrial activity also in 

SH-SY5YQ94 cells that were not previously exposed to Dox, highlighting its 

potentially beneficial effects in other pathologies associated to neuronal 

dysfunction [46]. 

Finally, we tested the impact of CFZ in alleviating polyQ toxicity in zebrafish. 

To this end, we used a previously developed plasmid enabling the expression of 

Htt-Q94-CFP [47]. On day 0, fertilized zebrafish eggs were injected with the 

plasmid and exposed to CFZ at 12,5 µM (Fig. 5C). Consistent with previous 

studies [48, 49], transgenic Htt-Q94 expression led to substantial embryonic 

lethality in developing fish. Importantly, CFZ was able to significantly increase 

embryonic survival in Htt-Q94-transgenic embryos, confirming its effects in 

alleviating polyQ toxicity in vivo (Fig. 5D,E). 
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DISCUSSION 
As mentioned in the introduction, and despite the substantial advances made 

in understanding the molecular basis of polyQ-diseases, this has not yet led to 

effective treatments. Among others, substantial efforts are being dedicated to find 

therapeutic strategies to either reduce the expression of polyQ-containing 

proteins (e.g. antisense oligonucleotides (ASOs) or RNA interference), or that 

aim to either prevent the formation of polyQ aggregates or promote their 

clearance (reviewed in [29]). Our approach was rather to identify molecules 

capable of reducing the toxicity of polyQ-bearing proteins. In this regard, a similar 

approach was conducted by the Taylor laboratory where they searched for 

molecules that reduced apoptosis triggered by the expression of a truncated 

androgen receptor containing a 112-glutamine repeat in HEK 293T cells [50]. In 

our screen model, U2OS, Htt-Q94 did not trigger apoptosis but rather cell cycle 

arrest. Interestingly, we observed that the severity of this phenotype more acute 

when cells were sed at low densities, perhaps reflecting that the formation of 

polyQ aggregates is also enhanced at sub-confluence [51]. 

 

The usefulness of our approach was supported by the fact that we were able 

to identify compounds previously known to modulate the severity of polyQ 

pathology in preclinical models such as TZD [34, 35, 37, 26]. Unfortunately, and 

despite being originally approved for the treatment of diabetes, TZD was later 

removed from the marked due to hepatic toxicity [52]. Nevertheless, cumulative 

data supporting that activation of the PPARg/PDC1a axis is a fruitful therapeutic 

approach for the treatment of neurodegenerative diseases [46], emphasizes the 

need of discovering new PPARg agonists that hopefully overcome the initial 

toxicities. In this regard, our work indicates that CFZ is a PPARg agonist, with a 

similar binding affinity as TZD, but which is seemingly safe as it is in clinical use 

for the treatment of infectious diseases. Of note, one limitation of CFZ is its poor 

efficacy in crossing the blood-brain barrier (BBB), which has limited its efficacy 

for the treatment of infections in the central nervous system. In this regard, there 
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are already efforts dedicated to circumvent this problem such as nanoparticle-

based formulations of CFZ [53]. In any case, our work suggests that CFZ could 

be a useful alternative to TZD for the treatment of pathologies outside the CNS. 

In summary, our study further indicates the potential of PPARg stimulation to 

reduce the severity of pathologies of polyQ-diseases, and that these effects are 

primarily related to restoring mitochondrial function. In addition, our work adds a 

new example of the possibilities offered by drug repurposing to identify medically 

approved drugs that could be investigated in the context of neurodegenerative 

diseases. While acknowledging the current pharmacological limitations of the 

drug, we believe that exploring the efficacy of CFZ or its derivatives in polyQ 

diseases deserves further preclinical work.  
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MATERIAL AND METHODS 
Cell culture, transfection and chemicals 

All cells were grown at 37ºC in a humidified air atmosphere with 5% CO2. 

U2OS (human osteosarcoma) cell line was cultured in DMEM +Glutamax 

(Thermo Fisher Scientific), 10% FBS and 1 % Penicillin/Streptomycin. U2OSQ94 

cells were cultured in DMEM +Glutamax supplemented with 10% Tet system 

approved FBS (Takara, 631368) and 1% Penicillin/Streptomycin, selected with 

zeocin and Blasticidin S. KBM7Q94 and KBM7-mCherry cells were cultured in 

IMDM (Thermo Fisher Scientific), supplemented with 10% FCS and 1 % 

Penicillin/Streptomycin. SH-SY5YQ94 cells were cultured in DMEM/F-12 (Thermo 

Fisher Scientific), 10% Tet system approved FBS and 1 % 

Penicillin/Streptomycin. For the transfection of U2OS cells, Lipofectamine2000 

transfection reagent (Thermo Fisher Scientific) was used following standard 

protocol. For the transfection of KBM7 cells, Amaxa Nucleofector kit (Reactive L, 

X-001 program) was used, and 5x105 cells with 10mg of indicated plasmids were 

transfected according to the manufacturer’s protocol. For the lentiviral 

transduction of SH-SY5Y cells, pLVX-UbC-rtTA-Htt-Q94-CFP vector was co-

transfected in HEK293T cells using Lipofectamine2000 with packaging vectors 

pMD2.G (Addgene, #12259) and psPAX2 (Addgene, #12260). Lentiviral 

supernatants were collected 36 hours after transfection, filtered and immediately 

used for transduction. 

 

Plasmids  
Human Htt-exon1-Q94 fragment from pTreTight-Htt94Q-CFP (Addgene, 

#23966) was cloned into pBlueScript SK+ (kind gift of Eva Brinkman) by using 

HindIII and BamHI sites to generate an intermediate plasmid, pBlueScript SK-

polyQ94. PINTO-polyQ94-GFP was cloned by pBlueScript SK-polyQ94 and 

pINTO-N-GFP using KpnI and NotI sites. pcDNA3.1-EGFP-poly94 was cloned by 

using pcDNA3.1-mCherry (Addgene, #128744) [54] and pINTO-polyQ94-GFP 

with AflII and NotI sites. To clone plasmid for SH-SY5Y cell infection, polyQ94-

CFP was cloned into pBlueScript SK+ by using XbaI and EcoRI sites to generate 
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an intermediate plasmid SK-polyQ94-CFP. pLVX-UbC-rtTA-polyQ94-CFP was 

cloned by SK-polyQ94-CFP and pLVX-UbC-rtTA-Ngn2:2A:Ascl1 (Addgene, 

#127289) using the dual NotI sites. The genetic construct of zebrafish plasmid is 

based on the vector pDEST-Tol2-PA2-CMV-AB-mCh (Addgene, #160435) [55] 

in which the Abeta peptide was exchanged to EGFP-polyQ94 from pcDNA3.1-

EGFP-polyQ94. Lentiviral packaging vectors pMD2.G (Addgene ,#12259) and 

psPAX2 (Addgene , #12260) were used. 
 

High-throughput Screening (HTS) 
Plate and liquid handling were performed using Echo550 (Labcyte, USA), 

Viaflo 384 (Integra Biosciences, Japan), Multiflo FX Multi-Mode Dispenser 

(BioTek, USA), and Hydrospeed washer (Tecan, Switzerland). Cells were seeded 

in black 384-well plates with clear bottom (BD Falcon, #353962). Compound 

libraries were provided by the Chemical Biology Consortium Sweden (CBCS). 

The chemical collection used in the primary screening contained 1,122 medically 

approved compounds from the Prestwick library and 94 epigenetic-drugs 

available at CBCS collections (the list of compounds is available at Table S1). 

For the primary screen, U2OSQ94 cells were trypsinized and resuspended in 

culture medium. The cell suspension (100 cells in 30 μl/well) was dispensed into 

384-well plates and exposed to a final concentration of 1μM of compounds diluted 

in dimethyl sulfoxide (DMSO) for 8 days. Cells were with 4% PFA and nuclei were 

stained with 2 μM Hoechst 33342 for 15 min in the dark. 

 

Plates were imaged using an IN Cell Analyzer 2200 system (GE Healthcare, 

USA) with a 10× objective, 4 images per well were acquired, covering the whole 

well. Images were analyzed with the open-source software CellProfiler [56] using 

a custom-made pipeline for the detection of nulei count and cytoplasmic GFP 

signal. The analysis considered the integrated intensity of cytoplasmic GFP 

staining and the nuclei count. All values were normalized to DMSO conditions 

within each plate. Then, the mean value for each compound in triplicates was 

calculated, representing a single measurement per compound per set of 

triplicates. For the validation screen, U2OSQ94 cells were exposed to 4 
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concentrations, 0.5, 1, 3, and 10 μM, of the selected hits for 8 days. The validation 

was conducted in triplicates and images were analyzed as described above. 

Statistical analysis of imagining data was conducted using Graphpad Prism 

software. 

 

Immunoblotting 

Cell pellets were lysed in in RIPA buffer (Thermo Fisher Scientific) 

supplemented with protease and phosphatase inhibitor cocktail (Roche), 

sonicated for 5 min and centrifuged at 4°C, 14000 rpm for 15 min. 30μg whole-

cell extracts were separated by SDS–PAGE and transferred onto Nitrocellulose 

membrane (Bio-Rad). After blocking in 5% milk in TBS-T, indicated antibodies 

were diluted in blocking buffer and incubated overnight at 4°C. The following 

dilutions of primary antibodies was used: GFP (1:300, Abcam, #ab290), 

Polyglutamine (1:1000, Sigma-Aldrich, #P1874), PPAR-γ (1:250, Abcam, 

a#b45036), Vinculin (1:2000, Abcam, #ab130007).  The signal associated to 

HRP-conjugated secondary antibodies (ThermoFisher, mouse #31430 and rabbit 

#31460) was developed with a SuperSignal West Pico PLUS Chemiluminescent 

Substrate kit (ThermoFisher, #34580), and analyzed in an Amersham Imager 

600.  

 

Flow cytometry 
For the analysis of the competition assay of KBM7 Q94 and KBM7-mCherry in, 

4x 104 KBM7 Q94 and KBM7-mCherry cells were mixed at a 1:1 ratio and were 

seeded in T175 flasks. Cells were treated with CFZ and TZD at indicated 

concentrations.  After 5 or 15 days, cells were analysed for green or red 

fluorescence by flow cytometry (Bio-Rad S3e cell sorter). Data were processed 

with the Flow Jo 10 software to calculate the percentage of each cell population. 

 
Viability assays 

For clonogenic survival assays, 500 cells per well were plated in 6-well tissue 

culture plates in the corresponding culture medium. Cells were treated with the 
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indicated concentrations of drugs and maintained with the compounds for 12 

days, changing the medium every 3-4 days, and then fixed and stained with 0.4% 

methylene blue in methanol for 30 min.  

 

RNA-seq and data analysis 
Total RNA was extracted from cell pellets using a Purelink RNA Mini Kit 

(Invitrogen #12183025) following manufacturer’s instructions.  Total RNA was 

subjected to quality control with Agilent Tapestation (#G2991BA). To construct 

libraries suitable for Illumina sequencing, an Illumina stranded mRNA prep 

ligation sample preparation protocol was used with an starting concentration of 

total RNA between 25-1000 ng. The protocol includes mRNA isolation, cDNA 

synthesis, ligation of adapters and amplification of indexed libraries. The yield 

and quality of the amplified libraries was analyzed using a Qubit by Thermo Fisher 

and the quality of the library was checked using the Agilent Tapestation. Indexed 

cDNA libraries were normalized and combined, and pools were sequenced using 

an Illumina platform. STAR [57] was used for sequence alignment based on the 

GRCh38 DNA primary assembly reference build [58], and quantification was 

done using featureCounts [59] with reference build GRCh38.101 [58].  

 

Differential expression (DE) analyses between the groups were performed 

using DESeq2 [60]. Generalized linear model (GLM) was fitted to the expression 

data and shrunken log2fold-change (LFC) using adaptive Student's t prior 

shrinkage estimator [60, 61]. Multiple testing correction was done using 

Benjamini-Hochberg (BH) method [62]. GSEA analysis was performed on the 

gene-level statistics from the DE analyses results against the molecular 

signatures from the Molecular Signatures Database (MSigDB) v7.5.1 [63, 64] and 

the Reactome database [65]. Specifically, signatures from the ontology gene set 

C5 of MSigDB, containing Gene Ontology (GO)-derived gene sets [66, 67], as 

well as the complete gene sets from the Reactome database, retrieved from 

fgsea 1.20.0 [68], were used. GSEA analysis was carried out using clusterProfiler 

4.2.2 [69] to identify enriched terms. The transcriptional signatures, identified to 

be the sets of top up/down-regulated 150 genes (BH p-adjusted values < 0.05, 
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ranked by LFC) from the DE analysis outcomes, were separately used as inputs 

to the Connectivity Map (CMap) Query clue.io tool (https://clue.io/) [70] to identify 

drugs with signatures similar to that clofazimine. 

 

Molecular docking 
The 3D crystal structure of PPAR-γ was downloaded from the Protein Data 

Bank (http://www.rcsb.com; #3ET0). Autodock vina was used to removed water 

molecules and add missing side or back chains and residues. Chemical 

structures were downloaded from the ZINC database of molecular structures for 

virtual screens (www.zinc15.org). Molecular-docking was conducted by Auto 

Dock vina and the binding energy of each ligand was analyzed based on binding 

free energies and root mean square deviation (RMSD) values. Top nine binding 

energies of each ligand were listed. 

 

Zebrafish study 
To test the impact of CFZ in alleviating polyQ toxicity in zebrafish. On day0, 

the injection mix (25ng/ul transposase, 50ng/ul vector, 0.3% phenol red) was 

injected into 150 eggs. The compounds were added in to the E3 medium at 12,5 

µM, CFZ treatment naïve injected group and DMSO treated un-injected group are 

also inclouded. After 24h, dead embryos/well are counted and imaged. The 

experiment was triplicated. 

 

Statistics  
Statistical parameters and tests are reported in the Figures and corresponding 

Figure Legends. Statistical analysis was done using GraphPad Prism version 8.0 

(GraphPad Software Inc). One-way-ANOVA was performed for all the datasets 

that required comparison among multiple data points within a given experimental 

condition. 
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Data availability 
RNA sequencing data associated to this work are accessible at the GEO 

repository, under accession number GSE222758.  
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FIGURE LEGENDS 

Figure 1. A chemical screen to identify modifiers of polyQ toxicity. (A) 

Representative image of Htt-Q94 expression (monitored by EGFP, green) in 

U2OSQ94 cells treated or not with dox (50 ng/ml) for 8 days. An inset illustrates 

the appearance of cells harbouring perinuclear aggregates Htt-Q94 (asterisk). 

Hoechst (blue) was used to stain DNA and enable the quantification of nuclei. (B) 

High-Throughput Microscopy (HTM)-mediated quantification of nuclei numbers 

from the data presented in (A). ***p<0.001, t-test. (C) Pipeline of the chemical 

screen. On day 0, U2OSQ94 cells were seeded on 384-well plates. On the 

following day, cells were treated with dox (50 ng/ml) and with the compounds 

from the library at 1µM. Nuclei numbers were quantified by HTM on day 9. 

Scattered controls of cells not treated with dox, or only treated with dox but 

without additional compounds were used for normalization. (B) Hit distribution of 

the screen described in (C). Compounds that led to an increase in nuclei numbers 

higher than 3SD when compared to the numbers founds on wells only treated 

with dox were taken for secondary validation (Fig S1).  

 

Figure 2. Clofazimine and troglitazone alleviate polyQ toxicity in vitro. (A) 

Representative images from clonogenic survival assays performed in U2OSQ94 

cells, treated or not with dox (50ng/ml) and the indicated drugs at 2µM for 12 

days. The full dose-response dataset from the clonogenic assays is available at 

(Fig. S2). (B) Representative images of Htt-Q94 expression (detected by the 

EGFP signal, green) in U2OSQ94 cells, treated or not with dox (50ng/ml) and the 

indicated drugs at 5µM for 8 days. Nuclei were stained with Hoechst (blue). (C) 

WB analysis of Htt-Q94 expression levels, monitored both with an anti-EGFP 

antibody or an antibody against polyQ peptides, in the experiment defined in (B). 

Vinculin levels were assessed as a loading control. (D) Scheme of the 

competition assay using KBM7 cells expressing either mCherry (red, control) or 

a fusion protein between Htt-Q94 and EGFP (green). When co-cultured, the 

percentage of Htt-Q94 progressively declines. (E) Data from the KBM7 
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competition experiment defined in (D), in cultures treated with DMSO (control), 

TZD or CFZ (at 5 µM). 

 

Figure 3. Clofazimine restores mitochondrial function in polyQ-expressing 
cells. (A) Volcano plot representing RNAseq data illustrating the impact of CFZ 

treatment (5 µM; 8 days) in dox-induced U2OSQ94 cells. Genes above dotted line 

are differentially regulated (p < 0.05). Blue dots highlight mitochondria-related 

genes. (B) GSEA analyses from the experiment defined in A, illustrating the 

overall increase in mitochondria-related pathways upon CFZ treatment in dox-

induced U2OSQ94 cells. (C) Representative images of Htt-Q94 expression 

(detected by the EGFP signal, green) or the mitotracker signal (red) in the of 

U2OSQ94 cells treated or not with dox (50 ng/ml) and CFZ (5 µM). Nuclei were 

stained with Hoechst (blue). (D) HTM-dependent quantification of the cytoplasmic 

mitotracker signal per cell from the experiment defined in (C). *p<0.05, 

***p<0.001, t-test. (E) Representative images from transmission electron 

microscopy of U2OSQ94 cells treated or not with dox (50 ng/ml) and CFZ (5 µM). 

Arrows indicate mitochondria, which are significantly altered upon expression, 

and improved upon a concomitant treatment with CFZ. Scale bar (white), 

represents 0,5 µm. 

 

Figure 4. Identification of clofazimine as a PPARg agonist. (A) The 

transcriptional signature of CFZ-treated cells, was used as input to search for 

drugs exerting a similar transcriptional signature at the Connectivity Map 

database from the Broad Institute at MIT [43]. The panel indicates an enrichment 

of PPARg agonists among the drugs showing a transcriptional signature 

resembling that of CFZ. (B) Molecular docking illustrating the fitting of CFZ 

(yellow) in an allosteric pocket of PPARg (red). The interaction occurs through 

hydrophobic forces and the formation of a hydrogen bond with gln-470 (length of 

the bond, 4.0 Å). CFZ has hydrophobic interactions with tyr-473, val-450, gln-454, 

ile-456, lys-457, met-463, ser-464 and leu-465. (C) Binding affinities of CFZ and 
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several PPARg agonists towards PPARg, based on the molecular docking 

experiment shown in (B). (D) Cellular thermal shift assay (CETSA) measuring the 

effects of TZD and CFZ on PPARg levels at increasing temperatures. Both 

compounds increased the thermal stability of PPARg when compared to the 

DMSO control. (E) Quantification of the CETSA studies shown in (D). 

 

Figure 5. Clofazimine rescues polyQ toxicity in neurons and zebrafish. (A) 

Representative images of SH-SY5YQ94 cells differentiated with RA (10µM, 5 

days), and subsequently treated with dox (35ng/ml) with or without CFZ (1µM) for 

3 additional days. Levels of Htt-Q94 (measured by the CFP signal), TUBB3 

(yellow) and mitotracker (red) are shown. Hoechst (blue) was used to stain DNA 

and detect nuclei. An image of the entire well for this dataset, as well as the 

quantification of cell numbers is shown in Fig. S3. (B) HTM-dependent 

quantification of the cytoplasmic mitotracker signal per cell from the experiment 

defined in (A). (C) Scheme illustrating the pipeline followed to evaluate Htt-Q94 in 

developing zebrafish. Viability was monitored 5 days after microinjection with an 

Htt-Q94-CFP expressing plasmid. (D) Representative images of zebrafish 

embryos 5 days after the microinjection of the Htt-Q94-CFP expressing plasmid or 

DMSO. Note the accumulation of dead embryos (black asterisk) upon Htt-Q94-

CFP expression, which was significantly rescued by CFZ (12.5 µM). Scalebar 

(white) represents 1 mm. (E) Quantification from the experiment defined in (C-D). 

*p<0,05, **p<0.01, t-test. 
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